A CONJECTURE ON CYCLE-PANCYCLISM IN TOURNAMENTS

Hortensia Galeana-Sánchez and Sergio Rajsbaum
Instituto de Matemáticas, U.N.A.M. C.U., Circuito Exterior, D.F. 04510, México
e-mail: rajsbaum@servidor.unam.mx

Abstract

Let T be a hamiltonian tournament with n vertices and γ a hamiltonian cycle of T. In previous works we introduced and studied the concept of cycle-pancyclism to capture the following question: What is the maximum intersection with γ of a cycle of length k ? More precisely, for a cycle C_{k} of length k in T we denote $\mathcal{I}_{\gamma}\left(C_{k}\right)=\left|A(\gamma) \cap A\left(C_{k}\right)\right|$, the number of arcs that γ and C_{k} have in common. Let $f(k, T, \gamma)=$ $\max \left\{\mathcal{I}_{\gamma}\left(C_{k}\right) \mid C_{k} \subset T\right\}$ and $f(n, k)=\min \{f(k, T, \gamma) \mid T$ is a hamiltonian tournament with n vertices, and γ a hamiltonian cycle of $T\}$. In previous papers we gave a characterization of $f(n, k)$. In particular, the characterization implies that $f(n, k) \geq k-4$.

The purpose of this paper is to give some support to the following original conjecture: for any vertex v there exists a cycle of length k containing v with $f(n, k)$ arcs in common with γ.

Keywords: Tournaments, pancyclism, cycle-pancyclism.
1991 Mathematics Subject Classification: 05C20.

1. Introduction

Recall that a tournament is a digraph in which each pair of vertices is connected by exactly one arc, that is, a complete asymmetric digraph. Quoting from the classical textbook by Behzad, Chartrand and Lesniak-Foster [3] (p. 353), among the various classes of digraphs, the tournaments are probably the most studied and most applicable. The book by Moon [9] treats these digraphs in great detail. The book by Robinson and Foulds [11], and the book [3] itself dedicate one chapter to tournaments.

The subject of pancyclism in tournaments is a classical subject in the study of tournaments; it has been treated in textbooks (e.g. [3]) and in many
papers (e.g. $[1,2,4,10,12])$. Two types of pancyclism have been considered. A tournament T is vertex-pancyclic if given any vertex v there are cycles of every length containing v. Similarly, a tournament T is arc-pancyclic if given any arc e there are cycles of every length containing e. It is well known, and perhaps surprising, that if a tournament has a cycle going through all of its vertices (i.e. it has a hamiltonian cycle or the tournament is hamiltonian) then it is vertex-pancyclic. This result was first proved by Moon [8], and a proof by C. Thomassen can be found in [3] p. 358. It is easy to see that a vertex-pancyclic tournament is not necessarily arc-pancyclic.

In a previous paper, [5], we introduced the concept of cycle-pancyclism to try to understand in more detail the structure of a pancyclic tournament; to explore how are the cycles of the various lengths positioned with respect to each other. We considered questions such as the following. Given a cycle C of a tournament T with n vertices, what is the maximum number of arcs which a cycle of length k contained in C has in common with C ? In $[5,6,7]$ we discovered that, for every k, there is always a cycle of length k, with its vertices contained in C, and all of its arcs contained in C except for at most 4: "almost" completely contained in C. This result implies that for any given hamiltonian cycle γ_{n} of T, there is a cycle γ_{n-1} of length $n-1$ contained in γ_{n} with at most 4 edges not in γ_{n}. By considering the subtournament of T with $n-1$ vertices induced by γ_{n-1}, we can repeat this argument and obtain cycles $\gamma_{n-2}, \gamma_{n-3}, \ldots$, such that each γ_{i} is "almost" completely contained in γ_{i+1}.

In this paper we suggest -and present some evidence- that a similar result may hold, even if we add the requirement that the cycle "almost" completely contained in C passes through a specified vertex. Informally, assume that a hamiltonian cycle γ of a tournament T, and a vertex 0 are given, and we ask what is the maximum number of arcs that γ and a cycle of length k going through 0 have in common. This kind of result would considerably strengthen the vertex-pancyclism classical result.

We proceed with a formal description of the problem. Let T be a hamiltonian tournament with vertex set V and arc set A. Assume without loss of generality that $V=\{0,1, \ldots, n-1\}$ and $\gamma=(0,1, \ldots, n-1,0)$ is a hamiltonian cycle of T. Let C_{k} denote a directed cycle of length k. For a cycle C_{k} we denote $\mathcal{I}_{\gamma}\left(C_{k}\right)=\left|A(\gamma) \cap A\left(C_{k}\right)\right|$, or simply $\mathcal{I}\left(C_{k}\right)$ when γ is known, the number of arcs that γ and C_{k} have in common. Let $f(k, T, \gamma)=\max \left\{\mathcal{I}_{\gamma}\left(C_{k}\right) \mid C_{k} \subset T\right\}$ and $f(n, k)=\min \{f(k, T, \gamma) \mid T$ is a hamiltonian tournament with n vertices, and γ a hamiltonian cycle of $T\}$. In $[5,6,7]$ we gave a characterization of $f(n, k)$:

- $f(n, 3)=1, f(n, 4)=1$ and $f(n, 5)=2$ if $n \neq 2 k-2$;
- $f(n, k)=k-1$ if and only if $n=2 k-2$.

For $n \geq 2 k-4$ and $k>5$,

- $f(n, k)=k-2$ if and only if $n \neq 2 k-2$ and $n \equiv k \quad(\bmod k-2)$;
- $f(n, k)=k-3$ if and only if $n \not \equiv k \quad(\bmod k-2)$.

For $n \leq 2 k-5$,

- $f(n, k)=k-4$.

That is, we showed that there is always a cycle C_{k} almost completely contained in γ; except for at most 4 arcs. The purpose of this paper is to conjecture that the same results hold if we in addition require that the cycles pass through a fixed vertex; that is, that for any vertex v there exists a cycle of length k containing v with $f(n, k)$ arcs in common with γ. As evidence for the conjecture, we present various particular cases in which this equality holds.

More precisely, for a vertex v of a hamiltonian tournament T with n vertices, let

$$
\tilde{f}(k, T, \gamma, v)=\max \left\{\mathcal{I}_{\gamma}\left(C_{k}\right) \mid C_{k} \subset T\right\}
$$

for short be denoted sometimes $\tilde{f}(n, k, T)$, and to stress that T has n vertices. Let $\tilde{f}(n, \underset{\sim}{k})=\min \left\{\tilde{f}(k, T, \gamma, v) \mid T, v \in T\right.$, and $\gamma_{\tilde{f}}$ a hamiltonian cycle of $\left.T\right\}$. Clearly, $\tilde{f}(n, k) \leq f(n, k)$. We conjecture that $\tilde{f}(n, k)=f(n, k)$.

We know that the conjecture is true in the following particular cases. When

- $k=3,4,5,6$;
- $n=2 k-2,2 k-3,2 k-4$;
- $r=k-1, k-2$, where $n-k+1 \equiv r \quad(\bmod k-2)$.

The proofs are identical to the ones in [5], except for the proof of case $r=k-2$, which is similar, and the case $k=6$ which is new. For completeness we include all the proofs here.

2. Preliminaries

In the rest of this paper we consider an arbitrary tournament T with n vertices, with some fixed vertex 0 , and a hamiltonian cycle $\gamma=(0,1, \ldots$, $n-1,0$).

A chord of a cycle C is an arc not in C with both terminal vertices in C. The length of a chord $f=(u, v)$ of C, denoted $l(f)$, is equal to the length of $\langle u, C, v\rangle$, where $\langle u, C, v\rangle$ denotes the $u v$-directed path contained
in C. We say that f is a c-chord if $l(f)=c$ and $f=(u, v)$ is a $-c$-chord if $l\langle v, C, u\rangle=c$. Observe that if f is a c-chord, then it is also a $-(n-c)$-chord.

In what follows every integer is taken modulo n.
For any $a, 2 \leq a \leq n-2$, denote by t_{a} the largest integer such that $a+t_{a}(k-2)<n-1$. The important case of t_{k-1} is denoted by t in the rest of the paper. Let r be defined as follows: $r=n-[k-1+t(k-2)]$.

Notice the following facts.

- If $a \leq b$, then $t_{a} \geq t_{b}$.
- $t \geq 0$.
- $2 \leq r \leq k-1$.

Lemma 2.1. If the a-chord with initial vertex 0 is in A, then at least one of the two following properties holds.
(i) $\tilde{f}(n, k, T) \geq k-2$.
(ii) For every $0 \leq i \leq t_{a}$, the $a+i(k-2)$-chord with initial vertex 0 is in A.

Proof. Suppose that (ii) in the lemma is false, and let

$$
j=\min \left\{i \in\left\{1,2, \ldots, t_{a}\right\} \mid(a+i(k-2), 0) \in A\right\}
$$

then
$C_{k}=(0, a+(j-1)(k-2)) \cup\langle a+(j-1)(k-2), \gamma, a+j(k-2)\rangle \cup(a+j(k-2), 0)$
is a cycle such that $\mathcal{I}\left(C_{k}\right)=k-2$ with $0 \in C_{k}$, and hence (i) in the lemma is true.

3. The Cases $k=3,4,5$

Theorem 3.1. $\tilde{f}(n, 3) \geq 1$.
Proof. Let $i=\min \{j \in V \mid(j, 0) \in A\}$. Observe that i is well defined since $(n-1,0) \in A$. Clearly $i \neq 1$, so $i-1>0$ and then $(0, i-1, i, 0)$ is a cycle C_{3} with $\mathcal{I}\left(C_{3}\right) \geq 1$.

Theorem 3.2. $\tilde{f}(n, 4) \geq 1$.
Proof. We proceed by contradiction. Taking $a=3$ and $x_{0}=0$ in Lemma 2.1 we get that for each $i, 0 \leq i \leq t_{a}$, the $(3+2 i)$-chord $(0,3+2 i)$ is in A. Recall that t_{a} is the greatest integer such that $3+2 t_{a}<n-1$.

When n is even, it holds that $t_{a}=(n-4) / 2-1,\left(0,3+2 t_{a}\right) \in A$. That is, $(0, n-3) \in A$ and $C_{4}=(0, n-3, n-2, n-1,0)$ is a cycle with $\mathcal{I}\left(C_{4}\right)=3$. When n is odd, it holds that $t_{a}=\left\lfloor\frac{n-4}{2}\right\rfloor$ and $\left(0,3+2 t_{a}\right) \in A$, namely $(0, n-2) \in A$.

Now, we may assume that $(n-3,0) \in A$, because otherwise the cycle $C_{4}=(0, n-3, n-2, n-1,0)$ satisfies $\mathcal{I}\left(C_{4}\right)=3$. If $(n-1, n-3) \in A$ then $C_{4}=(n-1, n-3,0, n-2, n-1)$ is a cycle with $\mathcal{I}\left(C_{4}\right)=1$. Else, $(n-3, n-1) \in A$ and $C_{4}=(n-3, n-1,0, n-4, n-3)$ is a cycle with $\mathcal{I}\left(C_{4}\right)=1$.

Theorem 3.3. $\tilde{f}(n, 5) \geq 2$.
Proof. We consider the three cases $n \equiv 0(\bmod 3), n \equiv 1(\bmod 3)$, $n \equiv 2 \quad(\bmod 3)$.

Case $n \equiv 2 \quad(\bmod 3)$.
Taking $a=4$ in Lemma 2.1, we get that $(0, n-4) \in A$ and $C_{5}=(0, n-4$, $n-3, n-2, n-1,0)$ is a cycle with $\mathcal{I}\left(C_{5}\right)=4$.

Case $n \equiv 1 \quad(\bmod 3)$.
Taking $a=4$ in Lemma 2.1, we get that $4+3 t_{4}=n-3$. Hence $(0, n-3) \in A$ and $(0, n-6) \in A$. Observe that $(n-4,0) \in A$. Otherwise $(0, n-4) \in A$ and $C_{5}=(0, n-4, n-3, n-2, n-1,0)$ is a cycle with $\mathcal{I}\left(C_{5}\right)=4$.

Now, if $(n-2, n-5) \in A$, then $C_{5}=(n-2, n-5, n-4,0, n-3, n-2)$ is a cycle with $\mathcal{I}\left(C_{5}\right)=2$. Else $(n-5, n-2) \in A$ and $C_{5}=(0, n-6, n-5$, $n-2, n-1,0)$ is a cycle with $\mathcal{I}\left(C_{5}\right)=3$.

Case $n \equiv 0 \quad(\bmod 3)$.
If $(0,3) \in A$, then taking $a=3$ in Lemma 2.1, we obtain that $(0, n-6) \in A$ and $(0, n-3) \in A$. The proof proceeds exactly as in the proof for the case $n \equiv 1 \quad(\bmod 3)$. Hence, let us assume that $(3,0) \in A$.

Observe that $(5,0) \in A$, because otherwise $(0,5) \in A$ and taking $a=5$ in Lemma 2.1, we get that $(0, n-4) \in A$ and $C_{5}=(0, n-4, n-3, n-2$, $n-1,0)$ is a cycle with $\mathcal{I}\left(C_{5}\right)=4$.

Therefore we have that $(5,0) \in A$ and $(3,0) \in A$. Considering the cycle $(0,1,2,3,4,5,0)$ it is easy to check that $(5,3) \in A$ and $(1,5) \in A$ (or else the proof follows). Analyzing the direction of the arc joining 2 and 5 we see that in any case there is a cycle C_{5} with $\mathcal{I}\left(C_{5}\right)=2$: If $(5,2) \in A$, then the cycle is $C_{5}=(3,0,1,5,2,3)$, else, if $(2,5) \in A$, then the cycle is $C_{5}=(3,0,1,2,5,3)$.

4. The Case of $n=2 k-4$

In this section it is proved that if $n=2 k-4$, then $\tilde{f}(n, k) \geq k-3$.
Theorem 4.1. If $n=2 k-4$ then $\tilde{f}(n, k) \geq k-3$.
Proof. Let x and y be two vertices of T such that $l\langle x, \gamma, y\rangle=l\langle y, \gamma, x\rangle=$ $k-2$. Without loss of generality we can assume that $x=0, y=k-2$ and $(0, k-2) \in A$. Hence $(k-1,2)$ is a $(k-1)$-chord, $l\langle 2, \gamma, k-1\rangle=k-3$, $(1, k)$ is a $(k-1)$-chord and $l\langle 2, \gamma, k+1\rangle=k-1$.

- $(k, 2) \in A$. Otherwise $(2, k) \in A$ and then $C_{k}=(k-2, k-1,2, k) \cup$ $\langle k, \gamma, 0\rangle \cup(0, k-2)$ is a cycle with $\mathcal{I}\left(C_{k}\right)=k-3$.
- $(1, k-1) \in A$. Otherwise $(k-1,1) \in A$ and then $C_{k}=(k-1,1, k) \cup$ $\langle k, \gamma, 0\rangle \cup(0, k-2, k-1)$ is a cycle with $\mathcal{I}\left(C_{k}\right)=k-3$.
Therefore, since $(k, 2) \in A$ and $(1, k-1) \in A$, then $C_{k}=(1, k-1, k, 2$, $k+1) \cup\langle k+1, \gamma, 1\rangle$ is a cycle with $\mathcal{I}\left(C_{k}\right)=k-3$. Notice that $0 \in\langle k+1, \gamma, 1\rangle$.

$$
\text { 5. The Case of } r=k-1 \text { AND } r=k-2
$$

In this section it is proved that if $r=k-1$ or $r=k-2$ then $\tilde{f}(n, k) \geq k-3$.
Theorem 5.1. If $r=k-1$ or $r=k-2$ then $\tilde{f}(n, k) \geq k-3$.
Proof. Assume $r=k-1$. By Lemma 2.1 (taking $i=0$) either $\tilde{f}(n, k, T) \geq$ $k-2$ or $(0, k-1) \in A$. In the latter case we have that $\langle k-1+t(k-2), \gamma, 0\rangle \cup$ $(0, k-1+t(k-2))$ is a cycle of length k intersecting γ in $k-1$ arcs. Thus, in both cases, $\tilde{f}(n, k, T) \geq k-2$.

Now, assume $r=k-2$ and $\tilde{f}(n, k, T)<k-3$.
We consider the vertices $x=k-1+t(k-2), y=k-1+(t-1)(k-2)$. Observe that when $t=0$, we obtain $y=1$.
(i) $(0, x) \in A$. It follows from Lemma 2.1.
(ii) $(x-1,0) \in A$. It follows directly from the case $r=k-1$.
(iii) $(x, y) \in A$. If $(x, y) \notin A$ then $(y, x) \in A$ and $(y, x) \cup\langle x, \gamma, 0\rangle \cup(0, y)$ (Lemma 2.1 implies $(0, y) \in A$) is a cycle of length k intersecting γ in at least $k-2$ arcs.
It follows from (i), (ii) and (iii) that $(0, x, y) \cup\langle y, \gamma, x-1\rangle \cup(x-1,0)$ is a cycle of length k which intersects γ in at least $k-3$ arcs. A contradiction.

The case of $n=2 k-3$ follows from this theorem because in this case $r=k-2$.

The case of $n=2 k-2$ is trivial.

6. The Case $k=6$

Theorem 6.1. $\tilde{f}(7,6)=2$.
Proof. By Theorem 7.5 of $[5], f(7,6)<3$, and therefore $\tilde{f}(7,6)<3$. We proceed to prove that $\tilde{f}(7,6) \geq 2$.

We consider $\gamma=(0,1,2,3,4,5,6)$, and construct a cycle C_{6} going through 0 with at least $2 \operatorname{arcs}$ in common with γ. Clearly, we can assume that the arcs $(2,0),(4,2),(6,4)$ and $(0,5)$ are in A because otherwise there exists a cycle C_{6} passing through 0 with $\mathcal{I}\left(C_{6}\right)=5$.

Consider two cases: $(0,3) \in A$ or $(3,0) \in A$. For the case $(0,3) \in A$, we first prove that $(2,6) \in A$. Otherwise, $(6,2) \in A$ and $C_{6}=(0,3,4,5,6,2,0)$ goes through 0 and has $\mathcal{I}\left(C_{6}\right)=3$. Thus $(2,6) \in A$, and we show that also $(2,5)$ must also be in A. If $(5,2) \in A$, then $C_{6}=(0,3,4,5,2,6,0)$ goes through 0 and has $\mathcal{I}\left(C_{6}\right)=3$. Since $(0,3) \in A$ and $(2,5) \in A$, we have $C_{6}=(0,3,4,2,5,6,0)$ that goes through 0 and has $\mathcal{I}\left(C_{6}\right)=3$.

The case where $(3,0) \in A$ we have $C_{6}=(0,5,6,4,2,3,0)$ that goes through 0 and has $\mathcal{I}\left(C_{6}\right)=2$.

Theorem 6.2. $\tilde{f}(n, 6) \geq 3$ if $n \geq 8$.
Proof. We consider the four cases $n \equiv i(\bmod 4), i=0,1,2,3$.
Case $n \equiv 3(\bmod 4)$.
First notice that $(n-1,4) \in A$, since otherwise $C_{6}=(0,1,2,3,4, n-1,0)$ goes through 0 and has $\mathcal{I}\left(C_{6}\right)=5$. Also, $(6,0) \in A$, because otherwise, if $(0,6) \in A$ by Lemma 2.1, $(0, n-5) \in A$ and $C_{6}=(0, n-5, n-4, n-3$, $n-2, n-1,0$) goes through 0 and has $\mathcal{I}\left(C_{6}\right)=5$. Again by Lemma 2.1, $(0, n-2) \in A$. We conclude the proof if this case with $C_{6}=(0, n-2$, $n-1,4,5,6,0)$ that goes through 0 and has $\mathcal{I}\left(C_{6}\right)=3$.

Case $n \equiv 2 \quad(\bmod 4)$.
Taking $a=5$ in Lemma 2.1, we get that $(0, n-5) \in A$ and $C_{6}=(0, n-5$, $n-4, n-3, n-2, n-1,0)$ is a cycle with $\mathcal{I}\left(C_{6}\right)=5$.

Case $n \equiv 1 \quad(\bmod 4)$.
Taking $a=5$ in Lemma 2.1, we get that $5+4 t_{5}=n-4$. Hence $(0, n-4) \in A$ and $(0, n-8) \in A$. Observe that $(n-5,0) \in A$. Otherwise $(0, n-5) \in A$ and $C_{6}=(0, n-5, n-4, n-3, n-2, n-1,0)$ is a cycle with $\mathcal{I}\left(C_{6}\right)=5$.

Now, if $(n-2, n-6) \in A$ then $C_{6}=(n-2, n-6, n-5,0, n-4, n-3, n-2)$ is a cycle with $\mathcal{I}\left(C_{6}\right)=3$. Else $(n-6, n-2) \in A$ and $C_{6}=(0, n-8, n-7$,
$n-6, n-2, n-1,0)$ is a cycle with $\mathcal{I}\left(C_{6}\right)=4$. Notice that this cycle is well defined, since $n \geq 9$. This is so because $n \equiv 1 \quad(\bmod 4)$ and $n \geq 8$.

Case $n \equiv 0 \quad(\bmod 4)$.
If $(0,4) \in A$, then taking $a=4$ in Lemma 2.1, we obtain that $(0, n-4) \in A$. The proof proceeds exactly as in the proof for the case $n \equiv 1(\bmod 4)$. Hence, let us assume that $(4,0) \in A$.

Observe that $(6,0) \in A$, because otherwise $(0,6) \in A$ and taking $a=6$ in Lemma 2.1, we get that $(0, n-2) \in A$, and the proof proceeds exactly as in the proof for the case $n \equiv 3(\bmod 4)$. It follows that $(5,3) \in A$, because if $(3,5) \in A$ then $C_{6}=(0,1,2,3,5,6,0)$ is a cycle C_{6} with $\mathcal{I}\left(C_{6}\right)=4$.

Now, $(5,2) \in A$, because if $(2,5) \in A$ then $C_{6}=(0,1,2,5,3,4,0)$ is a cycle C_{6} with $\mathcal{I}\left(C_{6}\right)=3$. Therefore, $(5,1) \in A$, because if $(1,5) \in A$ then $C_{6}=(0,1,5,2,3,4,0)$ is a cycle C_{6} with $\mathcal{I}\left(C_{6}\right)=3$.

Finally, using the chords $(0,5),(5,1),(4,0)$ we get $C_{6}=(0,5,1,2,3,4,0)$ is a cycle C_{6} with $\mathcal{I}\left(C_{6}\right)=3$.

References

[1] B. Alspach, Cycles of each length in regular tournaments, Canadian Math. Bull. 10 (1967) 283-286.
[2] J. Bang-Jensen and G. Gutin, Paths, Trees and Cycles in Tournaments, Congressus Numer. 115 (1996) 131-170.
[3] M. Behzad, G. Chartrand and L. Lesniak-Foster, Graphs \& Digraphs (Prindle, Weber \& Schmidt International Series, 1979).
[4] J.C. Bermond and C. Thomasen, Cycles in digraphs: A survey, J. Graph Theory 5 (1981) 1-43.
[5] H. Galeana-Sánchez and S. Rajsbaum, Cycle-Pancyclism in Tournaments I, Graphs and Combinatorics 11 (1995) 233-243.
[6] H. Galeana-Sánchez and S. Rajsbaum, Cycle-Pancyclism in Tournaments II, Graphs and Combinatorics 12 (1996) 9-16.
[7] H. Galeana-Sánchez and S. Rajsbaum, Cycle-Pancyclism in Tournaments III, Graphs and Combinatorics 13 (1997) 57-63.
[8] J.W. Moon, On Subtournaments of a Tournament, Canad. Math. Bull. 9 (1966) 297-301.
[9] J.W. Moon, Topics on Tournaments (Holt, Rinehart and Winston, New York, 1968).
[10] J.W. Moon, On k-cyclic and Pancyclic Arcs in Strong Tournaments, J. Combinatorics, Information and System Sci. 19 (1994) 207-214.
[11] D.F. Robinson and L.R. Foulds, Digraphs: Theory and Techniques (Gordon and Breach Science Publishing, 1980).
[12] Z.-S. Wu, k.-M. Zhang and Y. Zou, A Necessary and Sufficient Condition for Arc-pancyclicity of Tournaments, Sci. Sinica 8 (1981) 915-919.

Received 28 September 1998

