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Abstract

Let T be a hamiltonian tournament with n vertices and γ a hamil-
tonian cycle of T . In previous works we introduced and studied the
concept of cycle-pancyclism to capture the following question: What is
the maximum intersection with γ of a cycle of length k? More precisely,
for a cycle Ck of length k in T we denote Iγ(Ck) = |A(γ) ∩ A(Ck)|,
the number of arcs that γ and Ck have in common. Let f(k, T, γ) =
max{Iγ(Ck)|Ck ⊂ T} and f(n, k) = min{f(k, T, γ)|T is a hamiltonian
tournament with n vertices, and γ a hamiltonian cycle of T}. In pre-
vious papers we gave a characterization of f(n, k). In particular, the
characterization implies that f(n, k) ≥ k − 4.

The purpose of this paper is to give some support to the follow-
ing original conjecture: for any vertex v there exists a cycle of length
k containing v with f(n, k) arcs in common with γ.
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1. Introduction

Recall that a tournament is a digraph in which each pair of vertices is con-
nected by exactly one arc, that is, a complete asymmetric digraph. Quoting
from the classical textbook by Behzad, Chartrand and Lesniak-Foster [3]
(p. 353), among the various classes of digraphs, the tournaments are prob-
ably the most studied and most applicable. The book by Moon [9] treats
these digraphs in great detail. The book by Robinson and Foulds [11], and
the book [3] itself dedicate one chapter to tournaments.

The subject of pancyclism in tournaments is a classical subject in the
study of tournaments; it has been treated in textbooks (e.g. [3]) and in many
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papers (e.g. [1, 2, 4, 10, 12]). Two types of pancyclism have been considered.
A tournament T is vertex-pancyclic if given any vertex v there are cycles of
every length containing v. Similarly, a tournament T is arc-pancyclic if given
any arc e there are cycles of every length containing e. It is well known, and
perhaps surprising, that if a tournament has a cycle going through all of its
vertices (i.e. it has a hamiltonian cycle or the tournament is hamiltonian)
then it is vertex-pancyclic. This result was first proved by Moon [8], and a
proof by C. Thomassen can be found in [3] p. 358. It is easy to see that a
vertex-pancyclic tournament is not necessarily arc-pancyclic.

In a previous paper, [5], we introduced the concept of cycle-pancyclism

to try to understand in more detail the structure of a pancyclic tournament;
to explore how are the cycles of the various lengths positioned with respect
to each other. We considered questions such as the following. Given a cycle
C of a tournament T with n vertices, what is the maximum number of arcs
which a cycle of length k contained in C has in common with C? In [5, 6, 7]
we discovered that, for every k, there is always a cycle of length k, with
its vertices contained in C, and all of its arcs contained in C except for
at most 4: “almost” completely contained in C. This result implies that
for any given hamiltonian cycle γn of T , there is a cycle γn−1 of length
n − 1 contained in γn with at most 4 edges not in γn. By considering the
subtournament of T with n− 1 vertices induced by γn−1, we can repeat this
argument and obtain cycles γn−2, γn−3, . . ., such that each γi is “almost”
completely contained in γi+1.

In this paper we suggest -and present some evidence- that a similar
result may hold, even if we add the requirement that the cycle “almost”
completely contained in C passes through a specified vertex. Informally,
assume that a hamiltonian cycle γ of a tournament T , and a vertex 0 are
given, and we ask what is the maximum number of arcs that γ and a cycle
of length k going through 0 have in common. This kind of result would
considerably strengthen the vertex-pancyclism classical result.

We proceed with a formal description of the problem. Let T be a hamil-
tonian tournament with vertex set V and arc set A. Assume without loss
of generality that V = {0, 1, . . . , n − 1} and γ = (0, 1, . . . , n − 1, 0) is a
hamiltonian cycle of T . Let Ck denote a directed cycle of length k. For
a cycle Ck we denote Iγ(Ck) = |A(γ) ∩ A(Ck)|, or simply I(Ck) when
γ is known, the number of arcs that γ and Ck have in common. Let
f(k, T, γ) = max{Iγ(Ck)|Ck ⊂ T} and f(n, k) = min{f(k, T, γ)|T is a
hamiltonian tournament with n vertices, and γ a hamiltonian cycle of T}.
In [5, 6, 7] we gave a characterization of f(n, k):
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• f(n, 3) = 1, f(n, 4) = 1 and f(n, 5) = 2 if n 6= 2k − 2;

• f(n, k) = k − 1 if and only if n = 2k − 2.

For n ≥ 2k − 4 and k > 5,

• f(n, k) = k − 2 if and only if n 6= 2k − 2 and n ≡ k (mod k − 2);

• f(n, k) = k − 3 if and only if n 6≡ k (mod k − 2).

For n ≤ 2k − 5,

• f(n, k) = k − 4.

That is, we showed that there is always a cycle Ck almost completely con-
tained in γ; except for at most 4 arcs. The purpose of this paper is to
conjecture that the same results hold if we in addition require that the cy-
cles pass through a fixed vertex; that is, that for any vertex v there exists
a cycle of length k containing v with f(n, k) arcs in common with γ. As
evidence for the conjecture, we present various particular cases in which this
equality holds.

More precisely, for a vertex v of a hamiltonian tournament T with n
vertices, let

f̃(k, T, γ, v) = max{Iγ(Ck)|Ck ⊂ T},

for short be denoted sometimes f̃(n, k, T ), and to stress that T has n vertices.
Let f̃(n, k) = min{f̃(k, T, γ, v)|T , v ∈ T , and γ a hamiltonian cycle of T}.
Clearly, f̃(n, k) ≤ f(n, k). We conjecture that f̃(n, k) = f(n, k).

We know that the conjecture is true in the following particular cases.
When
• k = 3, 4, 5, 6;

• n = 2k − 2, 2k − 3, 2k − 4;

• r = k − 1, k − 2, where n − k + 1 ≡ r (mod k − 2).
The proofs are identical to the ones in [5], except for the proof of case
r = k−2, which is similar, and the case k = 6 which is new. For completeness
we include all the proofs here.

2. Preliminaries

In the rest of this paper we consider an arbitrary tournament T with n
vertices, with some fixed vertex 0, and a hamiltonian cycle γ = (0, 1, . . . ,
n − 1, 0).

A chord of a cycle C is an arc not in C with both terminal vertices
in C. The length of a chord f = (u, v) of C, denoted l(f), is equal to the
length of 〈u,C, v〉, where 〈u,C, v〉 denotes the uv-directed path contained
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in C. We say that f is a c-chord if l(f) = c and f = (u, v) is a −c-chord if
l〈v, C, u〉 = c. Observe that if f is a c-chord, then it is also a −(n−c)-chord.

In what follows every integer is taken modulo n.
For any a, 2 ≤ a ≤ n − 2, denote by ta the largest integer such that

a+ ta(k − 2) < n− 1. The important case of tk−1 is denoted by t in the rest
of the paper. Let r be defined as follows: r = n − [k − 1 + t(k − 2)].

Notice the following facts.
• If a ≤ b, then ta ≥ tb.

• t ≥ 0.

• 2 ≤ r ≤ k − 1.

Lemma 2.1. If the a-chord with initial vertex 0 is in A, then at least one

of the two following properties holds.

(i) f̃(n, k, T ) ≥ k − 2.

(ii) For every 0 ≤ i ≤ ta, the a + i(k − 2)-chord with initial vertex 0 is

in A.

Proof. Suppose that (ii) in the lemma is false, and let

j = min{i ∈ {1, 2, . . . , ta} | (a + i(k − 2), 0) ∈ A},

then

Ck = (0, a+(j−1)(k−2))∪〈a+(j−1)(k−2), γ , a+j(k−2)〉∪(a+j(k−2), 0)

is a cycle such that I(Ck) = k − 2 with 0 ∈ Ck, and hence (i) in the lemma
is true.

3. The Cases k = 3, 4, 5

Theorem 3.1. f̃(n, 3) ≥ 1.

Proof. Let i = min{j ∈ V |(j, 0) ∈ A}. Observe that i is well defined since
(n − 1, 0) ∈ A. Clearly i 6= 1, so i − 1 > 0 and then (0, i − 1, i, 0) is a cycle
C3 with I(C3) ≥ 1.

Theorem 3.2. f̃(n, 4) ≥ 1.

Proof. We proceed by contradiction. Taking a = 3 and x0 = 0 in
Lemma 2.1 we get that for each i, 0 ≤ i ≤ ta, the (3 + 2i)-chord (0, 3 + 2i)
is in A. Recall that ta is the greatest integer such that 3 + 2ta < n − 1.
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When n is even, it holds that ta = (n − 4)/2 − 1, (0, 3 + 2ta) ∈ A. That is,
(0, n − 3) ∈ A and C4 = (0, n − 3, n − 2, n − 1, 0) is a cycle with I(C4) = 3.
When n is odd, it holds that ta = bn−4

2
c and (0, 3 + 2ta) ∈ A, namely

(0, n − 2) ∈ A.
Now, we may assume that (n − 3, 0) ∈ A, because otherwise the cycle

C4 = (0, n − 3, n − 2, n − 1, 0) satisfies I(C4) = 3. If (n − 1, n − 3) ∈ A
then C4 = (n − 1, n − 3, 0, n − 2, n − 1) is a cycle with I(C4) = 1. Else,
(n − 3, n − 1) ∈ A and C4 = (n − 3, n − 1, 0, n − 4, n − 3) is a cycle with
I(C4) = 1.

Theorem 3.3. f̃(n, 5) ≥ 2.

Proof. We consider the three cases n ≡ 0 (mod 3), n ≡ 1 (mod 3),
n ≡ 2 (mod 3).

Case n ≡ 2 (mod 3).
Taking a = 4 in Lemma 2.1, we get that (0, n − 4) ∈ A and C5 = (0, n − 4,
n − 3, n − 2, n − 1, 0) is a cycle with I(C5) = 4.

Case n ≡ 1 (mod 3).
Taking a = 4 in Lemma 2.1, we get that 4+3t4 = n−3. Hence (0, n−3) ∈ A
and (0, n − 6) ∈ A. Observe that (n − 4, 0) ∈ A. Otherwise (0, n − 4) ∈ A
and C5 = (0, n − 4, n − 3, n − 2, n − 1, 0) is a cycle with I(C5) = 4.

Now, if (n− 2, n− 5) ∈ A, then C5 = (n− 2, n− 5, n− 4, 0, n− 3, n− 2)
is a cycle with I(C5) = 2. Else (n− 5, n − 2) ∈ A and C5 = (0, n − 6, n − 5,
n − 2, n − 1, 0) is a cycle with I(C5) = 3.

Case n ≡ 0 (mod 3).
If (0, 3) ∈ A, then taking a = 3 in Lemma 2.1, we obtain that (0, n− 6) ∈ A
and (0, n − 3) ∈ A. The proof proceeds exactly as in the proof for the case
n ≡ 1 (mod 3). Hence, let us assume that (3, 0) ∈ A.

Observe that (5, 0) ∈ A, because otherwise (0, 5) ∈ A and taking a = 5
in Lemma 2.1, we get that (0, n − 4) ∈ A and C5 = (0, n − 4, n − 3, n − 2,
n − 1, 0) is a cycle with I(C5) = 4.

Therefore we have that (5, 0) ∈ A and (3, 0) ∈ A. Considering the cycle
(0, 1, 2, 3, 4, 5, 0) it is easy to check that (5, 3) ∈ A and (1, 5) ∈ A (or else the
proof follows). Analyzing the direction of the arc joining 2 and 5 we see that
in any case there is a cycle C5 with I(C5) = 2: If (5, 2) ∈ A, then the cycle is
C5 = (3, 0, 1, 5, 2, 3), else, if (2, 5) ∈ A, then the cycle is C5 = (3, 0, 1, 2, 5, 3).
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4. The Case of n = 2k − 4

In this section it is proved that if n = 2k − 4, then f̃(n, k) ≥ k − 3.

Theorem 4.1. If n = 2k − 4 then f̃(n, k) ≥ k − 3.

Proof. Let x and y be two vertices of T such that l〈x, γ, y〉 = l〈y, γ, x〉 =
k − 2. Without loss of generality we can assume that x = 0, y = k − 2 and
(0, k − 2) ∈ A. Hence (k − 1, 2) is a (k − 1)-chord, l〈2, γ, k − 1〉 = k − 3,
(1, k) is a (k − 1)-chord and l〈2, γ, k + 1〉 = k − 1.

• (k, 2) ∈ A. Otherwise (2, k) ∈ A and then Ck = (k − 2, k − 1, 2, k) ∪
〈k, γ, 0〉 ∪ (0, k − 2) is a cycle with I(Ck) = k − 3.

• (1, k − 1) ∈ A. Otherwise (k − 1, 1) ∈ A and then Ck = (k − 1, 1, k) ∪
〈k, γ, 0〉 ∪ (0, k − 2, k − 1) is a cycle with I(Ck) = k − 3.

Therefore, since (k, 2) ∈ A and (1, k − 1) ∈ A, then Ck = (1, k − 1, k, 2,
k+1)∪〈k+1, γ, 1〉 is a cycle with I(Ck) = k−3. Notice that 0 ∈ 〈k+1, γ, 1〉.

5. The Case of r = k − 1 and r = k − 2

In this section it is proved that if r = k−1 or r = k−2 then f̃(n, k) ≥ k−3.

Theorem 5.1. If r = k − 1 or r = k − 2 then f̃(n, k) ≥ k − 3.

Proof. Assume r = k−1. By Lemma 2.1 (taking i = 0) either f̃(n, k, T ) ≥
k−2 or (0, k−1) ∈ A. In the latter case we have that 〈k−1+t(k−2), γ, 0〉∪
(0, k − 1 + t(k − 2)) is a cycle of length k intersecting γ in k − 1 arcs. Thus,
in both cases, f̃(n, k, T ) ≥ k − 2.

Now, assume r = k − 2 and f̃(n, k, T ) < k − 3.
We consider the vertices x = k − 1 + t(k− 2), y = k− 1 + (t− 1)(k − 2).

Observe that when t = 0, we obtain y = 1.
(i) (0, x) ∈ A. It follows from Lemma 2.1.

(ii) (x − 1, 0) ∈ A. It follows directly from the case r = k − 1.

(iii) (x, y) ∈ A. If (x, y) 6∈ A then (y, x) ∈ A and (y, x) ∪ 〈x, γ, 0〉 ∪ (0, y)
(Lemma 2.1 implies (0, y) ∈ A) is a cycle of length k intersecting γ in
at least k − 2 arcs.

It follows from (i), (ii) and (iii) that (0, x, y) ∪ 〈y, γ, x − 1〉 ∪ (x − 1, 0) is a
cycle of length k which intersects γ in at least k − 3 arcs. A contradiction.

The case of n = 2k − 3 follows from this theorem because in this case
r = k − 2.

The case of n = 2k − 2 is trivial.
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6. The Case k = 6

Theorem 6.1. f̃(7, 6) = 2.

Proof. By Theorem 7.5 of [5], f(7, 6) < 3, and therefore f̃(7, 6) < 3. We
proceed to prove that f̃(7, 6) ≥ 2.

We consider γ = (0, 1, 2, 3, 4, 5, 6), and construct a cycle C6 going
through 0 with at least 2 arcs in common with γ. Clearly, we can assume
that the arcs (2, 0), (4, 2), (6, 4) and (0, 5) are in A because otherwise there
exists a cycle C6 passing through 0 with I(C6) = 5.

Consider two cases: (0, 3) ∈ A or (3, 0) ∈ A. For the case (0, 3) ∈ A, we
first prove that (2, 6) ∈ A. Otherwise, (6, 2) ∈ A and C6 = (0, 3, 4, 5, 6, 2, 0)
goes through 0 and has I(C6) = 3. Thus (2, 6) ∈ A, and we show that
also (2, 5) must also be in A. If (5, 2) ∈ A, then C6 = (0, 3, 4, 5, 2, 6, 0) goes
through 0 and has I(C6) = 3. Since (0, 3) ∈ A and (2, 5) ∈ A, we have
C6 = (0, 3, 4, 2, 5, 6, 0) that goes through 0 and has I(C6) = 3.

The case where (3, 0) ∈ A we have C6 = (0, 5, 6, 4, 2, 3, 0) that goes
through 0 and has I(C6) = 2.

Theorem 6.2. f̃(n, 6) ≥ 3 if n ≥ 8.

Proof. We consider the four cases n ≡ i (mod 4), i = 0, 1, 2, 3.

Case n ≡ 3 (mod 4).

First notice that (n − 1, 4) ∈ A, since otherwise C6 = (0, 1, 2, 3, 4, n − 1, 0)
goes through 0 and has I(C6) = 5. Also, (6, 0) ∈ A, because otherwise, if
(0, 6) ∈ A by Lemma 2.1, (0, n − 5) ∈ A and C6 = (0, n − 5, n − 4, n − 3,
n − 2, n − 1, 0) goes through 0 and has I(C6) = 5. Again by Lemma 2.1,
(0, n − 2) ∈ A. We conclude the proof if this case with C6 = (0, n − 2,
n − 1, 4, 5, 6, 0) that goes through 0 and has I(C6) = 3.

Case n ≡ 2 (mod 4).

Taking a = 5 in Lemma 2.1, we get that (0, n − 5) ∈ A and C6 = (0, n − 5,
n − 4, n − 3, n − 2, n − 1, 0) is a cycle with I(C6) = 5.

Case n ≡ 1 (mod 4).

Taking a = 5 in Lemma 2.1, we get that 5+4t5 = n−4. Hence (0, n−4) ∈ A
and (0, n − 8) ∈ A. Observe that (n − 5, 0) ∈ A. Otherwise (0, n − 5) ∈ A
and C6 = (0, n − 5, n − 4, n − 3, n − 2, n − 1, 0) is a cycle with I(C6) = 5.

Now, if (n−2, n−6) ∈ A then C6 = (n−2, n−6, n−5, 0, n−4, n−3, n−2)
is a cycle with I(C6) = 3. Else (n− 6, n − 2) ∈ A and C6 = (0, n − 8, n − 7,
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n− 6, n− 2, n− 1, 0) is a cycle with I(C6) = 4. Notice that this cycle is well
defined, since n ≥ 9. This is so because n ≡ 1 (mod 4) and n ≥ 8.

Case n ≡ 0 (mod 4).

If (0, 4) ∈ A, then taking a = 4 in Lemma 2.1, we obtain that (0, n−4) ∈ A.
The proof proceeds exactly as in the proof for the case n ≡ 1 (mod 4).
Hence, let us assume that (4, 0) ∈ A.

Observe that (6, 0) ∈ A, because otherwise (0, 6) ∈ A and taking a = 6
in Lemma 2.1, we get that (0, n− 2) ∈ A, and the proof proceeds exactly as
in the proof for the case n ≡ 3 (mod 4). It follows that (5, 3) ∈ A, because
if (3, 5) ∈ A then C6 = (0, 1, 2, 3, 5, 6, 0) is a cycle C6 with I(C6) = 4.

Now, (5, 2) ∈ A, because if (2, 5) ∈ A then C6 = (0, 1, 2, 5, 3, 4, 0) is a
cycle C6 with I(C6) = 3. Therefore, (5, 1) ∈ A, because if (1, 5) ∈ A then
C6 = (0, 1, 5, 2, 3, 4, 0) is a cycle C6 with I(C6) = 3.

Finally, using the chords (0, 5), (5, 1), (4, 0) we get C6 = (0, 5, 1, 2, 3, 4, 0)
is a cycle C6 with I(C6) = 3.
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