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Abstract

A complete 4-partite graph Km1,m2,m3,m4
is called d-halvable if it

can be decomposed into two isomorphic factors of diameter d. In the
class of graphs Km1,m2,m3,m4

with at most one odd part all d-halvable
graphs are known. In the class of biregular graphs Km1,m2,m3,m4

with
four odd parts (i.e., the graphs Km,m,m,n and Km,m,n,n) all d-halvable
graphs are known as well, except for the graphs Km,m,n,n when d = 2
and n 6= m. We prove that such graphs are 2-halvable iff n,m ≥ 3. We
also determine a new class of non-halvable graphs Km1,m2,m3,m4

with
three or four different odd parts.

Keywords: Graph decompositions, isomorphic factors, selfcomple-
mentary graphs.

1991 Mathematics Subject Classification: 05C70.

1. Introductory Notes and Definitions

A factor F of a graph G = G(V,E) is a subgraph of G having the same
vertex set V . A decomposition of a graph G(V,E) into two factors F1(V,E1)
and F2(V,E2) is a pair of factors such that E1 ∩ E2 = ∅ and E1 ∪ E2 = E.
A decomposition of G is isomorphic if F1

∼= F2. An isomorphic decompo-
sition is also called a halving of a graph G. An isomorphism φ : F1 → F2

is then also called a halving isomorphism, and the factors F1 and F2 the
halves of G. The diameter diam G of a connected graph G is the maximum
of the set of distances distG(x, y) among all pairs of vertices of G. If G is
disconnected, then we define diamG = ∞. A graph, having a decomposition
into two halves (i.e., isomorphic factors) of diameter d is called d-halvable
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or simply halvable. The order of a graph G (or of a partite set of a complete
multipartite graph G) is the number of vertices of G (or of the partite set
of G). For terms not defined here, see [1].

Since 1968, when the well-known article by Bosák, Rosa and Znám [2]
on decompositions of complete graphs into factors with given diameters
was published, different aspects of such decompositions of various classes
of graphs have been studied. See, e.g., A. Kotzig and A. Rosa [9], P.
Tomasta [11], D. Palumb́ıny [10], P. Hı́c and D. Palumb́ıny [8] for decom-
positions of complete graphs into isomorphic factors with a given diameter.
E. Tomová [12] studied decompositions of complete bipartite graphs into
two factors with given diameters, T. Gangopadhyay [7] dealt with decom-
positions of complete r-partite graphs (r ≥ 3) into two factors with given
diameters.

Halvability of complete bipartite and tripartite graphs into connected
factors was studied by the author [3]; it was shown that a complete bipartite
or tripartite graph is d-halvable (for a finite d) only if d = 3, 4, 5, 6 or d =
2, 3, 4, 5, respectively. For each of the diameters all respective d-halvable
graphs were determined. Also halvability of complete r-partite graphs for
r > 4 [4] into factors with finite diameters and complete r-partite graphs for
r ≥ 2 into disconnected factors [5] was studied by the author. Halvability of
complete 4-partite graphs into factors with finite diameters was studied in a
common article by the author and J. Širáň [6]. For graphs with at most one
odd part it was shown that they are d-halvable for a finite diameter d only
if d = 2, 3, 4 or 5 and for each of the diameters all such d-halvable graphs
were determined. As the complete 4-partite graphs with two or three odd
parts have an odd number of edges and therefore are not halvable, the only
remaining class containing halvable graphs is the class of graphs with all
odd parts. In this class, however, only partial results were proved. There
remain two gaps to be filled. The first one concerns halvability of graphs
with parts of three or four different orders, the other 2-halvability of graphs
Kn,n,m,m. The purpose of this article is to narrow the first gap and to fill
the other.

2. Graphs With Three or Four Different Odd Order Parts

In this section, we present certain class of non-halvable complete 4-partite
graphs with parts of three or four different odd orders. Before we do that,
we briefly summarize relevant results proved in [6]. The first one restricts
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the range of possible finite diameters, which in the general case includes
diameters 2, 3, 4 and 5.

Theorem A. The graph Km1,m2,m3,m4
has no 5-halving for any odd numbers

m1,m2,m3,m4.

One of the two existing classes of biregular complete 4-partite graphs with
all odd parts, namely the class of graphs Kr,r,r,s, is shown not to be halvable
by the following result.

Theorem B. Let r, s be odd numbers, r 6= s. Then the graph Kr,r,r,s has no

halving.

We use below a modification of the methods used in [6] in the proof of
Theorem B to generalize the result for a certain class of complete 4-partite
graphs with all odd parts. Theorem B then follows as an immediate corollary
of the more general result.

The proof of Theorem B is based on the concept of halvability of a degree
sequence of a graph. Recall that the degree sequence of a graph G with
vertices v1, v2, . . . , vn is the non-increasing sequence D = (d1, d2, . . . , dn)
where di = degvφ(i) for a suitable permutation φ of the set {1, 2, . . . , n}.

In general, two sequences B = (b1, b2, . . . , bn) and C = (c1, c2, . . . , cn) of
non-negative integers will be called matchable if there exists a permutation
ψ of the set {1, 2, . . . , n}, called a matching permutation, such that bi =
cψ(i). A sequence A = (a1, a2, . . . , an) is said to have a halving if there exist
matchable sequences B = (b1, b2, . . . , bn) and C = (c1, c2, . . . , cn) such that
ai = bi + ci for each i ∈ {1, 2, . . . , n}.

To prove the above mentioned result, we use a slightly more general
concept. A sequence Am = (am1 , a

m
2 , . . . , a

m
n ) is called an m-modular se-

quence of a sequence A = (a1, a2, . . . , an) if ami ∈ {0, 1, . . . ,m − 1} and
ai ≡ ami (mod m) for i = 1, 2, . . . , n. An m-modular sequence Am =
(am1 , a

m
2 , . . . , a

m
n ) is similarly said to have a halving if there exist matchable

sequences Bm = (bm1 , b
m
2 , . . . , b

m
n ) and Cm = (cm1 , c

m
2 , . . . , c

m
n ) of integers

of the set {0, 1, 2, . . . ,m − 1} such that bmi + cmi ≡ ami (mod m) for each
i ∈ {1, 2, . . . , n}.

Obviously, if a graph G has a halving, then the degree sequence of G has
a halving. It is also easy to see that if two sequences B and C are matchable
and Bm and Cm are their respective m-modular sequences for an arbitrary
m, then Bm and Cm must be matchable. Furthermore, if a sequence A
is halvable into sequences B and C, and Am, Bm, Cm are their respective
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m-modular sequences for an arbitrary m, then the m-modular sequence Am

is halvable into Bm and Cm.
Therefore, to prove that a graphG is not halvable it suffices to show that

there exists a number m such that the m-modular sequence of the degree
sequence of G is not halvable. We use the idea now to prove the main result
of this section.

Theorem 2.1. Let Km1,m2,m3,m4
be a complete 4-partite graph with all parts

odd and m = 2r be a number such that m1 ≡ m2 ≡ m3 6≡ m4(mod m). Then

the graph Km1,m2,m3,m4
is not halvable.

Proof. According to what we have seen above, to prove the assertion it is
enough to show that the m-modular sequence of the graph is not halvable.
Let Pi, i = 1, . . . , 4 be the partite set of order mi. If we suppose that
m1 ≡ m2 ≡ m3 ≡ u(mod m), m4 ≡ v(mod m) and u 6≡ v(mod m), we can
see that the degree of every vertex x1 ∈ P1 is m2 + m3 + m4 ≡ 2u + v ≡
s(mod m). Analogically, the degree of every vertex x2 ∈ P2 is m1 +m3 +
m4 ≡ 2u + v ≡ s(mod m) and also the degree of every vertex x3 ∈ P3 is
m1 + m2 + m4 ≡ 2u + v ≡ s(mod m). On the other hand, the degree of
every vertex x4 ∈ P4 is m1 + m2 + m3 ≡ 3u ≡ t(mod m). We suppose
w.l.o.g. that s, t ∈ {0, 1, . . . ,m − 1}. As u 6≡ v(mod m), it follows that
2u + v 6≡ 3v(mod m) or, which is equivalent, s 6= t. Thus the m-modular
sequence of the degree sequence of Km1,m2,m3,m4

contains an odd number
p = m1 +m2 +m3 of entries equal to s and q = m4 (also an odd number)
entries equal to t. We now denote the m-modular sequence of the graph
Km1 ,m2,m3,m4

as A = (a1, a2, . . . , ap, a
′

1, a
′

2, . . . , a
′

q), where a1 = a2 = . . . =
ap = s, a′1 = a′2 = . . . = a′q = t and we suppose that it is halvable into
matchable m-modular sequences B = (b1, b2, . . . , bp, b

′

1, b
′

2, . . . , b
′

q) and C =
(c1, c2, . . . , cp, c

′

1, c
′

2, . . . , c
′

q) such that bi + ci ≡ ai(mod m) and b′i + c′i ≡
a′i(mod m) for every i.

Above we have defined a matching permutation ψ. For convenience
we now define a halving permutation θ of the sequence A as a permutation
induced by the matching permutation ψ as follows: θ(ai) = aψ(i). This
means that θ(ai) = aj iff bi = cj, where j = ψ(i). (Here the symbols
a, b, c stand also for a′, b′, c′, respectively.) Let γ be a cycle of a halving
permutation θ. We want to show that γ always contains an even number
of entries of the subsequence (a1, a2, . . . , ap) as well as of the subsequence
(a′1, a

′

2, . . . , a
′

q). Let θ(a′1) = a1, θ(ai) = ai+1 for i = 1, 2, . . . , k − 1 and
θ(ak) = a′2. As bi + ci ≡ ai and bi = ci+1 for i = 1, 2, . . . , k − 1, it is easy to
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see that c1 = b2 = c3 = b4 = . . . = b2j = c2j+1 = . . . and b′1 = c1 = bk = c′2
if k is even and b′1 = c1 = ck if k is odd. In the latter case it holds
then that b1 = bk and hence c′2 = b1. We can now remove all entries
a1, a2, . . . , ak (if k is even) or the entries a2, . . . , ak (if k is odd) to “shorten”
the cycle γ without changing parity of appearance of the entries of the
subsequence (a1, a2, . . . , ap) in the new cycle. Therefore, to simplify our
considerations, we can define (with a slight abuse of the definition of a cycle)
a shortened cycle γ ′ of the cycle γ as a cycle in which no two consecutive
entries belong both to the subsequence (a1, a2, . . . , ap) or to (a′1, a

′

2, . . . , a
′

q).
In fact, the shortened cycle γ ′ = (ai1 , a

′

i2
, ai3 , a

′

i4
, . . . , ain−1

, a′n) of length n

is just a subsequence of the entries forming the cycle γ with the property
that bij = c′ij+1

and b′ij+1
= cij+2

for j = 1, 2, . . . , n− 2 and b′in = c′i1 . Notice
that n must be even, otherwise there are two consecutive entries aij , aij+1

or a′ij , a
′

ij+1
.

It is clear that at least one shortened cycle of the permutation θ must
be non-empty, as shortening removes even numbers of entries from both
subsequences that contain an odd number of entries each. Now we want
to show that every non-empty shortened cycle contains an even number
of entries of each of the subsequences to arrive at a contradiction. Let
(a1, a

′

1, a2, a
′

2, . . . , al, a
′

l) be a shortened cycle. Then b1 = c′1 and b′1 ≡ a′1 −
c′1 ≡ t− b1(mod m). Because c2 = b′1 and a2 ≡ s ≡ b2 + c2(mod m), we get
b2 ≡ s−c2 ≡ s−t+b1(modm). Now b2 can be equal to b1 only if s = t, which
is not the case. Hence a2 is not identical with a1 and the cycle γ ′ continues
by a′2. Thus after another “forwards” step we get c′2 = b2 ≡ s− t+ b1 and
similarly as above b′2 ≡ a′2 − c

′

2 ≡ t− (s− t+ b1) ≡ 2t− s− b1(mod m). Now
we have to take a “backwards” step and we get c3 ≡ 2t−s− b1(mod m) and
b3 ≡ a3 − c3 ≡ 2(s − t) + b1(mod m). In general, after j pairs of steps we
get bj ≡ j(s− t) + b1(mod m). To close the cycle, we need bj ≡ b1(mod m),
which can occur only if j(s − t) ≡ 0(mod m). But this is possible only
if j ≡ 0(mod m) since we have supposed that s 6= t. This yields j|m.
Since by our assumption m = 2r, it follows that j = 2r

′

for some r′ ≤ r

and hence j must be even. So we have shown that every shortened cycle
(and consequently every cycle) contains an even number of entries from each
of the subsequences (a1, a2, . . . , ap) and (a′1, a

′

2, . . . , a
′

q). This is the desired
contradiction, since both p and q are odd and there remains at least one entry
in each subsequence not belonging to any cycle, which is absurd. Hence the
m-modular sequence of the degree sequence of Km1 ,m2,m3,m4

is not halvable
and thus neither is the graph itself.
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If we setm1 = m2 = m3 6= m4, Theorem B follows as an immediate corollary.
To see this, we just choose r such that m = 2r > max{m1,m4}.

Corollary 2.2. (Theorem B) Let r, s be odd numbers with r 6= s. Then the

graph Kr,r,r,s has no halving.

The existence of another class of non-halvable graphs follows from the fol-
lowing simple observation.

Theorem 2.3. Let Km1,m2,m3,m4
be a complete 4-partite graph with all parts

odd such that m1 ≤ m2 ≤ m3 and m4 > m1+m2+2m3. Then Km1,m2,m3,m4

is not halvable.

Proof. Let A be the degree sequence of Km1 ,m2,m3,m4
and B and C the de-

gree sequences of factors F1 and F2 of Km1,m2,m3,m4
, respectively. Our aim

is to show that the first m1 +m2 +m3 entries of A are more than two times
greater than the remaining entries and therefore always one entry of the pair
bi, ci (i ≤ m1 +m2 +m3) is greater than any aj , j > m1 +m2 +m3. Because
m1 + m2 + m3 is an odd number, at least one of the first m1 + m2 + m3

entries of B (or C) has no match among the entries c1, c2, . . . , cm1+m2+m3

(or b1, b2, . . . , bm1+m2+m3
). The largest of such entries is indeed greater than

any of am1+m2+m3+1, am1+m2+m3+2, . . . , am1+m2+m3+m4
and therefore can-

not be matched by any of bm1+m2+m3+1, bm1+m2+m3+2, . . . , bm1+m2+m3+m4

(or cm1+m2+m3+1, cm1+m2+m3+2, . . . , cm1+m2+m3+m4
) either.

Obviously, a1 = a2 = . . . = am1
= m2 +m3 +m4,

am1+1 = am1+2 = . . . = am1+m2
= m1 +m3 +m4,

am1+m2+1 = am1+m2+2 = . . . = am1+m2+m3
= m1 +m2 +m4 and

am1+m2+m3+1 = am1+m2+m3+2 = . . . = am1+m2+m3+m4
= m1 +m2 +m3.

Of course, a1 ≥ a2 ≥ . . . ≥ am1+m2+m3
> am1+m2+m3+1 = . . . =

am1+m2+m3+m4
.

According to our assumption, it moreover holds that

am1+m2+m3
= m1 +m2 +m4 ≥ 2m1 + 2m2 +2m3 + 1 = 2am1+m2+m3+1 +1.

If we put m1 + m2 + m3 = 2k + 1 (which is possible, as m1,m2,m3 are
all odd), we can see that one of the subsequences (b1, b2, . . . , bm1+m2+m3

),
(c1, c2, . . . , cm1+m2+m3

), say the former, contains at least k + 1 en-
tries bj1 , bj2 , . . . , bjk+1

that are greater than or equal to m1 + m2 +
m3 + 1 = am1+m2+m3+1 + 1, while the latter contains at most k

such entries. If we want F1 to be isomorphic to F2, the sequences
B and C must be matchable and therefore at least one of the entries
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bj1 , bj2 , . . . , bjk+1
must be matched by an entry belonging to the subsequence

(cm1+m2+m3+1, cm1+m2+m3+2, . . . , cm1+m2+m3+m4
). This is impossible, since

ci ≤ ai for any i and bjl > m1+m2+m3 = am1+m2+m3+1 = am1+m2+m3+2 =
. . . = am1+m2+m3+m4

for l = 1, 2, . . . , k+1. Thus B and C are not matchable
and F1 cannot be isomorphic to F2.

A slightly weaker but simpler version of Theorem 2.3 can be formulated as
follows.

Corollary 2.4. Let Km1,m2,m3,m4
be a complete 4-partite graph with all

parts odd such that m1 ≤ m2 ≤ m3 and m4 > 4m3. Then Km1 ,m2,m3,m4
is

not halvable.

The following is an easy but interesting consequence of Theorem 2.3.

Corollary 2.5. Let m1,m2,m3 be odd numbers. Then there are at most

finitely many halvable graphs Km1,m2,m3,m4
.

3. 2-Halvable Graphs K2n+1,2n+1,2m+1,2m+1

The following results were proved for the class of graphsK2n+1,2n+1,2m+1,2m+1

in [6].

Theorem C. A complete 4-partite graph K1,1,2m+1,2m+1 has no 2-halving

for any m ≥ 1.

The assumption m ≥ 1 is actually redundant, as for m = 0 we get a graph
K4 which has only one halving, namely the 3-halving into paths P4.

Theorem D. Let r, s be odd integers. A complete 4-partite graph Kr,r,s,s

has a d-halving for a finite diameter d if

(a) d = 4 and max{r, s} ≥ 3, or

(b) d = 3 and r, s ≥ 1, or

(c) d = 2 and r = s ≥ 3.

To obtain complete results on d-halvability of complete biregular 4-partite
graphs for a finite d, we have to solve the problem of 2-halvability of graphs
Kr,r,s,s with r, s odd, 3 ≤ r < s. The following construction shows that all
such graphs are 2-halvable.
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Construction 3.1. We first present a 2-halving of the smallest graph of the
class, K3,3,5,5 and then we show how to extend the factors into isomorphic
factors of diameter 2 of any graph of the class Kr,r,s,s with r, s odd. The
assumption r < s is not necessary for r ≥ 5, as the construction actually
also covers the case 5 ≤ r = s.

The main idea is the following. We take a complete bipartite graph
K8,8 with the parts V1 = {v11, v12, . . . , v18} and V2 = {v21, v22, . . . , v28}
and find its 3-halving into factors F1 and F2 with the property that the
complementing isomorphism φ : F1 → F2 takes V1 onto V2 and vice versa.
Moreover, we construct the factors such that in F1 every vertex v1i has at
least one neighbour in the subset V21 = {v21, v22, v23} and another one in
the subset V22 = {v24, v25, . . . , v28}. One can see that since diamF1 = 3,
then distF1

(v1i, v1j) = distF1
(v2i, v2j) = 2 for every i 6= j, i, j ∈ {1, 2, . . . , 8}.

Obviously the vertices at distance 3 apart belong to different parts. If we
now add to the factor F1 of K8,8 all edges of the complete bipartite graph
K3,5 with the parts induced by the sets V21 and V22, we get a factor F ′

1 of
the graph K3,3,5,5 with partite sets V11, V12 (which we determine instantly),
V21 and V22. As every vertex v1i has one neighbour in V21 and one in V22

and every vertex of V21 is in F ′

1 adjacent to all vertices of V22, we can see
that distF ′

1
(v1i, v2j) ≤ 2 for every i, j ∈ {1, 2, . . . , 8}. If we now choose V11 as

φ(V21) and V12 as φ(V22) and add the edges of the complete bipartite graph
K3,5 with the parts V11 and V12 to the factor F2, we get the other factor F ′

2

of the graph K3,3,5,5.
One can check that the factor F ′

1 with the adjacency matrix A shown
in Figure 1 and the complementing isomorphism φ defined by the cycles
(v11, v23, v13, v21), (v12, v22, v14, v24), (v15, v27, v17, v25), (v16, v26, v18, v28) pos-
sess the required properties and together with its complement with re-
spect to K3,3,5,5, F

′

2, forms a 2-halving of K3,3,5,5. The partite sets are
V11 = {v11, v13, v14}, V12 = {v12, v15, . . . , v18}, V21 = {v21, v22, v23} and
V22 = {v24, v25, . . . , v28}.

To construct factors of graphs K2k+3,2k+3,5,5, we extend the parts V11

and V21 of order 3 into parts of any order 2k + 3 just by “blowing up”
every vertex of the cycle (v11, v23, v13, v21) by adding k “copies” of the re-
spective vertex in both factors. To be more precise, we add k new vertices
v1
11, v

2
11, . . . , v

k
11 into V11 and join them in both factors exactly to the neigh-

bours of v11. Similarly we add k new vertices v1
21, v

2
21, . . . , v

k
21 into V21 and

join them in both factors to the neighbours of v21. We do the same for v13

and v23. To obtain a 2-halving of any graph K2k+3,2k+3,2l+5,2l+5, we extend
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the parts V12 and V22 in the same manner—we choose vertices of one of the
“pure” cycles (v15, v27, v17, v25) or (v16, v26, v18, v28).

A =

























































0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1
0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0
0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1
0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0
0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1
1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0
0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0

























































Figure 1

Now we can state the complete version of Theorem D. The proof follows
immediately from Theorem D and Construction 3.1.

Theorem 3.2. (Theorem D+) Let r, s be odd integers. A complete 4-partite
graph Kr,r,s,s has a d-halving for a finite diameter d if and only if

(a) d = 4 and max{r, s} ≥ 3, or

(b) d = 3 and r, s ≥ 1, or

(c) d = 2 and min{r, s} ≥ 3.
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[2] J. Bosák, A. Rosa and Š. Znám, On decompositions of complete graphs into

factors with given diameters, in: Theory of Graphs, Proc. Coll. Tihany 1966
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[6] D. Fronček and J. Širáň, Halving complete 4-partite graphs, Ars Combinatoria
(to appear).

[7] T. Gangopadhyay, Range of diameters in a graph and its r-partite complement,
Ars Combinatoria 18 (1983) 61–80.

[8] P. Hı́c and D. Palumb́ıny, Isomorphic factorizations of complete graphs into

factors with a given diameter, Math. Slovaca 37 (1987) 247–254.

[9] A. Kotzig and A. Rosa, Decomposition of complete graphs into isomorphic

factors with a given diameter, Bull. London Math. Soc. 7 (1975) 51–57.

[10] D. Palumb́ıny, Factorizations of complete graphs into isomorphic factors with
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