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Abstract

In this note, we consider the problem of existence of an edge-
decomposition of a multigraph into isomorphic copies of 2-edge paths
K1,2. We find necessary and sufficient conditions for such a decompo-
sition of a multigraph H to exist when

(i) either H does not have incident multiple edges or

(ii) multiplicities of the edges in H are not greater than two.
In particular, we answer a problem stated by Z. Skupień.
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Z. Skupień, at the conference in Zakopane (September 1994), stated a prob-
lem of decomposition of the edge set of a multigraph H into stars K1,2, if it
is assumed that multiplicities of the edges do not exceed 2. This property is
denoted by K1,2|H. It is known that if H is a simple graph, then K1,2|H if
and only if the size of every component of H is even. It is easy to verify that
this condition is not sufficient to ensure the decomposition of a multigraph.

Let M be the class of trees with a perfect matching. Denote by H ∗ the
graph obtained from H by deleting all edges of multiplicity 1 and reducing
the multiplicities of all the other edges to 1. Let M(H) be the set of these
components in H∗ that belong to M. Clearly, in case (i) members of M(H)
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are simple edges and in case (ii) they can be isomorphic to any member
of M.

For A ⊂ M(H) denote by EA the set of edges in H with at least one
end in a vertex of a component in A (multiple edges are counted multiplicity
many times). Let V (A) (resp. E(A)) stand for the union of the vertex (resp.
edge) sets of the components in A. For a component t in M(H) which
corresponds to a multiple edge denote by m(t) the multiplicity of this edge
in H. Finally, let O(H \ V (A)) be the number of components of H \ V (A)
with an odd size which are not multiple edges.

Here are our main results.

Theorem 1. Let H be a multigraph of an even size and with no incident

multiple edges. Then K1,2|H if and only if

for every set of edges A ⊂ M(H), |EA| ≥ 2
∑

t∈A

m(t) + O(H \ V (A)).(1)

Clearly, in the above theorem each member of M(H) is an edge.
A proper simple cut-edge in a multigraph is a simple cut-edge whose

deletion does not create a component consisting of one vertex.

Corollary 1. Let H be a multigraph of even size, with no incident multiple

edges and with no simple proper cut-edge. If each edge e of multiplicity

m(t) > 1 is incident to at least 2m(t) edges of multiplicity 1 then K1,2|H.

Theorem 2. Let H be a multigraph of an even size and let the multiplicities

of the edges be not greater than 2. Then K1,2|H if and only if

∀A ⊂ M(H), |EA| ≥ 2|V (A)| + O(H \ V (A)).(2)

Before proving these theorems let us make two remarks.

Remark 1. The problem of decomposing a multigraph H into K1,2 reduces
to the case when H is connected.

Remark 2. Let H be a multigraph. If H contains a pair of incident multiple
edges, then we can delete a copy of K1,2 ; we repeat this process for pairs of
incident multiple edges until we obtain a multigraph H ′ (not unique) with
no two incident multiple edges. If K1,2|H

′ for some choice of H ′, then by
adding the deleted edges, we immediately get a decomposition of H.
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Proofs of Results

For a multigraph H define a graph G(H) whose vertex set is E(H) and a
pair of vertices in G(H) is an edge if the corresponding edges in H have
exactly one common vertex.

Lemma 1. K1,2|H if and only if G(H) has a perfect matching.

Proof. Suppose K1,2|H. Since the vertices in G(H) correspond to edges in
H, a decomposition of H into stars K1,2 defines a perfect matching in G(H).

Conversely, suppose G(H) has a perfect matching. Each edge in this
matching defines a copy of K1,2 in H. Since the matching covers all vertices
in G(H), the corresponding copies of K1,2 form an edge-decomposition of H.

By the result of Tutte [T], G(H) has a perfect matching if and only if

∀S ⊂ V (G(H)) , OV (G(H) \ S) ≤ |S| ,(3)

where OV (G(H) \S) is the number of components of G(H) \S with an odd
number of vertices.

When writing this paper, we have been informed that J. Ivančo, M.
Meszka and Z. Skupień [IMS] have made the same observation as in our
Lemma 1. In particular, they concluded that deciding whether K1,2|H for
an instance multigraph H is a polynomial problem.

Assume now that H has no incident multiple edges. Call an edge e in
H an m-bridge if it is a bridge in the component H1 of H containing e and
if at least one of the components of H1 − e is a multiple edge.

Lemma 2. Let H be a multigraph with no incident multiple edges. If e is

not an m-bridge in H then

OV (G(H) − e) ≤ OV (G(H)) + 1.

Proof. The lemma obviously holds when H is a multiple edge because
then G(H) is an edgeless graph. Otherwise it follows from the observation
that G(H1) − e has exactly 2 components (where H1 is the component of
H containing e) and e is not an m-bridge. We leave routine details of this
proof to the reader.

Let E(A,H \ V (A)) (respectively E(A,A)) be the set of edges with one
end-vertex in A ⊂ M(H) and the other one in V (H) \ V (A) (respectively
with end-vertices in two different members of A).
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Proof of Theorem 1. Since H has no incident multiple edges, the set
M(H) represents the set of multiple edges in H. The condition (1) is equiv-
alent to

∀A ⊂ M(H) ,

|E(A,H \ V (A))| + |E(A,A)| ≥
∑

t∈A m(t) + O(H \ V (A)).
(4)

Suppose there is a decomposition π of H into stars K1,2. For every compo-
nent of H \ V (A) of odd size at least one copy of K1,2 in π has an edge in
E(A,H \ V (A)). Moreover, for every multiple edge t ∈ A, m(t) copies of
K1,2 in π have one edge in E(A,H \ V (A)) ∪ E(A,A). Hence

∀A ⊂ M(H), |E(A,H \ V (A))| + |E(A,A)| ≥
∑

t∈A

m(t) + O(H \ V (A)),

which completes the proof of necessity.
To show sufficiency suppose that (1) is satisfied and H does not have a

decomposition into stars K1,2. By Lemma 1 and (3), we get

∃S ⊂ V (G(H)) , OV (G(H) \ S) > |S|.(5)

Assume that S has the smallest cardinality among the sets satisfying the
above inequality.

Supose first that S = ∅. Then, at least one component of G(H) has
an odd number of vertices. By the definition of G(H), either one of the
components of H which is not a multiple edge has an odd size or one of the
components of H is a multiple edge. In the former case we get a contradiction
to (4) because for A = ∅ we obtain O(H) = 0. To get a contradiction in the
latter case, denote by e a multiple edge which is a component in H. The
condition (4) yields a contradiction for A = {e}. Hence S 6= ∅.

Suppose now that some e ∈ S ⊂ V (G(H)) = E(H) is not an m-bridge
in H \ (S \ {e}) = (H \ S) ∪ {e}. By minimality of S,

OV ((G(H) \ S) ∪ {e}) ≤ |S \ {e}|.

The multigraph (H \ S) ∪ {e} satisfies the assumptions of Lemma 2. Con-
sequently, OV (G(H) \ S) ≤ OV ((G(H) \ S) ∪ {e}) + 1, so

OV (G(H) \ S) ≤ |S \ {e}| + 1 = |S|,

a contradiction.
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Thus all the edges e ∈ S ⊂ E(H) are m-bridges in (H \ S) ∪ {e}. Let A
be the set of multiple edges which are components in H \ S. Then, clearly,
S = E(A,H \ V (A)) ∪ E(A,A). By the definition of G(H) and (4)

OV (G(H)\S) =
∑

t∈A

m(t)+O(H\V (A)) ≤ |E(A,H\V (A))|+|E(A,A)| = |S|,

a contradiction to (5).

Proof of Corollary 1. By the assumption of the corollary, for every set
of multiple edges A,

2|E(A,A)| + |E(A,H \ V (A))| ≥
∑

t∈A

2m(t).(6)

Let ω(H \ V (A)) be the number of components of H \ V (A) of order at
least 2. Then, since no simple edge in H is a proper cut-edge,

|E(A,H \ V (A))| ≥ 2ω(H \ V (A)) ≥ 2O(H \ V (A)).(7)

By adding (6) and (7) we get (4) so by Theorem 1 the proof is complete.

Proof of Theorem 2. To show necessity suppose the required decom-
position exists. Let M be the perfect matching in the graph formed by
the components in A. Denote by B the set of edges obtained from EA by
deletion of the edges of M and their doubles. Clearly, |B| = |EA| − 2e(M).
Note that O(H \V (A)) = O(H \B), where H \B stands for the multigraph
obtained from H by removing the edges of B. By the existence of a K1,2-
decomposition of H at least O(H \ B) + 2e(M) different copies of K1,2 in
the decomposition have one edge in B. Hence

|B| ≥ O(H \ B) + 2e(M)

so

|EA| = |B| + 2e(M) ≥ 4e(M) + O(H \ B) = 2|V (A)| + O(H \ V (A))|.

Suppose sufficiency is false. Let H be a multigraph of an even size with the
minimum number of doubled edges satisfying (2) and such that K1,2 6 |H.
Assume first that H∗ contains a component C of a positive size which is not
a member of M.

If the size of C is even, then K1,2|C. Therefore, if we delete copies of
every edge in C from H, then the resulting multigraph H ′ still has an even
size, satisfies (2) and K1,2 6 |H ′ contradicting to the minimality of H.
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Let the size of C be odd. Suppose first C contains a cycle and let e be one
of its edges. It is routine to show that the multigraph C ′ obtained from C

by doubling the edge e has a decomposition into stars K1,2. Moreover, the
multigraph H ′ obtained from H by deleting the edges of C ′ has an even size,
satisfies (2) and K1,2 6 |H ′ contradicting to the minimality of H again.

Let now C be a tree of an odd size. One can easily show that since
C 6∈ M, C can be decomposed into graphs A and B such that K1,2|A and
B is isomorphic to K1,3. If the size of A is positive then as before we can
delete from H the edges of A and obtain a multigraph H ′ contradicting to
the minimality of H.

Thus, we can assume that C is isomorphic to K1,3. Let e and f be two
of the edges of C and let e1 and e2 (respectively f1 and f2) be the parallel
edges corresponding to e (resp. f) in H. Subdivide the edges e1 and e2 by
inserting two new vertices v1 and v2 into e1 and two new vertices u1 and u2

into e2. Let e′
1

(resp. e′
2
) denote the edge v1v2 (resp. u1u2). The resulting

multigraph H ′ has an even size, satisfies (2) and, by the minimality of H, H ′

admits a decomposition π′ into stars K1,2. Contract the copies of K1,2 in π′

containing e′
1

and e′
2
. We get the multigraph H again. The decomposition π ′

of H ′ defines in H a decomposition π which (by K1,2 6 |H) is a decomposition
into copies of K1,2 and the multigraph induced by the parallel edges e1 and
e2. In the latter case, consider the multigraph F induced by e1 and e2 and
the edges of copies of K1,2 in π containing f1 and f2. It is routine to show
that K1,2|F , so consequently K1,2|H, a contradiction.

We have shown that all components of H∗ are isomorphic to members
of M.

If all the components in M(H) are single edges then by Theorem 1 the
proof is complete. Suppose now that at least one of the components, say
C, in M(H) is a tree with a perfect matching different from a single edge.
It is easy to notice that then there are edges e and f in C such that e is
a pendant edge in C and f is the only edge in C incident to e. Denote
by e1, e2 (respectively f1, f2) the parallel edges in H corresponding to e

(respectively f) in C. Subdivide f1 and f2 by inserting 2 new vertices x1,
x2 into f1 and y1, y2 into f2. Let f ′

1
(respectively f ′

2
) denote the edge x1x2

(respectively y1y2).
Let us check the inequality (2) for H ′. Note that M(H ′) = (M(H) \

{C}) ∪ {C1, C2}, where C1 is the edge e and C2 = C \ {e, f}.
Let A ∈ M(H ′). The condition (2) is easy to verify when C1, C2 ∈ A

and when C1, C2 6∈ A. Thus suppose that C2 ∈ A and C1 6∈ A (the
case C1 ∈ A and C2 6∈ A is analogous and we leave it to the reader).
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Let A′ = A \ {C2}. Then by our assumption for H

|EA′ | ≥ 2|V (A′)| + O(H \ V (A′)) = 2|V (A′)| + O(H ′ \ V (A′)).

Let k be the number of odd-sized components in H ′ \ V (A) which are not
odd-sized components in H ′ \ V (A′). Clearly each of them is joined to a
vertex in C2 by at least one edge. Moreover, the component of H ′ \ V (A)
containing C1 is joined to a vertex [4] of C2 by at least 2 edges. Hence

|EA| ≥ |EA′ | + 2|E(C2)| + k + 1 = |EA′ | + 2|V (C2)| − 2 + k + 1

≥ 2|V (A′)|+O(H ′ \V (A′))+2|V (C2)|+k−1 ≥ 2|V (A)|+O(H ′ \V (A))−1.

Note that |EA| and O(H ′ \ V (A)) have the same parity. Indeed,

0 ≡ e(H ′) = |EA| +
∑

C∈EV

e(C) +
∑

C∈OD

e(C) ≡ |EA| + |OD|

= |EA| + O(H ′ \ V (A)) (mod 2),

where EV (resp. OD) stands for the set of even-sized (resp. odd-sized)
components in H ′ \ V (A). Consequently |EA| ≥ 2|V (A)| + O(H ′ \ V (A)).
By the minimality of H, H ′ admits a K1,2-decomposition π′.

Contract the copies of K1,2 in π′ containing f ′
1

and f ′
2
. We get again the

multigraph H. The decomposition π′ of H ′ defines in H a decomposition
π which is either a K1,2-decomposition (in this case the proof is complete)
or a decomposition into copies of K1,2 and the multigraph induced by the
parallel edges f1, f2. In the latter case consider the multigraph induced by
f1, f2 and the copies of K1,2 in π containing e1 and e2. It is routine to
show that this multigraph admits a K1,2-decomposition. This contradiction
completes our proof.

Remark 3. One can easily deduce from Theorem 2 that a multigraph H

with multiplicities of all edges equal to 2 is K1,2-decomposable if and only
if H∗ is not a tree with a perfect matching. This result was earlier proved
by Bondy [B].

Acknowledgement

We would like to thank the anonymous referee for finding an oversight in
the previous version of the proof of Theorem 2.
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