Discussiones Mathematicae Graph Theory 18 (1998) 225–232

DECOMPOSITION OF MULTIGRAPHS

Mekkia Kouider

MARYVONNE MAHÉO

URA 410 L.R.I., Bât. 490, Universite Paris-Sud 91405 Orsay, France

AND

Krzysztof Bryś

ZBIGNIEW LONC

Institute of Mathematics, Warsaw University of Technology pl. Politechniki 1, 00–661 Warsaw, Poland

Abstract

In this note, we consider the problem of existence of an edgedecomposition of a multigraph into isomorphic copies of 2-edge paths $K_{1,2}$. We find necessary and sufficient conditions for such a decomposition of a multigraph H to exist when

(i) either H does not have incident multiple edges or

(ii) multiplicities of the edges in H are not greater than two.

In particular, we answer a problem stated by Z. Skupień.

Keywords: edge decomposition, multigraph.

1991 Mathematics Subject Classification: Primary: 05C70, Secondary: 05C38.

Z. Skupień, at the conference in Zakopane (September 1994), stated a problem of decomposition of the edge set of a multigraph H into stars $K_{1,2}$, if it is assumed that multiplicities of the edges do not exceed 2. This property is denoted by $K_{1,2}|H$. It is known that if H is a simple graph, then $K_{1,2}|H$ if and only if the size of every component of H is even. It is easy to verify that this condition is not sufficient to ensure the decomposition of a multigraph.

Let \mathcal{M} be the class of trees with a perfect matching. Denote by H^* the graph obtained from H by deleting all edges of multiplicity 1 and reducing the multiplicities of all the other edges to 1. Let $\mathcal{M}(H)$ be the set of these components in H^* that belong to \mathcal{M} . Clearly, in case (i) members of $\mathcal{M}(H)$

are simple edges and in case (ii) they can be isomorphic to any member of \mathcal{M} .

For $\mathcal{A} \subset \mathcal{M}(H)$ denote by $E_{\mathcal{A}}$ the set of edges in H with at least one end in a vertex of a component in \mathcal{A} (multiple edges are counted multiplicity many times). Let $V(\mathcal{A})$ (resp. $E(\mathcal{A})$) stand for the union of the vertex (resp. edge) sets of the components in \mathcal{A} . For a component t in $\mathcal{M}(H)$ which corresponds to a multiple edge denote by m(t) the multiplicity of this edge in H. Finally, let $O(H \setminus V(\mathcal{A}))$ be the number of components of $H \setminus V(\mathcal{A})$ with an odd size which are not multiple edges.

Here are our main results.

Theorem 1. Let H be a multigraph of an even size and with no incident multiple edges. Then $K_{1,2}|H$ if and only if

(1) for every set of edges
$$\mathcal{A} \subset \mathcal{M}(H), |E_{\mathcal{A}}| \ge 2 \sum_{t \in \mathcal{A}} m(t) + O(H \setminus V(\mathcal{A})).$$

Clearly, in the above theorem each member of $\mathcal{M}(H)$ is an edge.

A *proper* simple cut-edge in a multigraph is a simple cut-edge whose deletion does not create a component consisting of one vertex.

Corollary 1. Let H be a multigraph of even size, with no incident multiple edges and with no simple proper cut-edge. If each edge e of multiplicity m(t) > 1 is incident to at least 2m(t) edges of multiplicity 1 then $K_{1,2}|H$.

Theorem 2. Let H be a multigraph of an even size and let the multiplicities of the edges be not greater than 2. Then $K_{1,2}|H$ if and only if

(2)
$$\forall \mathcal{A} \subset \mathcal{M}(H), \ |E_{\mathcal{A}}| \ge 2|V(\mathcal{A})| + O(H \setminus V(\mathcal{A})).$$

Before proving these theorems let us make two remarks.

Remark 1. The problem of decomposing a multigraph H into $K_{1,2}$ reduces to the case when H is connected.

Remark 2. Let H be a multigraph. If H contains a pair of incident multiple edges, then we can delete a copy of $K_{1,2}$; we repeat this process for pairs of incident multiple edges until we obtain a multigraph H' (not unique) with no two incident multiple edges. If $K_{1,2}|H'$ for some choice of H', then by adding the deleted edges, we immediately get a decomposition of H.

226

PROOFS OF RESULTS

For a multigraph H define a graph G(H) whose vertex set is E(H) and a pair of vertices in G(H) is an edge if the corresponding edges in H have exactly one common vertex.

Lemma 1. $K_{1,2}|H$ if and only if G(H) has a perfect matching.

Proof. Suppose $K_{1,2}|H$. Since the vertices in G(H) correspond to edges in H, a decomposition of H into stars $K_{1,2}$ defines a perfect matching in G(H).

Conversely, suppose G(H) has a perfect matching. Each edge in this matching defines a copy of $K_{1,2}$ in H. Since the matching covers all vertices in G(H), the corresponding copies of $K_{1,2}$ form an edge-decomposition of H.

By the result of Tutte [T], G(H) has a perfect matching if and only if

(3) $\forall S \subset V(G(H)), \quad O_V(G(H) \setminus S) \leq |S|,$

where $O_V(G(H) \setminus S)$ is the number of components of $G(H) \setminus S$ with an odd number of vertices.

When writing this paper, we have been informed that J. Ivančo, M. Meszka and Z. Skupień [IMS] have made the same observation as in our Lemma 1. In particular, they concluded that deciding whether $K_{1,2}|H$ for an instance multigraph H is a polynomial problem.

Assume now that H has no incident multiple edges. Call an edge e in H an *m*-bridge if it is a bridge in the component H_1 of H containing e and if at least one of the components of $H_1 - e$ is a multiple edge.

Lemma 2. Let H be a multigraph with no incident multiple edges. If e is not an m-bridge in H then

$$O_V(G(H) - e) \le O_V(G(H)) + 1.$$

Proof. The lemma obviously holds when H is a multiple edge because then G(H) is an edgeless graph. Otherwise it follows from the observation that $G(H_1) - e$ has exactly 2 components (where H_1 is the component of H containing e) and e is not an m-bridge. We leave routine details of this proof to the reader.

Let $E(\mathcal{A}, H \setminus V(\mathcal{A}))$ (respectively $E(\mathcal{A}, \mathcal{A})$) be the set of edges with one end-vertex in $\mathcal{A} \subset \mathcal{M}(H)$ and the other one in $V(H) \setminus V(\mathcal{A})$ (respectively with end-vertices in two different members of \mathcal{A}).

Proof of Theorem 1. Since H has no incident multiple edges, the set $\mathcal{M}(H)$ represents the set of multiple edges in H. The condition (1) is equivalent to

(4)
$$\begin{aligned} \forall \mathcal{A} \subset \mathcal{M}(H) \,, \\ |E(\mathcal{A}, H \setminus V(\mathcal{A}))| + |E(\mathcal{A}, \mathcal{A})| \geq \sum_{t \in \mathcal{A}} m(t) + O(H \setminus V(\mathcal{A})). \end{aligned}$$

Suppose there is a decomposition π of H into stars $K_{1,2}$. For every component of $H \setminus V(\mathcal{A})$ of odd size at least one copy of $K_{1,2}$ in π has an edge in $E(\mathcal{A}, H \setminus V(\mathcal{A}))$. Moreover, for every multiple edge $t \in \mathcal{A}$, m(t) copies of $K_{1,2}$ in π have one edge in $E(\mathcal{A}, H \setminus V(\mathcal{A})) \cup E(\mathcal{A}, \mathcal{A})$. Hence

$$\forall \mathcal{A} \subset \mathcal{M}(H), \ |E(\mathcal{A}, H \setminus V(\mathcal{A}))| + |E(\mathcal{A}, \mathcal{A})| \geq \sum_{t \in \mathcal{A}} m(t) + O(H \setminus V(\mathcal{A})),$$

which completes the proof of necessity.

To show sufficiency suppose that (1) is satisfied and H does not have a decomposition into stars $K_{1,2}$. By Lemma 1 and (3), we get

(5)
$$\exists S \subset V(G(H)), \quad O_V(G(H) \setminus S) > |S|.$$

Assume that S has the smallest cardinality among the sets satisfying the above inequality.

Suppose first that $S = \emptyset$. Then, at least one component of G(H) has an odd number of vertices. By the definition of G(H), either one of the components of H which is not a multiple edge has an odd size or one of the components of H is a multiple edge. In the former case we get a contradiction to (4) because for $\mathcal{A} = \emptyset$ we obtain O(H) = 0. To get a contradiction in the latter case, denote by e a multiple edge which is a component in H. The condition (4) yields a contradiction for $\mathcal{A} = \{e\}$. Hence $S \neq \emptyset$.

Suppose now that some $e \in S \subset V(G(H)) = E(H)$ is not an *m*-bridge in $H \setminus (S \setminus \{e\}) = (H \setminus S) \cup \{e\}$. By minimality of S,

$$O_V((G(H) \setminus S) \cup \{e\}) \le |S \setminus \{e\}|.$$

The multigraph $(H \setminus S) \cup \{e\}$ satisfies the assumptions of Lemma 2. Consequently, $O_V(G(H) \setminus S) \leq O_V((G(H) \setminus S) \cup \{e\}) + 1$, so

$$O_V(G(H) \setminus S) \le |S \setminus \{e\}| + 1 = |S|,$$

a contradiction.

Thus all the edges $e \in S \subset E(H)$ are *m*-bridges in $(H \setminus S) \cup \{e\}$. Let \mathcal{A} be the set of multiple edges which are components in $H \setminus S$. Then, clearly, $S = E(\mathcal{A}, H \setminus V(\mathcal{A})) \cup E(\mathcal{A}, \mathcal{A})$. By the definition of G(H) and (4)

$$O_V(G(H) \setminus S) = \sum_{t \in \mathcal{A}} m(t) + O(H \setminus V(\mathcal{A})) \le |E(\mathcal{A}, H \setminus V(\mathcal{A}))| + |E(\mathcal{A}, \mathcal{A})| = |S|,$$

a contradiction to (5).

Proof of Corollary 1. By the assumption of the corollary, for every set of multiple edges \mathcal{A} ,

(6)
$$2|E(\mathcal{A},\mathcal{A})| + |E(\mathcal{A},H \setminus V(\mathcal{A}))| \ge \sum_{t \in \mathcal{A}} 2m(t).$$

Let $\omega(H \setminus V(\mathcal{A}))$ be the number of components of $H \setminus V(\mathcal{A})$ of order at least 2. Then, since no simple edge in H is a proper cut-edge,

(7)
$$|E(\mathcal{A}, H \setminus V(\mathcal{A}))| \ge 2\omega(H \setminus V(\mathcal{A})) \ge 2O(H \setminus V(\mathcal{A})).$$

By adding (6) and (7) we get (4) so by Theorem 1 the proof is complete. \blacksquare

Proof of Theorem 2. To show necessity suppose the required decomposition exists. Let M be the perfect matching in the graph formed by the components in \mathcal{A} . Denote by B the set of edges obtained from $E_{\mathcal{A}}$ by deletion of the edges of M and their doubles. Clearly, $|B| = |E_{\mathcal{A}}| - 2e(M)$. Note that $O(H \setminus V(\mathcal{A})) = O(H \setminus B)$, where $H \setminus B$ stands for the multigraph obtained from H by removing the edges of B. By the existence of a $K_{1,2}$ decomposition of H at least $O(H \setminus B) + 2e(M)$ different copies of $K_{1,2}$ in the decomposition have one edge in B. Hence

$$|B| \ge O(H \setminus B) + 2e(M)$$

so

$$|E_{\mathcal{A}}| = |B| + 2e(M) \ge 4e(M) + O(H \setminus B) = 2|V(\mathcal{A})| + O(H \setminus V(\mathcal{A}))|.$$

Suppose sufficiency is false. Let H be a multigraph of an even size with the minimum number of doubled edges satisfying (2) and such that $K_{1,2} \not | H$. Assume first that H^* contains a component C of a positive size which is not a member of \mathcal{M} .

If the size of C is even, then $K_{1,2}|C$. Therefore, if we delete copies of every edge in C from H, then the resulting multigraph H' still has an even size, satisfies (2) and $K_{1,2} \not|H'$ contradicting to the minimality of H.

Let the size of C be odd. Suppose first C contains a cycle and let e be one of its edges. It is routine to show that the multigraph C' obtained from Cby doubling the edge e has a decomposition into stars $K_{1,2}$. Moreover, the multigraph H' obtained from H by deleting the edges of C' has an even size, satisfies (2) and $K_{1,2} \not| H'$ contradicting to the minimality of H again.

Let now C be a tree of an odd size. One can easily show that since $C \notin \mathcal{M}$, C can be decomposed into graphs A and B such that $K_{1,2}|A$ and B is isomorphic to $K_{1,3}$. If the size of A is positive then as before we can delete from H the edges of A and obtain a multigraph H' contradicting to the minimality of H.

Thus, we can assume that C is isomorphic to $K_{1,3}$. Let e and f be two of the edges of C and let e_1 and e_2 (respectively f_1 and f_2) be the parallel edges corresponding to e (resp. f) in H. Subdivide the edges e_1 and e_2 by inserting two new vertices v_1 and v_2 into e_1 and two new vertices u_1 and u_2 into e_2 . Let e'_1 (resp. e'_2) denote the edge v_1v_2 (resp. u_1u_2). The resulting multigraph H' has an even size, satisfies (2) and, by the minimality of H, H'admits a decomposition π' into stars $K_{1,2}$. Contract the copies of $K_{1,2}$ in π' containing e'_1 and e'_2 . We get the multigraph H again. The decomposition π' of H' defines in H a decomposition π which (by $K_{1,2} \not| H$) is a decomposition into copies of $K_{1,2}$ and the multigraph induced by the parallel edges e_1 and e_2 . In the latter case, consider the multigraph F induced by e_1 and e_2 and the edges of copies of $K_{1,2}$ in π containing f_1 and f_2 . It is routine to show that $K_{1,2}|F$, so consequently $K_{1,2}|H$, a contradiction.

We have shown that all components of H^* are isomorphic to members of \mathcal{M} .

If all the components in $\mathcal{M}(H)$ are single edges then by Theorem 1 the proof is complete. Suppose now that at least one of the components, say C, in $\mathcal{M}(H)$ is a tree with a perfect matching different from a single edge. It is easy to notice that then there are edges e and f in C such that e is a pendant edge in C and f is the only edge in C incident to e. Denote by e_1 , e_2 (respectively f_1 , f_2) the parallel edges in H corresponding to e(respectively f) in C. Subdivide f_1 and f_2 by inserting 2 new vertices x_1 , x_2 into f_1 and y_1 , y_2 into f_2 . Let f'_1 (respectively f'_2) denote the edge x_1x_2 (respectively y_1y_2).

Let us check the inequality (2) for H'. Note that $\mathcal{M}(H') = (\mathcal{M}(H) \setminus \{C\}) \cup \{C_1, C_2\}$, where C_1 is the edge e and $C_2 = C \setminus \{e, f\}$.

Let $\mathcal{A} \in \mathcal{M}(H')$. The condition (2) is easy to verify when $C_1, C_2 \in \mathcal{A}$ and when $C_1, C_2 \notin \mathcal{A}$. Thus suppose that $C_2 \in \mathcal{A}$ and $C_1 \notin \mathcal{A}$ (the case $C_1 \in \mathcal{A}$ and $C_2 \notin \mathcal{A}$ is analogous and we leave it to the reader). Let $\mathcal{A}' = \mathcal{A} \setminus \{C_2\}$. Then by our assumption for H

$$|E_{\mathcal{A}'}| \ge 2|V(\mathcal{A}')| + O(H \setminus V(\mathcal{A}')) = 2|V(\mathcal{A}')| + O(H' \setminus V(\mathcal{A}')).$$

Let k be the number of odd-sized components in $H' \setminus V(\mathcal{A})$ which are not odd-sized components in $H' \setminus V(\mathcal{A}')$. Clearly each of them is joined to a vertex in C_2 by at least one edge. Moreover, the component of $H' \setminus V(\mathcal{A})$ containing C_1 is joined to a vertex [4] of C_2 by at least 2 edges. Hence

$$|E_{\mathcal{A}}| \ge |E_{\mathcal{A}'}| + 2|E(C_2)| + k + 1 = |E_{\mathcal{A}'}| + 2|V(C_2)| - 2 + k + 1$$

$$\geq 2|V(\mathcal{A}')| + O(H' \setminus V(\mathcal{A}')) + 2|V(C_2)| + k - 1 \geq 2|V(\mathcal{A})| + O(H' \setminus V(\mathcal{A})) - 1.$$

Note that $|E_{\mathcal{A}}|$ and $O(H' \setminus V(\mathcal{A}))$ have the same parity. Indeed,

$$0 \equiv e(H') = |E_{\mathcal{A}}| + \sum_{C \in EV} e(C) + \sum_{C \in OD} e(C) \equiv |E_{\mathcal{A}}| + |OD|$$
$$= |E_{\mathcal{A}}| + O(H' \setminus V(\mathcal{A})) \pmod{2},$$

where EV (resp. OD) stands for the set of even-sized (resp. odd-sized) components in $H' \setminus V(\mathcal{A})$. Consequently $|E_{\mathcal{A}}| \geq 2|V(\mathcal{A})| + O(H' \setminus V(\mathcal{A}))$. By the minimality of H, H' admits a $K_{1,2}$ -decomposition π' .

Contract the copies of $K_{1,2}$ in π' containing f'_1 and f'_2 . We get again the multigraph H. The decomposition π' of H' defines in H a decomposition π which is either a $K_{1,2}$ -decomposition (in this case the proof is complete) or a decomposition into copies of $K_{1,2}$ and the multigraph induced by the parallel edges f_1 , f_2 . In the latter case consider the multigraph induced by f_1 , f_2 and the copies of $K_{1,2}$ in π containing e_1 and e_2 . It is routine to show that this multigraph admits a $K_{1,2}$ -decomposition. This contradiction completes our proof.

Remark 3. One can easily deduce from Theorem 2 that a multigraph H with multiplicities of all edges equal to 2 is $K_{1,2}$ -decomposable if and only if H^* is not a tree with a perfect matching. This result was earlier proved by Bondy [B].

Acknowledgement

We would like to thank the anonymous referee for finding an oversight in the previous version of the proof of Theorem 2.

References

- [B] J.A. Bondy, Perfect Path Double Covers of Graphs, J. Graph Theory 14 (1990) 259–272.
- [IMS] J. Ivančo, M. Meszka and Z. Skupień Z, Decomposition of multigraphs into isomorphic graphs with two edges, to appear in Ars Combinatoria.
 - [T] W.T. Tutte, The factorisation of linear graphs, J. London Math. Society 22 (1947) 107–111.

Received 5 February 1998 Revised 28 July 1998