DECOMPOSITION OF MULTIGRAPHS

Mekkia Kouider
Maryvonne Mahéo
URA 410 L.R.I., Bât. 490, Universite Paris-Sud
91405 Orsay, France
AND
Krzysztof Bryś
Zbigniew Lonc
Institute of Mathematics, Warsaw University of Technology
pl. Politechniki 1, 00-661 Warsaw, Poland

Abstract

In this note, we consider the problem of existence of an edgedecomposition of a multigraph into isomorphic copies of 2-edge paths $K_{1,2}$. We find necessary and sufficient conditions for such a decomposition of a multigraph H to exist when

(i) either H does not have incident multiple edges or
(ii) multiplicities of the edges in H are not greater than two. In particular, we answer a problem stated by Z. Skupień.
Keywords: edge decomposition, multigraph.
1991 Mathematics Subject Classification: Primary: 05C70,
Secondary: 05C38.
Z. Skupień, at the conference in Zakopane (September 1994), stated a problem of decomposition of the edge set of a multigraph H into stars $K_{1,2}$, if it is assumed that multiplicities of the edges do not exceed 2 . This property is denoted by $K_{1,2} \mid H$. It is known that if H is a simple graph, then $K_{1,2} \mid H$ if and only if the size of every component of H is even. It is easy to verify that this condition is not sufficient to ensure the decomposition of a multigraph.

Let \mathcal{M} be the class of trees with a perfect matching. Denote by H^{*} the graph obtained from H by deleting all edges of multiplicity 1 and reducing the multiplicities of all the other edges to 1 . Let $\mathcal{M}(H)$ be the set of these components in H^{*} that belong to \mathcal{M}. Clearly, in case (i) members of $\mathcal{M}(H)$
are simple edges and in case (ii) they can be isomorphic to any member of \mathcal{M}.

For $\mathcal{A} \subset \mathcal{M}(H)$ denote by $E_{\mathcal{A}}$ the set of edges in H with at least one end in a vertex of a component in \mathcal{A} (multiple edges are counted multiplicity many times). Let $V(\mathcal{A})$ (resp. $E(\mathcal{A})$) stand for the union of the vertex (resp. edge) sets of the components in \mathcal{A}. For a component t in $\mathcal{M}(H)$ which corresponds to a multiple edge denote by $m(t)$ the multiplicity of this edge in H. Finally, let $O(H \backslash V(\mathcal{A}))$ be the number of components of $H \backslash V(\mathcal{A})$ with an odd size which are not multiple edges.

Here are our main results.

Theorem 1. Let H be a multigraph of an even size and with no incident multiple edges. Then $K_{1,2} \mid H$ if and only if
(1) for every set of edges $\mathcal{A} \subset \mathcal{M}(H),\left|E_{\mathcal{A}}\right| \geq 2 \sum_{t \in \mathcal{A}} m(t)+O(H \backslash V(\mathcal{A}))$.

Clearly, in the above theorem each member of $\mathcal{M}(H)$ is an edge.
A proper simple cut-edge in a multigraph is a simple cut-edge whose deletion does not create a component consisting of one vertex.

Corollary 1. Let H be a multigraph of even size, with no incident multiple edges and with no simple proper cut-edge. If each edge e of multiplicity $m(t)>1$ is incident to at least $2 m(t)$ edges of multiplicity 1 then $K_{1,2} \mid H$.

Theorem 2. Let H be a multigraph of an even size and let the multiplicities of the edges be not greater than 2. Then $K_{1,2} \mid H$ if and only if

$$
\begin{equation*}
\forall \mathcal{A} \subset \mathcal{M}(H), \quad\left|E_{\mathcal{A}}\right| \geq 2|V(\mathcal{A})|+O(H \backslash V(\mathcal{A})) \tag{2}
\end{equation*}
$$

Before proving these theorems let us make two remarks.
Remark 1. The problem of decomposing a multigraph H into $K_{1,2}$ reduces to the case when H is connected.

Remark 2. Let H be a multigraph. If H contains a pair of incident multiple edges, then we can delete a copy of $K_{1,2}$; we repeat this process for pairs of incident multiple edges until we obtain a multigraph H^{\prime} (not unique) with no two incident multiple edges. If $K_{1,2} \mid H^{\prime}$ for some choice of H^{\prime}, then by adding the deleted edges, we immediately get a decomposition of H.

Proofs of Results

For a multigraph H define a graph $G(H)$ whose vertex set is $E(H)$ and a pair of vertices in $G(H)$ is an edge if the corresponding edges in H have exactly one common vertex.

Lemma 1. $K_{1,2} \mid H$ if and only if $G(H)$ has a perfect matching.
Proof. Suppose $K_{1,2} \mid H$. Since the vertices in $G(H)$ correspond to edges in H, a decomposition of H into stars $K_{1,2}$ defines a perfect matching in $G(H)$.

Conversely, suppose $G(H)$ has a perfect matching. Each edge in this matching defines a copy of $K_{1,2}$ in H. Since the matching covers all vertices in $G(H)$, the corresponding copies of $K_{1,2}$ form an edge-decomposition of H.

By the result of Tutte [T], $G(H)$ has a perfect matching if and only if

$$
\begin{equation*}
\forall S \subset V(G(H)), \quad O_{V}(G(H) \backslash S) \leq|S| \tag{3}
\end{equation*}
$$

where $O_{V}(G(H) \backslash S)$ is the number of components of $G(H) \backslash S$ with an odd number of vertices.

When writing this paper, we have been informed that J. Ivančo, M. Meszka and Z. Skupień [IMS] have made the same observation as in our Lemma 1. In particular, they concluded that deciding whether $K_{1,2} \mid H$ for an instance multigraph H is a polynomial problem.

Assume now that H has no incident multiple edges. Call an edge e in H an m-bridge if it is a bridge in the component H_{1} of H containing e and if at least one of the components of $H_{1}-e$ is a multiple edge.

Lemma 2. Let H be a multigraph with no incident multiple edges. If e is not an m-bridge in H then

$$
O_{V}(G(H)-e) \leq O_{V}(G(H))+1
$$

Proof. The lemma obviously holds when H is a multiple edge because then $G(H)$ is an edgeless graph. Otherwise it follows from the observation that $G\left(H_{1}\right)-e$ has exactly 2 components (where H_{1} is the component of H containing e) and e is not an m-bridge. We leave routine details of this proof to the reader.
Let $E(\mathcal{A}, H \backslash V(\mathcal{A}))$ (respectively $E(\mathcal{A}, \mathcal{A})$) be the set of edges with one end-vertex in $\mathcal{A} \subset \mathcal{M}(H)$ and the other one in $V(H) \backslash V(\mathcal{A})$ (respectively with end-vertices in two different members of \mathcal{A}).

Proof of Theorem 1. Since H has no incident multiple edges, the set $\mathcal{M}(H)$ represents the set of multiple edges in H. The condition (1) is equivalent to

$$
\begin{align*}
& \forall \mathcal{A} \subset \mathcal{M}(H) \\
& |E(\mathcal{A}, H \backslash V(\mathcal{A}))|+|E(\mathcal{A}, \mathcal{A})| \geq \sum_{t \in \mathcal{A}} m(t)+O(H \backslash V(\mathcal{A})) \tag{4}
\end{align*}
$$

Suppose there is a decomposition π of H into stars $K_{1,2}$. For every component of $H \backslash V(\mathcal{A})$ of odd size at least one copy of $K_{1,2}$ in π has an edge in $E(\mathcal{A}, H \backslash V(\mathcal{A}))$. Moreover, for every multiple edge $t \in \mathcal{A}, m(t)$ copies of $K_{1,2}$ in π have one edge in $E(\mathcal{A}, H \backslash V(\mathcal{A})) \cup E(\mathcal{A}, \mathcal{A})$. Hence

$$
\forall \mathcal{A} \subset \mathcal{M}(H), \quad|E(\mathcal{A}, H \backslash V(\mathcal{A}))|+|E(\mathcal{A}, \mathcal{A})| \geq \sum_{t \in \mathcal{A}} m(t)+O(H \backslash V(\mathcal{A})),
$$

which completes the proof of necessity.
To show sufficiency suppose that (1) is satisfied and H does not have a decomposition into stars $K_{1,2}$. By Lemma 1 and (3), we get

$$
\begin{equation*}
\exists S \subset V(G(H)), \quad O_{V}(G(H) \backslash S)>|S| \tag{5}
\end{equation*}
$$

Assume that S has the smallest cardinality among the sets satisfying the above inequality.

Supose first that $S=\emptyset$. Then, at least one component of $G(H)$ has an odd number of vertices. By the definition of $G(H)$, either one of the components of H which is not a multiple edge has an odd size or one of the components of H is a multiple edge. In the former case we get a contradiction to (4) because for $\mathcal{A}=\emptyset$ we obtain $O(H)=0$. To get a contradiction in the latter case, denote by e a multiple edge which is a component in H. The condition (4) yields a contradiction for $\mathcal{A}=\{e\}$. Hence $S \neq \emptyset$.

Suppose now that some $e \in S \subset V(G(H))=E(H)$ is not an m-bridge in $H \backslash(S \backslash\{e\})=(H \backslash S) \cup\{e\}$. By minimality of S,

$$
O_{V}((G(H) \backslash S) \cup\{e\}) \leq|S \backslash\{e\}| .
$$

The multigraph $(H \backslash S) \cup\{e\}$ satisfies the assumptions of Lemma 2. Consequently, $O_{V}(G(H) \backslash S) \leq O_{V}((G(H) \backslash S) \cup\{e\})+1$, so

$$
O_{V}(G(H) \backslash S) \leq|S \backslash\{e\}|+1=|S|
$$

a contradiction.

Thus all the edges $e \in S \subset E(H)$ are m-bridges in $(H \backslash S) \cup\{e\}$. Let \mathcal{A} be the set of multiple edges which are components in $H \backslash S$. Then, clearly, $S=E(\mathcal{A}, H \backslash V(\mathcal{A})) \cup E(\mathcal{A}, \mathcal{A})$. By the definition of $G(H)$ and (4)
$O_{V}(G(H) \backslash S)=\sum_{t \in \mathcal{A}} m(t)+O(H \backslash V(\mathcal{A})) \leq|E(\mathcal{A}, H \backslash V(\mathcal{A}))|+|E(\mathcal{A}, \mathcal{A})|=|S|$, a contradiction to (5).
Proof of Corollary 1. By the assumption of the corollary, for every set of multiple edges \mathcal{A},

$$
\begin{equation*}
2|E(\mathcal{A}, \mathcal{A})|+|E(\mathcal{A}, H \backslash V(\mathcal{A}))| \geq \sum_{t \in \mathcal{A}} 2 m(t) \tag{6}
\end{equation*}
$$

Let $\omega(H \backslash V(\mathcal{A})$) be the number of components of $H \backslash V(\mathcal{A})$ of order at least 2. Then, since no simple edge in H is a proper cut-edge,

$$
\begin{equation*}
|E(\mathcal{A}, H \backslash V(\mathcal{A}))| \geq 2 \omega(H \backslash V(\mathcal{A})) \geq 2 O(H \backslash V(\mathcal{A})) . \tag{7}
\end{equation*}
$$

By adding (6) and (7) we get (4) so by Theorem 1 the proof is complete.
Proof of Theorem 2. To show necessity suppose the required decomposition exists. Let M be the perfect matching in the graph formed by the components in \mathcal{A}. Denote by B the set of edges obtained from $E_{\mathcal{A}}$ by deletion of the edges of M and their doubles. Clearly, $|B|=\left|E_{\mathcal{A}}\right|-2 e(M)$. Note that $O(H \backslash V(\mathcal{A}))=O(H \backslash B)$, where $H \backslash B$ stands for the multigraph obtained from H by removing the edges of B. By the existence of a $K_{1,2^{-}}$ decomposition of H at least $O(H \backslash B)+2 e(M)$ different copies of $K_{1,2}$ in the decomposition have one edge in B. Hence

$$
|B| \geq O(H \backslash B)+2 e(M)
$$

so

$$
\left|E_{\mathcal{A}}\right|=|B|+2 e(M) \geq 4 e(M)+O(H \backslash B)=2|V(\mathcal{A})|+O(H \backslash V(\mathcal{A})) \mid .
$$

Suppose sufficiency is false. Let H be a multigraph of an even size with the minimum number of doubled edges satisfying (2) and such that $K_{1,2} \backslash H$. Assume first that H^{*} contains a component C of a positive size which is not a member of \mathcal{M}.

If the size of C is even, then $K_{1,2} \mid C$. Therefore, if we delete copies of every edge in C from H, then the resulting multigraph H^{\prime} still has an even size, satisfies (2) and $K_{1,2} \not \backslash H^{\prime}$ contradicting to the minimality of H.

Let the size of C be odd. Suppose first C contains a cycle and let e be one of its edges. It is routine to show that the multigraph C^{\prime} obtained from C by doubling the edge e has a decomposition into stars $K_{1,2}$. Moreover, the multigraph H^{\prime} obtained from H by deleting the edges of C^{\prime} has an even size, satisfies (2) and $K_{1,2} \times H^{\prime}$ contradicting to the minimality of H again.

Let now C be a tree of an odd size. One can easily show that since $C \notin \mathcal{M}, C$ can be decomposed into graphs A and B such that $K_{1,2} \mid A$ and B is isomorphic to $K_{1,3}$. If the size of A is positive then as before we can delete from H the edges of A and obtain a multigraph H^{\prime} contradicting to the minimality of H.

Thus, we can assume that C is isomorphic to $K_{1,3}$. Let e and f be two of the edges of C and let e_{1} and e_{2} (respectively f_{1} and f_{2}) be the parallel edges corresponding to e (resp. f) in H. Subdivide the edges e_{1} and e_{2} by inserting two new vertices v_{1} and v_{2} into e_{1} and two new vertices u_{1} and u_{2} into e_{2}. Let e_{1}^{\prime} (resp. e_{2}^{\prime}) denote the edge $v_{1} v_{2}$ (resp. $u_{1} u_{2}$). The resulting multigraph H^{\prime} has an even size, satisfies (2) and, by the minimality of H, H^{\prime} admits a decomposition π^{\prime} into stars $K_{1,2}$. Contract the copies of $K_{1,2}$ in π^{\prime} containing e_{1}^{\prime} and e_{2}^{\prime}. We get the multigraph H again. The decomposition π^{\prime} of H^{\prime} defines in H a decomposition π which (by $K_{1,2} \not \backslash H$) is a decomposition into copies of $K_{1,2}$ and the multigraph induced by the parallel edges e_{1} and e_{2}. In the latter case, consider the multigraph F induced by e_{1} and e_{2} and the edges of copies of $K_{1,2}$ in π containing f_{1} and f_{2}. It is routine to show that $K_{1,2} \mid F$, so consequently $K_{1,2} \mid H$, a contradiction.

We have shown that all components of H^{*} are isomorphic to members of \mathcal{M}.

If all the components in $\mathcal{M}(H)$ are single edges then by Theorem 1 the proof is complete. Suppose now that at least one of the components, say C, in $\mathcal{M}(H)$ is a tree with a perfect matching different from a single edge. It is easy to notice that then there are edges e and f in C such that e is a pendant edge in C and f is the only edge in C incident to e. Denote by e_{1}, e_{2} (respectively f_{1}, f_{2}) the parallel edges in H corresponding to e (respectively f) in C. Subdivide f_{1} and f_{2} by inserting 2 new vertices x_{1}, x_{2} into f_{1} and y_{1}, y_{2} into f_{2}. Let f_{1}^{\prime} (respectively f_{2}^{\prime}) denote the edge $x_{1} x_{2}$ (respectively $y_{1} y_{2}$).

Let us check the inequality (2) for H^{\prime}. Note that $\mathcal{M}\left(H^{\prime}\right)=(\mathcal{M}(H) \backslash$ $\{C\}) \cup\left\{C_{1}, C_{2}\right\}$, where C_{1} is the edge e and $C_{2}=C \backslash\{e, f\}$.

Let $\mathcal{A} \in \mathcal{M}\left(H^{\prime}\right)$. The condition (2) is easy to verify when $C_{1}, C_{2} \in \mathcal{A}$ and when $C_{1}, C_{2} \notin \mathcal{A}$. Thus suppose that $C_{2} \in \mathcal{A}$ and $C_{1} \notin \mathcal{A}$ (the case $C_{1} \in \mathcal{A}$ and $C_{2} \notin \mathcal{A}$ is analogous and we leave it to the reader).

Let $\mathcal{A}^{\prime}=\mathcal{A} \backslash\left\{C_{2}\right\}$. Then by our assumption for H

$$
\left|E_{\mathcal{A}^{\prime}}\right| \geq 2\left|V\left(\mathcal{A}^{\prime}\right)\right|+O\left(H \backslash V\left(\mathcal{A}^{\prime}\right)\right)=2\left|V\left(\mathcal{A}^{\prime}\right)\right|+O\left(H^{\prime} \backslash V\left(\mathcal{A}^{\prime}\right)\right) .
$$

Let k be the number of odd-sized components in $H^{\prime} \backslash V(\mathcal{A})$ which are not odd-sized components in $H^{\prime} \backslash V\left(\mathcal{A}^{\prime}\right)$. Clearly each of them is joined to a vertex in C_{2} by at least one edge. Moreover, the component of $H^{\prime} \backslash V(\mathcal{A})$ containing C_{1} is joined to a vertex [4] of C_{2} by at least 2 edges. Hence

$$
\begin{gathered}
\left|E_{\mathcal{A}}\right| \geq\left|E_{\mathcal{A}^{\prime}}\right|+2\left|E\left(C_{2}\right)\right|+k+1=\left|E_{\mathcal{A}^{\prime}}\right|+2\left|V\left(C_{2}\right)\right|-2+k+1 \\
\geq 2\left|V\left(\mathcal{A}^{\prime}\right)\right|+O\left(H^{\prime} \backslash V\left(\mathcal{A}^{\prime}\right)\right)+2\left|V\left(C_{2}\right)\right|+k-1 \geq 2|V(\mathcal{A})|+O\left(H^{\prime} \backslash V(\mathcal{A})\right)-1 .
\end{gathered}
$$

Note that $\left|E_{\mathcal{A}}\right|$ and $O\left(H^{\prime} \backslash V(\mathcal{A})\right)$ have the same parity. Indeed,

$$
\begin{aligned}
0 \equiv e\left(H^{\prime}\right)= & \left|E_{\mathcal{A}}\right|+\sum_{C \in E V} e(C)+\sum_{C \in O D} e(C) \equiv\left|E_{\mathcal{A}}\right|+|O D| \\
& =\left|E_{\mathcal{A}}\right|+O\left(H^{\prime} \backslash V(\mathcal{A})\right) \quad(\bmod 2),
\end{aligned}
$$

where $E V$ (resp. $O D$) stands for the set of even-sized (resp. odd-sized) components in $H^{\prime} \backslash V(\mathcal{A})$. Consequently $\left|E_{\mathcal{A}}\right| \geq 2|V(\mathcal{A})|+O\left(H^{\prime} \backslash V(\mathcal{A})\right)$. By the minimality of H, H^{\prime} admits a $K_{1,2}$-decomposition π^{\prime}.

Contract the copies of $K_{1,2}$ in π^{\prime} containing f_{1}^{\prime} and f_{2}^{\prime}. We get again the multigraph H. The decomposition π^{\prime} of H^{\prime} defines in H a decomposition π which is either a $K_{1,2}$-decomposition (in this case the proof is complete) or a decomposition into copies of $K_{1,2}$ and the multigraph induced by the parallel edges f_{1}, f_{2}. In the latter case consider the multigraph induced by f_{1}, f_{2} and the copies of $K_{1,2}$ in π containing e_{1} and e_{2}. It is routine to show that this multigraph admits a $K_{1,2}$-decomposition. This contradiction completes our proof.

Remark 3. One can easily deduce from Theorem 2 that a multigraph H with multiplicities of all edges equal to 2 is $K_{1,2}$-decomposable if and only if H^{*} is not a tree with a perfect matching. This result was earlier proved by Bondy [B].

Acknowledgement

We would like to thank the anonymous referee for finding an oversight in the previous version of the proof of Theorem 2.

References

[B] J.A. Bondy, Perfect Path Double Covers of Graphs, J. Graph Theory 14 (1990) 259-272.
[IMS] J. Ivančo, M. Meszka and Z. Skupień Z, Decomposition of multigraphs into isomorphic graphs with two edges, to appear in Ars Combinatoria.
[T] W.T. Tutte, The factorisation of linear graphs, J. London Math. Society 22 (1947) 107-111.

Received 5 February 1998
Revised 28 July 1998

