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Abstract

In this paper, we introduce the notion of a variety of graphs closed
under isomorphic images, subgraph identifications and induced sub-
graphs (induced connected subgraphs) firstly and next closed under
isomorphic images, subgraph identifications, circuits and cliques. The
structure of the corresponding lattices is investigated.
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1. Introduction

In the theory of algebraic structures a lot of attention is paid to investiga-
tions of lattices of varieties of algebras. A variety of algebras is a nonempty
class of algebras of the same type which is closed under homomorphic im-
ages, subalgebras and direct products (see [3, p. 61]). The notion of a variety
may have different meanings depending on the contexts it is used in. We
usually have a family F of algebraic structures of the same type and a finite
set of closure operators O1, . . . , Om defined on F. Then a variety V ⊆ F of
algebraic structures is a subfamily closed under all operators O1, . . . , Om.
For instance in [5] a variety of posets was defined as a class of posets closed
under retracts and nonvoid direct products. Varieties (sets) of graphs closed
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under isomorphic images and induced subgraphs were investiged in [9] and
varieties of graphs closed under isomorphic images and generalized heredi-
tary operators were investigated in [2].

A set of all varieties (of given type) with set inclusion as the partial
ordering is a complete lattice. The complete lattice of all varieties of graphs
closed under isomorphic images and aditive and hereditary operators was
investigated in [8]. In this context, the term a variety of graphs is replaced
by the term a property of graphs. An interesting survey paper on additive
and hereditary properties of graphs with open problems may be found in [1].

Another definition of a variety of graphs can be obtained by combining
the ”super-graph” and the ”vertex-spliting” closure operators. Then a va-
riety of graphs contains with a given graph G all graphs containing G as
a minor. It follows from the famous theorem of Robertson and Seymour
[10, Th. 5.1] that every such variety is finitely generated. For instance, the
variety V (K5,K3,3) generated by the complete graph K5 and the complete
bipartite graph K3,3 coincides with the family of all non-planar graphs, what
is nothing else than a reformulation of the Kuratovski theorem [4, p. 163].

Of course, the question how to choose the closure operators in the defini-
tion of varieties of graphs (in order to have a chance to obtain some relevant
results) is extremely important. One can believe that there is no general
suggestion how to do it. On the other hand, it turns out that the following
criteria should indicate that the choice of closure operators is ”good” :

(a) the varieties can be characterized in terms of some invariants of graphs
(b) the lattice of varieties is ”nice”.

The aim of the paper is to present a new approach to the definition of
a variety of graphs. Namely, varieties of graphs closed under isomorphic im-
ages, induced subgraphs (induced connected subgraphs) and identifications
of graphs in connected induced subgraphs are investigated in Section 3,
while in Section 4 varieties closed under isomorphic images, identifications
of graphs in connected induced subgraphs and closed under the operator
which ensures to contain with any graph all its circuits and cliques, are
considered. Particular attention is paid to the study of structure of the
corresponding lattices.

For the undefined terminology we refer the reader to [4].

2. Preliminary Results

By a graph G = (V,E) we mean an undirected finite graph without loops
and multiple edges with a vertex set V and an edge set E. In the whole
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paper it is assumed that the vertex set V of every graph under consideration
is a subset of a fixed countable infinite set W containing the set of natural
numbers and containing [a, b] if a, b ∈ W .

The following operation of a subgraph identification of two graphs in
a connected induced subgraph generalizes the operation of the union of
graphs [7].

Let G1 = (V1, E1) and G2 = (V2, E2) be disjoint graphs. Let G ′

1 =
(V ′

1 , E′

1) and G′

2 = (V ′

2 , E′

2) be connected induced subgraphs of G1,G2, re-
spectively and f : G ′

1 → G′

2 be an isomorphism. The subgraph identification

of G1 with G2 under f is the graph G = G1∪
fG2 = (V,E), where

V = V1 ∪ (V2 − V ′

2)
E = {{a, b} ; a, b ∈ V and {a, b} ∈ E1 ∪ E2, or {f(a), b} ∈ E2}.

Obviously, G1 ∪
f G2

∼= G2∪
f−1

G1. The subgraph identification of two graphs
can be extended to graphs with a non-empty intersection as follows.

Let Gi = (Vi, Ei), i = 1, 2 be two graphs (not necessarily disjoint) and
let f : G′

1 → G′

2 be an isomorphism of a connected induced subgraph G ′

1 of
G1 onto a connected induced subgraph G ′

2 of G2. Put

W = { [v, 0]; v ∈ V1 ∩ V2} and V3 = W ∪ (V2 − V1).

Define a bijection g : V2 → V3 as follows:

g(x) =

{

x, if x ∈ V2 − V1,

[x, 0], otherwise.

If we put E3 = g(E2) = {{g(x), g(y)}; {x, y} ∈ E2}, then g : G2 → G3,
G3 = (V3, E3), is a graph isomorphism. Note that the graphs G1 and G3 are
disjoint. The subgraph identification of G1 with G3 under g ◦ f (i.e. the
graph G = G1 ∪

g◦f G3) will be called the subgraph identification of G1 with
G2 under f . We denote it again G1 ∪

f G2.
The fact that f : G ′

1 → G′

2 is an isomorphism of the connected induced
subgraph G ′

1 ⊆ G1, onto the connected induced subgraph G ′

2 ⊆ G2 will be
denoted by f : G1 7→ G2.

Clearly, the subgraph identification of connected graphs is again a con-
nected graph. It is easy to see that if f is an automorphism of G1, then
G1 ∪

f G1 = G1.
Let K be a family of graphs. Denote

γ(K) = {G1 ∪
f G2; G1,G2 ∈ K, f : G1 7→ G2}
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and

Γ(K) = γ(K) ∪ γ2(K) ∪ · · · =
∞
⋃

n=1

γn(K),

where γk(K) = γ(γk−1(K)), for every k > 1.
Because G ∪id G = G, where id is the identity on the graph G, we have

K ⊆ γ(K) ⊆ γ2(K) ⊆ γ3(K) ⊆ . . . .

Further, let S(K), I(K) denote the set of all induced subgraphs of graphs in
K and the set of all isomorphic images of graphs in K, respectively. If K is
a set of connected graphs, we will denote by Sc(K) the set of all connected
induced subgraphs of graphs in K.

A set K of graphs will be called a variety closed under isomorphic im-

ages, induced subgraphs and subgraph identifications if

I(K) ⊆ K, S(K) ⊆ K and Γ(K) ⊆ K.

A set K of connected graphs will be called a variety closed under isomorphic

images, induced connected subgraphs and subgraph identifications if

I(K) ⊆ K, Sc(K) ⊆ K and Γ(K) ⊆ K.

Let K, K1 ⊆ K2 be a sets of graphs and O be one of the operators I, S,Γ.
Then K ⊆ O(K), O(O(K)) = O(K) and O(K1) ⊆ O(K2). The same
statement holds, provided K, K1 ⊆ K2 are sets of connected graphs and
O ∈ {I, Sc,Γ}. Thus I,Γ and S(I,Γ and Sc) are, respectively, closure
operators on the system of all sets of graphs (of connected graphs). By [3,
Theorem 5.2] the following proposition holds.

Proposition 2.1. The set of all varieties of graphs (of connected graphs)
closed under isomorphic images, subgraph identifications and induced sub-

graphs (induced connected subgraphs) with set inclusion as the partial order-

ing is a complete lattice.

Let G be a graph. By a circuit C ⊆ G in G we mean a connected subgraph of
G in which every vertex has degree two. A complete graph K with n-vertices
is called (in this paper) a clique of G if K is a subgraph of G and

– K is not a proper subgraph of a complete subgraph of G, if n ≥ 3,
– K is a bridge of G, if n = 2,
– K is a one-vertex subgraph of G.

The following lemma is basically included in the proof of Brooks’ theorem
[4, p. 223–225].
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Lemma 2.2. Let G = (V,E) be a connected graph, which is neither a com-

plete graph nor a circuit. Then there are two nonadjacent vertices u, v in G
such that G − {u, v} is a connected graph.

Theorem 2.3. If G is a connected graph which is neither a circuit nor

a complete graph, then G contains proper connected induced subgraphs G1,

G2 such that G = G1 ∪
f G2, where f : G1 7→ G2 is an isomorphism.

Proof. By Lemma 2.2, there are two nonadjacent vertices u, v in G such
that G−{u, v} is connected. Let f be the identity on G−{u, v}. The graphs
G1 = G − {u} and G2 = G − {v} are proper connected induced subgraphs
of G. Since u, v are nonadjacent vertices G = G1 ∪

f G2 holds.

Corollary 2.4. Let G be a connected graph. There exist the family Cl of

cliques of G and a family C of circuits of G such that G ∈ Γ(Cl ∪ C).

Proof. The statement follows from Theorem 2.3 (repeating the process of
decomposition of G into the graphs G1 and G2).

Let K be a family of graphs. Denote F (K) = K∪cl(K)∪C(K), where cl(K)
is the set of all cliques of graphs in K and C(K) is the set of all circuits of
graphs in K.

A set K of graphs will be called a variety closed under isomorphic im-

ages, cliques, circuits and subgraph identifications if

I(K) ⊆ K, F (K) ⊆ K and Γ(K) ⊆ K.

Analogously as above, the following statement can be proved.

Proposition 2.5. The set of all varieties of graphs closed under isomorphic

images, cliques, circuits and subgraph identifications with set inclusion as the

partial ordering is a complete lattice.

3. The Lattice of Varieties Closed under the Operators I, S, Γ

The proof of the following statement is straightforward.

Lemma 3.1. For every family K of graphs holds

II(K) = I(K), SI(K) = IS(K), SS(K) = S(K),

ΓΓ(K) = Γ(K), ΓI(K) = IΓ(K)
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and for every family K of connected graphs holds

ScI(K) = ISc(K), ScSc(K) = Sc(K).

Lemma 3.2. For every family K of graphs ΓS(K) ⊆ ISΓ(K) and for every

family K of connected graphs ΓSc(K) ⊆ IScΓ(K).

Proof. It follows immediately that

(3.1) γI(K) ⊆ Iγ(K),

for any family K of graphs.
Now we will show that

(3.2) γS(K) ⊆ ISγ(K),

for any family of graphs.
Let G ∈ γS(K), i.e. there are graphs G1,G2 ∈ S(K) and f : G1 7→ G2

such that G = G1 ∪
f G2. Since G1,G2 ∈ S(K), there exist H1,H2 ∈ K such

that Gi is an induced subgraph of Hi for i = 1, 2. Clearly, the graph H1∪
f H2

contains an induced subgraph which is isomorphic to the graph G. Hence
G ∈ ISγ(K).

Now suppose G ∈ ΓS(K). Then there is n > 0 such that G ∈ γnS(K).
Combining (3.1) with (3.2) and using II(K) = I(K) we obtain

G ∈ γnS(K) ⊆ γn−1ISγ(K) ⊆ γn−2ISγ2(K) ⊆ . . . ⊆ ISγn(K) ⊆ ISΓ(K).

The same argument can be used for the operators Γ and Sc.

Let K be a family of graphs (of connected graphs). The intersection of all
varieties of graphs (of connected graphs) containing K is a variety V (K)
(Vc(K)) which is called the variety generated by K (the variety of connected
graphs generated by K). If K = {G1, . . . ,Gn}, then the variety V (K) (Vc(K))
will be denoted by V (G1, . . . ,Gn) (by Vc(G1, . . . ,Gn)).

Theorem 3.3. For every set K of graphs

V (K) = ISΓ(K).

For every set K od connected graphs

Vc(K) = IScΓ(K).
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Proof. Obviously, ISΓ(K) ⊆ V (K). In order to prove the reverse inclusion
it is sufficient to prove that ISΓ(K) is a variety containing K, i.e. it is
sufficient to realize that

I(ISΓ(K)) ⊆ ISΓ(K), S(ISΓ(K)) ⊆ ISΓ(K) and Γ(ISΓ(K)) ⊆ ISΓ(K).

However, this is an easy consequence of Lemmas 3.1 and 3.2. In the same
manner we can verify that Vc(K) = IScΓ(K).

In order to be precise, in the rest of the paper the symbol Kn will denote the
complete graph with the vertex set V = {1, 2, . . . , n}. Similarly, the symbol
Cn will be used for the circuit with the vertex set V = {1, 2, . . . , n} and with
the edge set E = {{1, 2}, {2, 3}, . . . , {n, 1}}.

It is obvious that V (K1) ⊆ V for every non-empty variety V.

By Lc(I, Sc,Γ) we will denote the lattice of all non-empty varieties of
connected graphs closed under isomorphic images, induced connected sub-
graphs and subgraph identifications and by L(I, S,Γ) we will denote the
lattice of all non-empty varieties of graphs closed under the operators I, S,Γ.

The least element of the lattice Lc(I, Sc,Γ) of varieties of connected
graphs is the variety Vc(K1) = V (K1) of single-vertex graphs. This variety
will be denoted by 0. Clearly, the variety 0 is the least element of the lattice
L(I, S,Γ), too.

Firstly, we turn our attention to the lattice Lc(I, Sc,Γ).

Lemma 3.4. The only atom of the lattice Lc(I, Sc,Γ) is the variety of all

trees Vc(K2).

Proof. It is easy to check that if V 6= 0 is a variety of the lattice
Lc(I, Sc,Γ), then K2 ∈ V. Hence Vc(K2) ⊆ V. On the other hand, no
graph G in Vc(K2) contains a circuit. Using the induction on the number of
vertices it is easy to see that every tree belongs to Vc(K2).

Theorem 3.5. The only variety covering the variety of trees in Lc(I, Sc,Γ)
is the variety Vc(C4). Moreover, Vc(C4) is the variety of all connected bipar-

tite graphs.

Proof. Let V be a variety of connected graphs such that V ⊇ Vc(K2) and
V 6= Vc(K2). Then there is a graph G ∈ V containing an induced circuit
with n-vertices for some n ≥ 3. Therefore, Cn ∈ V. If n ≥ 4, then gluing
two copies of Cn in a path of length n− 2, we obtain a graph which contains
a graph isomorphic with a circuit C4 as an induced subgraph (see Figure 1).
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Hence C4 ∈ V and Vc(C4) ⊆ V. If n = 3, then observe that the graph H
depicted on Figure 2 is in V. Since C5 is isomorhic with an induced subgraph
of H, we have C5 ∈ V. Then gluing two copies of C5 in a path of length 3, we
obtain a graph containing an induced subgraph isomorphic with C4. Again
Vc(C4) ⊆ V. Hence, the only variety covering the variety of trees is the
variety Vc(C4).

2 = 2′

n = n′

1 1′

Figure 1
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It remains to prove that Vc(C4) coincides with the family B of all connected
bipartite graphs. In order to prove Vc(C4) ⊆ B, it is sufficient to realize
that C4 is a bipartite graph and that the operators I, Sc and Γ preserve
the biparticity. It follows directly from the definitions I and Sc that they
preserve the biparticity. Let G1, G2 be connected bipartite graphs and G =
G1 ∪f G2, where f : G1 7→ G2 is a subgraph isomorphism. It is known that
the isomorphism f either preserves the colour of every vertex or it reverses
the colour of every vertex. In the first case, the 2-coloring of G1, G2 induces
2-coloring of G1 ∪

f G2. In the other case, we may change colours in G2 thus
obtaining the first case. Hence G = G1 ∪

f G2 is bipartite in both cases.

Now we are going to prove B ⊆ Vc(C4). Using four copies of C4 we obtain
the graph isomorphic to H in Figure 3. Since C8 is isomorphic to an induced
subgraph of H, we have C8 ∈ Vc(C4). Gluing two copies of C8 in a path of
length five we obtain a graph containing as an induced subgraph a circuit
isomorphic with C6. Hence C4, C6, C8 ∈ Vc(C4).

Assume C2k ∈ Vc(C4), k > 2. Let f : C2k 7→ C6 be a subgraph isomor-
phism mapping a path of lenght two of C2k onto a path of lenght two of C6.
Then C2k ∪f C6 contains as an induced subgraph a circuit isomorphic with
C2k+2. Thus every circuit of an even lenght belongs to Vc(C4). However, it
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follows from Corollary 2.4 that every bipartite graph belongs to Vc({K2}∪C),
where C is the family of all even circuits. Thus B ⊆ Vc(C4) and the
result follows.

t t t

ttt

t t t

ttt

t t t

t

ttt

t t q
q
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q
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C C ′

Figure 3 Figure 4

Lemma 3.6. Let V be a variety of connected graphs. Let V ⊇ Vc(C4) and

V 6= Vc(C4). Then every circuit Cn, n ≥ 4, belongs to V.

Proof. Since V ⊇ Vc(C4) and V 6= Vc(C4) there exists a non-bipartite
connected graph G in V. If a circuit isomorphic with C3 is an induced
subgraph of G, then C5 ∈ V (see Figure 2). Otherwise the shortest circuit
of odd lenght in G is an induced subgraph of G. Hence there is a circuit
Cm, m ≥ 5, m odd, in V. Since V ⊇ Vc(C4), by Theorem 3.5 every circuit
of an even lenght belongs to V. Gluing Cm and Cm+1, m ≥ 5, in a path of
length m − 2 we obtain a graph containing a circuit isomorphic with C5 as
an induced subgraph. Thus in both cases C5 ∈ V. Let f : C5 7→ C2k, k > 2,
be a subgraph isomorphism mapping a path of length two onto a path of
length two. Then C2k+1 ' C ⊆ C5 ∪

f C2k, where C is an induced subgraph of
C5 ∪

f C2k, hence C2k+1 ∈ V for every k ≥ 2.

Corollary 3.7. If C3 ∈ V, then every circuit belongs to V.

Lemma 3.8. Let V be a variety of connected graphs. If V is not the variety

of all connected graphs and Vc(C5) ⊆ V, Vc(C5) 6= V, then there exists n ≥ 3
such that V = Vc(Kn).

Proof. By Corollary 2.4 every graph G in V can be obtained by successive
subgraph identifications of a family of its complete subgraphs (cliques) and
some its circuits.
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Let cl(V) be a family of all pairwise nonisomorhic complete subgraphs in V.
Assume that cl(V) is infinite. Then it contains complete graphs of arbitrary
large order. By Corollary 3.7 and 2.4 V is the variety of all graphs, a con-
tradiction. Hence we may assume that there is a maximal complete graph
Kn of order n in cl(V). Then Vc(Kn) ⊆ V and Km ∈ Vc(Kn) for every m ≤ n

(as an induced subgraph of Kn). By Corollary 3.7 every circuit Cn belongs
into Vc(Kn). Using Corollary 2.4 we get V = Vc(Kn).

Corollary 3.9. V is the variety of all connected graphs if and only if V

contains a complete graph of arbitrary large order.

Let G be a connected graph. We denote by cq(G) the clique number of G,
i.e. cq(G) is the order of a maximal clique of G. The results of this section
are summarized in the following two theorems.

Theorem 3.10. Let G be a connected graph. Then

(i) Vc(G) = Vc(K2), if G is a tree,

(ii) Vc(G) = Vc(C4), if G is a bipartite graph with a circuit,

(iii) Vc(G) = Vc(C5), if there is a circuit of an odd lenght in G and cq(G) = 2,

(iv) Vc(G) = Vc(Kn), if the clique number cq(G) = n ≥ 3.

Denote by Gc the variety of all connected graphs.

Theorem 3.11. The lattice Lc(I, Sc,Γ) is the chain

Vc(K1) < Vc(K2) < Vc(C4) < Vc(C5) < Vc(K3)

< Vc(K4) < . . . < Vc(Kn) < . . . < Gc

isomorphic with the ordinal number ω + 1.

Denote by G the set of all graphs and by the disconnected graph with two
vertices 1 and 2.

A family K of graphs is called hereditary (by [9]) if it is closed under
induced subgraphs. Thus, every variety closed under the operators I, S,Γ is
hereditary.

A family K of graphs is called aditive ([8]) if it is closed under disjoint
union of graphs. It is easy to check that a variety V of graphs closed under
the operators I, S,Γ is aditive if K contains a graph with at least two vertices.
Indeed, the disjoint union of two graphs G and H belonging to V can be
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constructed as follows. First, observe that V contains necessarily a graph
isomorphic to K̃2. Such a graph is always a subgraph of a graph which we get
by gluing a nontrivial graph in V with itself in a one-vertex graph. Further,
applying Γ operator on G and K̃2 we form a new graph G ′ ∈ V having two
connectivity components, one being isomorphic to G and the other containg
only one vertex. Finally, gluing G ′ and H in the one-vertex component of G ′

we obtain a graph isomorphic to the disjoint union of G and H.
Taking into account that every aditive variety of graphs is determined

uniquely by the set of all connected graphs which belong to it, we see that
Theorem 11 has the following corollary.

Corollary 3.12. The lattice L(I, S,Γ) is the chain

V (K1) < V (K̃2) < V (K2) < V (C4) < V (C5)

< V (K3) < V (K4) < V (K5) < . . . < G.

Let V be a variety of graphs. An integer c(V) such that V contains a com-
plete graph on c(V) + 1 vertices but V does not contain a complete graph
on c(V) + 2 vertices is called a completness of V (see [6]). By Theorem 3.10
we have that V = V (G) > V (C5) implies cq(G) = c(V) + 1.

Remark. It follows from Theorem 3.10 and Corollary 2.4 that every n-
colourable graph (n ≥ 3) belongs into V (Kn). However, the converse state-
ment is not true. The graphs in Figure 5a are 3-colourable but their identi-
fication in Figure 5b is not 3-colourable.
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4. The Lattice of Varieties Closed under the Operators I, F , Γ

In this section, by a variety we mean a variety of graphs closed under iso-
morphic images, cliques, circuits and subgraph identifications.
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Theorem 4.1. For any set K of graphs

V (K) = IΓFΓ(K).

Proof. It is obvious that II = I, ΓI = IΓ and ΓΓ = Γ. Therefore

I(IΓFΓ(K)) = IΓFΓ(K) and Γ(IΓFΓ(K)) = IΓFΓ(K).

Now, it suffices to show that

F (IΓFΓ(K)) ⊆ IΓFΓ(K).

A clique Kn of a subgraph identification G1 ∪f G2 (of a graph G1 with G2

under f) is a clique of G1, or Kn is isomorphic with a clique of G2. Hence

Kn ∈ F (IΓFΓ(K)) =⇒ Kn ∈ IΓFΓ(K)

for any complete graph Kn, n ≥ 1.

From Theorems 3.10 and 3.11 it follows that

1. IScΓ(K) contains all circuits and hence also IFΓ(K) contains all circuits
if there exists a graph G ∈ K containing a circuit of an odd length.

2. IScΓ(K) and hence also IFΓ(K) contains all circuits of even length but
no circuit of odd length if there exists a graph G ∈ K containing a circuit
of even length but no graph from K contains a circuit of odd length.

3. IScΓ(K) and hence also IFΓ(K) contains no circuit if any graph from
K contains no circuit.

This gives

Cn ∈ F (IΓFΓ(K)) =⇒ Cn ∈ IΓFΓ(K)

for any circuit Cn of length n ≥ 3.

Corollary 4.2. If a set K of graphs contains no disconnected graph, then

the variety V (K) contains no disconnected graph, too.

It is obvious that V (K1) ⊆ V for every non-empty variety V.

By Lc(I, F,Γ) we will denote the lattice of all non-empty varieties of
connected graphs closed under the operators I, F,Γ and by L(I, F,Γ) we
will denote the lattice of all non-empty varieties of graphs closed under the
operators I, F,Γ.
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Theorem 4.3. The lattice Lc(I, F,Γ) is isomorphic with the direct product

of 2-element lattice and the lattice 2⊕Bω, where ⊕ denotes the ordinal sum

and Bω is a Boolean lattice isomorphic with the lattice of all subset of the

set N (of all natural numbers).
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Proof. One can check that cl(K) = cl(V (K)) for any set K of graphs.
If any complete graph Kn, n > 2, belongs to a class K (of graphs), then
V (K) contains an odd circuit and therefore V (K) contains all circuits. Each
variety of graphs is (by Corollary 2.4) uniquely determined by its system of
circuits and complete graphs. Let K1 and K2 be any set of complete graphs
of order at least 3. It is easy to see that

(a) V (K1)∨ V (K2) = V (K1 ∪K2) and V (K1)∧ V (K2) = V (K1 ∩K2),

where V (∅) = V (C5) is the least variety containing all circuits.
Let P(M) be the Boolean lattice of all subsets of the set M =

{3, 4, 5, . . .} all integers n ≥ 3. For each subset A ⊆ M we denote KA

the set of complete graphs given by

Kn ∈ KA ⇐⇒ n ∈ A.

The mapping f : P (M) → Lc(I, F,Γ) given by f(A) = V (KA) is the
monomorphism (the embeding) of the Boolean lattice P(M) to Lc(I, F,Γ)
(it is easy that A 6= B implies V (KA) 6= V (KB)). Denote f(P (M)) = Bω.

The variety V (C4) is an atom of Lc(I, F,Γ) and the variety V (C5) covers
the variety V (C4) (similarly as in the lattice Lc(I, S,Γ)). The atom V (K2)
is noncomparable with every variety from Bω ∪ {V (C4), V (C5)}. Moreover,
(by Corollary 2.4) we get that V (K2) ∨ W covers W for each variety from
Bω ∪ {V (C4), V (C5)}. If W1 and W2 are different varieties noncomparable
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with V (K2), then W1∨V (K2) and W2∨V (K2) are different too. The mapping
ϕ given by

[0,V] 7→ V and [1,V] 7→ V(K2) ∨ V

is the isomorphism of the direct product of the 2-element lattice with uni-
verse {0,1} and the lattice 2 ⊕ Bω onto the lattice Lc(I, F,Γ) The proof is
complete.

Corollary 4.4. The lattice Lc(I, F,Γ) is distributive.

By Theorem 4.1 and Corollary 4.2 the lattice Lc(I, F,Γ) is a sublattice of
the lattice L(I, F,Γ) of all varieties of graphs closed under the operators
I, F,Γ. However, the lattice L(I, F,Γ) is not distributive. Denote by K̃n the
n-vertex graph without edges complementary to Kn. The varieties

V1 = V (K̃4), V2 = V (K̃5) and V3 = V (K̃6)

generate a non-distributive sublattice of the lattice L(I, F,Γ). The graph K̃9

belongs to the varieties V1∨V2 and V1∨V3 (we can get it by gluing K̃5 with
K̃5 and K̃4 with K̃6, respectively) but it does not belong to V1 ∨ (V2 ∧V3),
since the least non-trivial element in V2 ∧ V3 is K̃21.
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