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Abstract

In this paper, we prove the following sufficient condition for the
existence of k-kernels in digraphs: Let D be a digraph whose asym-
metrical part is strongly conneted and such that every directed triangle
has at least two symmetrical arcs. If every directed cycle γ of D with
`(γ) 6≡ 0(mod k), k ≥ 2 satisfies at least one of the following proper-
ties: (a) γ has two symmetrical arcs, (b) γ has four short chords.
Then D has a k-kernel.

This result generalizes some previous results on the existence of
kernels and k-kernels in digraphs. In particular, it generalizes the
following Theorem of M. Kwaśnik [5]: Let D be a strongly connected

digraph, if every directed cycle of D has length ≡ 0(mod k), k ≥ 2.
Then D has a k-kernel.
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1. Introduction

The concept of k-kernel of a digraph was introduced by Kwaśnik in [5, 6]
who also obtained an interesting theorem about the existence of k-kernels
in a strongly connected digraph, which is a generalization of Richardson’s
Theorem: Let D be a strongly connected digraph, if every directed cycle of
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D has length ≡ 0(mod k), k ≥ 2. Then D has a k-kernel. In this paper, we
present a generalization of the result of Kwaśnik. For general concepts we
refer the reader to [1]. Let D be a digraph. V (D) and A(D) will denote
the sets of vertices and arcs of D, respectively. An arc (u1, u2) ∈ A(D) is
called asymmetrical (resp. symmetrical) if (u2, u1) 6∈ A(D) (resp. (u2, u1) ∈
A(D)). The asymmetrical part of D (resp. symmetrical part of D) which is
denoted Asym(D) (resp. sym(D)) is the spanning subdigraph of D whose
arcs are the asymmetrical (resp. symmetrical) arcs of D.

A directed walk of D is a sequence of vertices of D T = [z0, z1, . . . , zn]
such that (zi, zi+1) ∈ A(D), for 0 ≤ i ≤ n− 1. A directed path T of D from
z0 to zn is a sequence of distinct vertices T = [z0, z1, . . . , zn] belonging to
V (D) such that (zi, zi+1) ∈ A(D) for i = 1, 2, . . . , n− 1. The length of T we
shall denote by `(T ) is n. For convenience we shall mean T as a subdigraph
of D. For zi, zj ∈ V (T ) we denote by [zi, T, zj ] the directed walk from u to
v contained in T . A chord of the directed walk T is an arc of D of the form
(zi, zj) where j 6= i + 1 and {zi, zj} ⊆ {z0, z1, . . . , zn}, and a short chord of
T is an arc of the form (i, i+2) with 0 ≤ i ≤ n−2. By the directed distance
dD(x, y) from the vertex x to vertex y in a digraph D we mean the length
of the shortest directed path from x to y in D. A directed cycle of D is
a sequence of vertices belonging to V (D), C = [z0, z1, . . . , zn, z0] such that
zi 6= zj , for i 6= j and (zi, zi+1) ∈ A(D), for 0 ≤ i ≤ n (notation modulo
n). A chord of the directed cycle C is an arc of D of the form (zi, zj) with
j 6= i + 1 (modulo n). The chord is short when j = i + 2 (modulo n).

The union of two digraphs D and H is denoted D ∪ H and defined as
follows: V (D∪H) = V (D)∪V (H) and A(D∪H) = A(D)∪A(H). Finally,
we will write D1 ⊆ D2 when V (D1) ⊆ V (D2) and A(D1) ⊆ A(D2).

Definition 1.1 [5]. Let k be a natural number with k ≥ 2. A set J ⊆ V (D)
will be called a k-kernel of the digraph D iff:

1) For each x, x′ ∈ J , x 6= x′ we have dD(x, x′) ≥ k and

2) For each y ∈ V (D)− J , there exists x ∈ J such that dD(y, x) ≤ k − 1.

Notice that for k = 2 we have a kernel in the sense of Berge [1].

2. A Sufficient Condition for the Existence of k-Kernels

in Digraphs

The main result of this paper is Theorem 2.1, to prove it we need the fol-
lowing Lemma.
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Lemma 2.1. Let D be a digraph, u, v, w ∈ V (D), T1 a directed path from

u to v, T2 a vw-directed path of length at most 1 (possible v = w), T3 a

wu-directed path, and denote by γ = T1∪T2∪T3. If `(γ) 6≡ 0(mod k), k ≥ 2,
then there exists a directed cycle C contained in γ with `(C) 6≡ 0(mod k) and

vertices u′, v′, w′ ∈ V (C) such that [u′, C, v′] is a subpath of T1, [v′, C, w′] is

a subpath of T2 and [w′, C, u′] is a subpath of T3. (possibly `(T2) = 0 and

possibly `[v′, C, w′] = 0).

Proof. We proceed by induction on `(γ).

If `(γ) = 2, clearly γ is a directed cycle with the required properties.
Suppose the result is valid for γ ′ with the properties of Lemma 2.1 such that
`(γ′) < n and let γ = T1 ∪ T2 ∪ T3 with `(γ) = n.

If V (T1)∩V (T3) = {u}, then v 6= w, γ is a directed cycle and the result
follows.

If V (T1) ∩ V (T3) 6= {u}, we take z the first vertex of T1 different of u

which is in T3.

Since `(γ) 6≡ 0(mod k) we have that at least one of the following asser-
tions holds:

(a) ` ([u, T1, z] ∪ [z, T3, u]) 6≡ 0(mod k)

(b) ` ([z, T1, v] ∪ T2 ∪ [w, T3, z]) 6≡ 0(mod k).

If (a) holds, we take γ ′ = [u, T1, z] ∪ [z, T3, u], u′ = u, v′ = w′ = z, clearly
`(γ′) < n; and by the inductive hypothesis on γ ′ we have that there exists a
directed cycle C contained in γ ′ and hence in γ with the required properties.

When (b) holds, we take γ ′ = [z, T1, v] ∪ T2 ∪ [w, T3, z], u′ = z, v′ = v,
w′ = w; clearly `(γ ′) < n; and by the inductive hypothesis of γ ′ we have
that there exists a directed cycle C contained in γ ′ and hence in γ with the
required properties.

Theorem 2.1. Let D be a digraph such that Asym(D) is strongly connected

and each directed cycle of length 3 has at least two symmetrical arcs. If for

every directed cycle γ of D with `(γ) 6≡ 0(mod k) either (a) or (b) is satisfied

where:

(a) γ has two symmetrical arcs,

(b) γ has four short chords,

then D has a k-kernel (k ≥ 2).

Proof. Let m0 ∈ V (D) be any vertex, and for each 0 ≤ i < k let Ni ⊆ V (D)
be defined as follows:
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Ni = {z ∈ V (D) | the shortest directed path from m0 to z contained in
Asym(D) has length ≡ i(mod k)}.

(1) Clearly Ni ∩ Nj = ∅ for i 6= j, 0 ≤ i, j < k and

(2)
k−1
⋃

i=0

Ni = V (D).

This follows directly from the fact Asym(D) is strongly connected. More-
over, we shall prove that:

(3) Every arc of D with initial endpoint in Ni has terminal endpoint in
Ni+1 (notation modulo k).

Let (x, y) be an arc with initial endpoint in Ni, and take: a shortest directed
path Tx from m0 to x contained in Asym(D), a shortest directed path Ty

from m0 to y contained in Asym(D) and a shortest directed path T from
y to m0 contained in Asym(D): It should be noted that such paths exist
because Asym(D) is strongly connected.

(3.1) `(Tx) ≡ i(mod k).

This follows from the definition of Ni and the fact that x ∈ Ni.

(3.2) Tx has no short chord in D.

Since Tx is the shortest directed path from m0 to x contained in Asym(D),
we have that Tx has no short chord contained in Asym(D). Let Tx = [m0 =
z0, z1, . . . , zn = x]. If (zi, zi+2), 0 ≤ i ≤ n − 2 is a symmetrical short chord
of Tx, we have that [zi, zi+1, zi+2, zi] is a directed triangle with at most one
symmetrical arc (because {(zi, zi+1), (zi+1, zi+2)} ⊆ A(Tx) ⊆ A (Asym(D)),
contradicting the assumption of Theorem 2.1. We conclude that Tx has no
short chord in D. Similarly it can be proved the following two assertions:

(3.3) Ty has no short chord in D.

(3.4) T has no short chord in D.

Now we will analyze the two possible subcases:

Case 1. y ∈ Tx.

Here we will analyse the several possible subcases:

Case 1.a ` ([m0, Tx, y] ∪ T ) 6≡ 0(mod k).

In this case it follows from Lemma 2.1 (taking u = m0, v = w = y = zi,
T1 = [m0, Tx, y] T2 = [v = w = y = zi] and T3 = T ), that there exists
a directed cycle C contained in [m0, Tx, y] ∪ T with `(C) 6≡ 0(mod k) and
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vertices u′, v′, w′ such that [u′, C, v′] is a subpath of [mo, TX , y], v′ = w′

because u = v, and (v′ = w′, C, u′) is a subpath of T . And we have:

(1.a.1) C ⊆ Asym(D).

This follows from the facts C ⊆ [m0, Tx, y] ∪ T ⊆ Tx ∪ T ⊆ Asym(D).

(1.a.2) [u′, C, v′] has no short chord.

It is a consequence of (3.2) and the fact that [u′, C, v′] is a subpath of
[m0, Tx, y] which is a subpath of Tx.

Similarly:

(1.a.3) [v′, C, u′] has no short chord.

Since `(C) 6≡ 0(mod k), it follows from (1.a.1) and the assumption of
Theorem 2.1 that C has four short chords. Let

C =
[

u′ = z0, z1, . . . , zi−1, zi = v′, zi+1, . . . , zn, z0

]

;

we have from (1.a.2) and (1.a.3) that the only possible short chords of C are
(zi−1, zi+1) and (zn, z1), contradicting the hypothesis of Theorem 2.1.

Case 1.b ` ([y, Tx, x] ∪ [x, y]) 6≡ 0(mod k).

In this case we have the directed cycle

C = [y, Tx, x] ∪ [x, y] = [y = w0, w1, . . . , wn = x,w0]

with `(C) 6≡ 0(mod k). Since [y, Tx, x] is a subpath of Tx and Tx ⊆ Asym(D),
we have that the only possible symmetrical arc of C is (x, y). Hence it follows
from the assumption of Theorem 2.1 that C has four short chords. But it
follows from (3.2) and the fact that [y, Tx, x] is a subpath of Tx that the only
possible short chords of C are: (wn−1, w0) and (wn, w1), contradicting the
assumption of Theorem 2.1. So the only possible case is:

Case 1.c ` ([m0, Tx, y] ∪ T ) ≡ 0(mod k) and ` ([y, Tx, x] ∪ [x, y]) ≡ 0
(mod k). In this case we have that:

` ([m0, Tx, y] ∪ T ) + ` ([y, Tx, x] ∪ [x, y]) ≡ 0(mod k)

(i.e.) ` (Tx ∪ [x, y] ∪ T ) ≡ 0(mod k).

Hence ` (Tx ∪ [x, y] ∪ T ) ≡ ` ([m0, Tx, y] ∪ T ) (mod k) and it follows that
` (Tx ∪ [x, y]) ≡ ([m0, Tx, y]) (mod k). Then

` ([m0, Tx, y]) ≡ `(Tx) + 1 (modk)
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and we have from (3.1) that ` ([m0, Tx, y]) ≡ i+1 mod k. Finally, notice that
since Tx is the shortest directed path from m0 to x contained in Asym(D)
and [m0, Tx, y] is a subpath of Tx we have that [m0, Tx, y] is a shortest
directed path from m0 to y contained in Asym(D). We conclude from the
definition of Ni+1 that y ∈ Ni+1.

Case 2. y 6∈ Tx.

In this case we will prove that `(Ty) ≡ i + 1(mod k). Again we will analyze
several possible cases:

Case 2.a `(Ty ∪ T ) 6≡ 0(mod k).

It this case it follows from Lemma 2.1 (Taking u = m0, v = w = y, T1 =
Ty, T2 = (v = w = y) and T3 = T ) that there exists a directed cycle C
of length `(C) 6≡ 0 (mod k), u′, v′ = w′ ∈ V (C) such that [u′, C, v′] is a
subpath of Ty and [v′, C, u′] is a subpath of T . Since Ty ⊆ Asym(D) and
T ⊆ Asym(D), we have that C ⊆ Asym(D). Hence it follows from the
assumption of Theorem 2.1 that C has four short chords. But it follows
from (3.3), (3.4) and by the facts:

[u′, C, v′] is a subpath of Ty and [v′, C, u′] is a subpath of T that if C =
[u′ = z0, z1, . . . , zi−1, zi = v′, zi+1, . . . , zn, z0], then the only possible short
chords of C are (zi−1, zi+1) and (zn, z1), contradicting the hypothesis of
Theorem 2.1.

Case 2.b ` (Tx ∪ [x, y] ∪ T ) 6≡ 0 (mod k).

It follows from Lemma 2.1 (Taking u = m0, v = x,w = y, T1 = Tx,
T2 = (x, y) and T3 = T ) that there exists a directed cycle C of length
`(C) 6≡ 0(mod k) u′, v′, w′ ∈ V (C) such that [u′, C, v′] is a subpath of
Tx, [v′, C, w′] is a subpath of [x, y] (possibly v′ = w′) and [w′, C, u′] is
a subpath of T3. Since Tx ⊆ Asym(D) and T ⊆ Asym(D), we have
that the only possible symmetrical arc of C is (x, y). Hence it follows
from the assumption of Theorem 2.1 that C has four short chords. How-
ever; if C = [u′ = z0, z1, . . . , zi−1, zi = v′, zi+1 = w′, zi+2, . . . , zn, z0], then
it follows from (3.2), (3.4) and by the facts: [u′, C, v′] is a subpath of
Tx, [w′, C, u′] is a subpath of T , that the only possible short chords of
C are (zi−1, zi+1), (zi, zi+2) and (zn, z1), contradicting the assumption of
Theorem 2.1.

We conclude from cases 2.a and 2.b that:

Case 2.c `(Ty ∪ T ) ≡ 0(mod k) and ` (Tx ∪ [x, y] ∪ T ) ≡ 0(mod k).

Hence

`(Ty ∪ T ) ≡ `(Tx ∪ [x, y] ∪ T ) (mod k)
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so
`(Ty) ≡ ` (Tx ∪ [x, y]) ≡ `(Tx) + 1 (mod k)

and since `(Tx) ≡ i(mod k) we have `(Ty) ≡ i + 1(mod k) and we conclude
y ∈ Ni+1. Clearly it follows from (1), (2) and (3) that each Ni (0 ≤ i ≤ k−1)
is a k-kernel of D, and Theorem 2.1 is proved.

Remark 2.1. The assumption Each directed triangle has at least two sym-

metrical arcs is not needed for k 6= 3 (For k 6= 3, we have 3 6≡ 0(mod k) and
it follows from the other assumption that any directed cycle of length 3 has
at least two symmetrical arcs). So we can state the following

Theorem 2.2. Let D be a digraph such that Asym(D) is strongly connected.

If every directed cycle γ of D with `(γ) 6≡ 0(mod k), k ≥ 2, k 6= 3 either (a)
or (b) is satisfied where:

(a) γ has two symmetrical arcs,

(b) γ has four short chords,

then D has a k-kernel (k ≥ 2, k 6= 3).

Remark 2.2. For n = 2 P. Duchet [2] has proved that if every directed
cycle of odd length has at least two symmetrical arcs, then D has a kernel
(2-kernel). Here the assumption that Asym(D) is strongly connected is
not necessary but for k ≥ 3 we need the hypothesis Asym(D) is strongly
connected, as we can see in the following remark.

Remark 2.3 [4]. The hypothesis Asym(D) is strongly connected in Theo-
rem 2.1 and Theorem 2.2 cannot be changed by Asym(D) is connected (for
k ≥ 3). For k ≥ 3 consider the digraph Hk defined in [4] as follows:

V (Hk) = {0, 1, 2, . . . , k2 + k + 1},

A(Hk) = {(i, i + 1) i ∈ {0, 1, . . . , k2 + k} ∪ (k2 + k + 1, 0)}

∪ {(ik + 2, ik + 1), i ∈ {1, 2, . . . , k} .

And Dk is also defined in [4] as follows: For each i ∈ V (Hk), let T k
i an

iz-directed path of length k such that T k
i ∩ T k

j = {z} T k
i ∩ Hk = {i} and

let Dk = Hk ∪
k2+k+1

⋃

i=0

T k
i . It is easy to see that: Dk does not have a k-

kernel, Asym(D) is a connected digraph and each directed cycle of length
6≡ 0(mod k) has at least two symmetrical arcs.



204 H. Galeana-Sánchez and H.A. Rincón-Mej́ıa

Remark 2.4. For k = 2 P. Duchet [3] has proved the following result: Let

D be a digraph, if each directed triangle is symmetrical and each directed

cycle of odd length has two short chords, then D has a kernel (2-kernel). He

also conjectured: If each odd directed cycle has two short chords, then D has

a kernel (2-kernel). This question can be generalized as follows:

Question 2.1. If each directed cycle of length 6≡ 0(mod k) has two short

chords, then D has a k-kernel.

Finally, we show some consequences of Theorem 2.1.

Corollary 2.1 [P. Duchet [2]]. Let D be a digraph. If every odd directed

cycle in D has at least two symmetrical arcs, then D has a kernel.

Corollary 2.2 [H. Galeana [4]]. Let D be a digraph such that Asym(D) is

strongly connected. If every directed cycle of length 6≡ 0(mod k) has at least

two symmetrical arcs, then D has a k-kernel.

Corollary 2.3 [M. Kwaśnik [5]]. Let D be a strongly connected digraph.

If every directed cycle of D has length ≡ 0(mod k), k ≥ 2, then D has a

k-kernel.
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