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Abstract

In this paper, we prove the following sufficient condition for the
existence of k-kernels in digraphs: Let D be a digraph whose asym-
metrical part is strongly conneted and such that every directed triangle
has at least two symmetrical arcs. If every directed cycle v of D with
0(y) # 0(mod k), k > 2 satisfies at least one of the following proper-
ties: (a) ~ has two symmetrical arcs, (b) + has four short chords.
Then D has a k-kernel.

This result generalizes some previous results on the existence of
kernels and k-kernels in digraphs. In particular, it generalizes the
following Theorem of M. Kwasnik [5]: Let D be a strongly connected
digraph, if every directed cycle of D has length = 0(modk), k > 2.
Then D has a k-kernel.
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1. INTRODUCTION

The concept of k-kernel of a digraph was introduced by Kwasnik in [5, 6]
who also obtained an interesting theorem about the existence of k-kernels
in a strongly connected digraph, which is a generalization of Richardson’s
Theorem: Let D be a strongly connected digraph, if every directed cycle of
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D has length = 0(modk), k > 2. Then D has a k-kernel. In this paper, we
present a generalization of the result of Kwasnik. For general concepts we
refer the reader to [1]. Let D be a digraph. V(D) and A(D) will denote
the sets of vertices and arcs of D, respectively. An arc (uj,uz) € A(D) is
called asymmetrical (vesp. symmetrical) if (ug,u1) & A(D) (resp. (ug,ui) €
A(D)). The asymmetrical part of D (resp. symmetrical part of D) which is
denoted Asym(D) (resp. sym(D)) is the spanning subdigraph of D whose
arcs are the asymmetrical (resp. symmetrical) arcs of D.

A directed walk of D is a sequence of vertices of D T = [z¢, 21, . . ., 2n]
such that (z;, zi11) € A(D), for 0 <i <n—1. A directed path T of D from
2o to zy, is a sequence of distinct vertices T' = [z, 21, ..., 2,] belonging to
V(D) such that (z;, z;11) € A(D) fori =1,2,...,n—1. The length of T we
shall denote by ¢(7T") is n. For convenience we shall mean 7" as a subdigraph
of D. For z;,z; € V(T) we denote by [z;,T), z;] the directed walk from u to
v contained in 7. A chord of the directed walk 7" is an arc of D of the form
(zi,2j) where j # i+ 1 and {z,2;} C {20, 21,..., %}, and a short chord of
T is an arc of the form (¢,7+2) with 0 < i < n—2. By the directed distance
dp(x,y) from the vertex x to vertex y in a digraph D we mean the length
of the shortest directed path from x to y in D. A directed cycle of D is
a sequence of vertices belonging to V (D), C = [zg, 21, ..., 2n, 20] such that
2 # zj, for i # j and (2, 2i41) € A(D), for 0 < i < n (notation modulo
n). A chord of the directed cycle C is an arc of D of the form (z;, z;) with
j # i+ 1 (modulo n). The chord is short when j =i + 2 (modulo n).

The union of two digraphs D and H is denoted D U H and defined as
follows: V(DUH)=V(D)UV(H) and A(DUH) = A(D)U A(H). Finally,
we will write D1 C Dy when V(D;) C V(D3) and A(Dy) C A(D2).

Definition 1.1 [5]. Let k be a natural number with & > 2. A set J C V(D)
will be called a k-kernel of the digraph D iff:

1) For each z,2’ € J, x # 2/ we have dp(z,2’) > k and
2) For each y € V(D) — J, there exists z € J such that dp(y,z) < k—1.

Notice that for k = 2 we have a kernel in the sense of Berge [1].

2. A SUFFICIENT CONDITION FOR THE EXISTENCE OF k-KERNELS
IN DIGRAPHS

The main result of this paper is Theorem 2.1, to prove it we need the fol-
lowing Lemma.
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Lemma 2.1. Let D be a digraph, u,v,w € V(D), Ty a directed path from
u to v, Ty a vw-directed path of length at most 1 (possible v = w), T3 a
wu-directed path, and denote by v =Ty UToUTs. IfU(7y) # 0(mod k), k > 2,
then there exists a directed cycle C contained in v with £(C) # 0(mod k) and
vertices u',v',w' € V(C) such that [u',C,v'] is a subpath of Ty, [v',C,w'] is
a subpath of Ty and [w',C,u'] is a subpath of Ts. (possibly ¢(Tz) = 0 and
possibly L[v',C,w'] = 0).

Proof. We proceed by induction on £(7).

If /() = 2, clearly ~ is a directed cycle with the required properties.
Suppose the result is valid for 7/ with the properties of Lemma 2.1 such that
0(v") < nandlet v =T UTs UTs with £(y) = n.

If V(T1) NV (T3) = {u}, then v # w, v is a directed cycle and the result
follows.

If V(Th) N V(T3) # {u}, we take z the first vertex of T different of u
which is in T3.

Since £(y) # 0(mod k) we have that at least one of the following asser-
tions holds:

(a) £([u,T1,z] Uz, T3,u]) # 0(mod k)
(b) £([z,T1,v] UTy U [w, T3, z]) #Z 0(mod k).
If (a) holds, we take v = [u, Ty, 2] U [2,T5,u], v = u, v = w' = z, clearly
£(%') < n; and by the inductive hypothesis on 7" we have that there exists a
directed cycle C contained in 4" and hence in v with the required properties.
When (b) holds, we take v = [z, Ty, 0] UTe U [w, T3, 2], ' = z, v = v,
w' = w; clearly £(7') < n; and by the inductive hypothesis of v/ we have
that there exists a directed cycle C contained in " and hence in v with the
required properties. ]

Theorem 2.1. Let D be a digraph such that Asym(D) is strongly connected
and each directed cycle of length 3 has at least two symmetrical arcs. If for
every directed cycle v of D with £(vy) # 0(modk) either (a) or (b) is satisfied
where:

(a) v has two symmetrical arcs,

(b) 7 has four short chords,

then D has a k-kernel (k > 2).

Proof.Let my € V(D) be any vertex, and for each 0 < i < klet N; C V(D)
be defined as follows:



200 H. GALEANA-SANCHEZ AND H.A. RINCON-MEJIA

N; = {z € V(D)| the shortest directed path from mg to z contained in
Asym(D) has length = i(mod k)}.

(1) Clearly N;AN; =0 for i # 5,0 <14,j < k and

k—1
(2) U Ni= V(D).
1=
This follows directly from the fact Asym(D) is strongly connected. More-
over, we shall prove that:

(3) Every arc of D with initial endpoint in NN; has terminal endpoint in
Nit1 (notation modulo k).

Let (x,y) be an arc with initial endpoint in N;, and take: a shortest directed
path T, from mg to = contained in Asym(D), a shortest directed path T},
from mg to y contained in Asym(D) and a shortest directed path T' from
y to mg contained in Asym(D): It should be noted that such paths exist
because Asym(D) is strongly connected.

(3.1) (T,) = i(mod k).
This follows from the definition of NV; and the fact that z € N;,.

(3.2) T, has no short chord in D.

Since T} is the shortest directed path from mg to x contained in Asym(D),
we have that T} has no short chord contained in Asym(D). Let T,, = [mg =
20521y - -5 2n = ). If (24, 2i42), 0 <i<n—2isasymmetrical short chord
of Ty, we have that [z;, zj1+1, 2i+2, ] is a directed triangle with at most one
symmetrical arc (because {(z;, zi+1), (zi+1, ziv2)} € A(Ty) C A(Asym(D)),
contradicting the assumption of Theorem 2.1. We conclude that 7). has no
short chord in D. Similarly it can be proved the following two assertions:

(3.3) Ty, has no short chord in D.
(3.4) T has no short chord in D.

Now we will analyze the two possible subcases:

Case 1. y € T,.
Here we will analyse the several possible subcases:

Case 1.a £ ([mo, Ty, y] UT) # 0(mod k).
In this case it follows from Lemma 2.1 (taking u = mg, v = w = y = z;,
T = [mo,To,y] To = [v = w =y = z] and T35 = T), that there exists
a directed cycle C contained in [mg,T,,y] UT with ¢(C) # 0(mod k) and
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vertices u’,v';w’ such that [u/,C,v'] is a subpath of [m,, Tx,y], v/ = v’

because u = v, and (v' = w’,C,u’) is a subpath of T. And we have:
(L.a.l) C C Asym(D).
This follows from the facts C C [mo,T,,y|UT C T, UT C Asym(D).
(l.a.2) [u/,C,?'] has no short chord.
It is a consequence of (3.2) and the fact that [u/,C,v'] is a subpath of
[mo, Ty, y] which is a subpath of T}.
Similarly:
(1.a.3) [v',C, 4] has no short chord.
Since ¢(C) # O(modk), it follows from (l.a.1) and the assumption of
Theorem 2.1 that C has four short chords. Let

C= [ul =20, By ey Zio1, % = 'U/,ZZ'+1,... ,zn,zo] ;
we have from (1.a.2) and (1.a.3) that the only possible short chords of C are
(zi—1, zi+1) and (zy, 21), contradicting the hypothesis of Theorem 2.1.
Case 1.b £ ([y, Ty, x] U [z,y]) # 0(mod k).
In this case we have the directed cycle

C: [y7Txaw]U[xay] = [y:wo,wl,...,wn:x,wo]

with £(C) # 0(mod k). Since [y, T, z] is a subpath of T, and T,, C Asym(D),
we have that the only possible symmetrical arc of C is (z,y). Hence it follows
from the assumption of Theorem 2.1 that C has four short chords. But it
follows from (3.2) and the fact that [y, T, x] is a subpath of T, that the only
possible short chords of C are: (w,—1,wp) and (wy,w;), contradicting the
assumption of Theorem 2.1. So the only possible case is:

Case l.c £([mo,T,,yl]UT) = O(modk) and ¢([y, T, z]Uz,y]) = 0
(mod k). In this case we have that:

€([mo, Tp, y] UT) + ([, T, 2] U [, y]) = O(mod k)

(ie.) £(TpU[z,y]UT) = 0(modk).

Hence ¢ (T, Uz,y|UT) = €([mo, Ty, y]UT) (modk) and it follows that
(T, Uz, y]) = (Imo, T, y]) (mod k). Then

¢ ([mOmiay]) = E(Tm) +1 (mOd k)
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and we have from (3.1) that ¢ ([mg, T,,y]) = i+1 mod k. Finally, notice that
since T}, is the shortest directed path from mg to x contained in Asym(D)
and [mo, Ty, y| is a subpath of T, we have that [mg,T,,y] is a shortest
directed path from mg to y contained in Asym(D). We conclude from the
definition of N;;1 that y € N;i1.

Case 2. y ¢ T,.
In this case we will prove that ¢(T}) =i+ 1(mod k). Again we will analyze
several possible cases:

Case 2.a ¢(T, UT) # 0(mod k).
It this case it follows from Lemma 2.1 (Taking v = mg,v = w =y, T} =
Ty, To = (v = w = y) and T3 = T) that there exists a directed cycle C
of length ¢(C) # 0 (modk), v/, v = w' € V(C) such that [u/,C,v'] is a
subpath of T, and [v/,C,v] is a subpath of T. Since T,, C Asym(D) and
T C Asym(D), we have that C C Asym(D). Hence it follows from the
assumption of Theorem 2.1 that C has four short chords. But it follows
from (3.3), (3.4) and by the facts:

[u/,C,v'] is a subpath of T}, and [v/,C,u/] is a subpath of T' that if C =
W = 20,21,...,2i-1,2 = V', 2i+1,---,2n, 20], then the only possible short
chords of C are (zj—1,2+1) and (zn,21), contradicting the hypothesis of
Theorem 2.1.

Case 2.b £ (T, U [z,y] UT) # 0 (mod k).
It follows from Lemma 2.1 (Taking u = mg,v = z,w = y, T = Ty,
Ty = (z,y) and T3 = T) that there exists a directed cycle C of length
(C) # O(modk) u',v',w" € V(C) such that [u/,C,v] is a subpath of
T, [v/,C,w'] is a subpath of [z,y] (possibly v/ = w') and [w',C,u/] is
a subpath of T5. Since T, C Asym(D) and T C Asym(D), we have
that the only possible symmetrical arc of C is (z,y). Hence it follows
from the assumption of Theorem 2.1 that C has four short chords. How-
ever; if C = [u/ = 20,21,...,2i-1,2 = V,zi41 = W, ziy2,..., 2n, 20|, then
it follows from (3.2), (3.4) and by the facts: [u’,C,v'] is a subpath of
Ty, [w',C,u'] is a subpath of T, that the only possible short chords of
C are (zj-1,%i+1), (zi, zit2) and (zy,21), contradicting the assumption of
Theorem 2.1.

We conclude from cases 2.a and 2.b that:

Case 2.c £(T, UT) = 0(mod k) and ¢ (T, U [z,y] UT) = 0(mod k).
Hence

T, uT)=4(T, U [z,y] UT) (mod k)



A SUFFICIENT CONDITION FOR THE EXISTENCE OF ... 203

SO

UT,)) =0T, Uz, y]) =(T;) + 1 (mod k)

and since ¢(T,) = i(mod k) we have ¢(T,) = i + 1(mod k) and we conclude
y € N;41. Clearly it follows from (1), (2) and (3) that each N; (0 <7 < k—1)
is a k-kernel of D, and Theorem 2.1 is proved. [ |

Remark 2.1. The assumption Fach directed triangle has at least two sym-
metrical arcs is not needed for k # 3 (For k # 3, we have 3 # 0(mod k) and
it follows from the other assumption that any directed cycle of length 3 has
at least two symmetrical arcs). So we can state the following

Theorem 2.2. Let D be a digraph such that Asym(D) is strongly connected.
If every directed cycle v of D with () # 0(modk), k > 2, k # 3 either (a)
or (b) is satisfied where:

(a) v has two symmetrical arcs,
(b) 7 has four short chords,
then D has a k-kernel (k > 2,k # 3).

Remark 2.2. For n = 2 P. Duchet [2] has proved that if every directed
cycle of odd length has at least two symmetrical arcs, then D has a kernel
(2-kernel). Here the assumption that Asym(D) is strongly connected is
not necessary but for k& > 3 we need the hypothesis Asym(D) is strongly
connected, as we can see in the following remark.

Remark 2.3 [4]. The hypothesis Asym(D) is strongly connected in Theo-
rem 2.1 and Theorem 2.2 cannot be changed by Asym(D) is connected (for
k > 3). For k > 3 consider the digraph Hy, defined in [4] as follows:

V(H,) = {0,1,2,..., k> +k+1},
AH) = {(@,i4+1) ie{0,1,..., K2 +k}U(k*+k+1,0)}
U{(ik +2,ik+1), ie{1,2,...,k}.

And Dy, is also defined in [4] as follows: For each i € V(Hy), let TF an
iz-directed path of length k such that TF N Tf = {2} TFn Hy = {i} and

k2+k+1
let D, = H,U U Tf It is easy to see that: Dj does not have a k-
i=0
kernel, Asym(D) is a connected digraph and each directed cycle of length
# 0(mod k) has at least two symmetrical arcs.
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Remark 2.4. For k = 2 P. Duchet [3] has proved the following result: Let
D be a digraph, if each directed triangle is symmetrical and each directed
cycle of odd length has two short chords, then D has a kernel (2-kernel). He
also conjectured: If each odd directed cycle has two short chords, then D has
a kernel (2-kernel). This question can be generalized as follows:

Question 2.1. If each directed cycle of length #Z 0(modk) has two short
chords, then D has a k-kernel.

Finally, we show some consequences of Theorem 2.1.

Corollary 2.1 [P. Duchet [2]]. Let D be a digraph. If every odd directed
cycle in D has at least two symmetrical arcs, then D has a kernel.

Corollary 2.2 [H. Galeana [4]]. Let D be a digraph such that Asym(D) is
strongly connected. If every directed cycle of length Z 0(modk) has at least
two symmetrical arcs, then D has a k-kernel.

Corollary 2.3 [M. Kwasnik [5]]. Let D be a strongly connected digraph.
If every directed cycle of D has length = 0(modk), k > 2, then D has a
k-kernel.

Acknowledgements

We thank the anonymous referee for a thorough review that improved the
presentation.

REFERENCES

[1] C. Berge, Graphs and hypergraphs (North-Holland, Amsterdan, 1973).
[2] P. Duchet, Graphes Noyau-Porfaits, Ann. Discrete Math. 9 (1980) 93-101.

[3] P. Duchet, A sufficient condition for a digraph to be kernel-perfect, J. Graph
Theory 11 (1987) 81-85.

[4] H. Galeana-Sénchez, On the existence of kernels and k-kernels in directed
graphs, Discrete Math. 110 (1992) 251-255.

[6] M. Kwasnik, The generalization of Richardson theorem, Discussiones Math.
IV (1981) 11-14.

[6] M. Kwasnik, On (k, £)-kernels of exclusive disjunction, cartesian sum and nor-
mal product of two directed graphs, Discussiones Math. V (1982) 29-34.

Received 17 November 1997
Revised 10 March 1998


http://www.tcpdf.org

