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Abstract

The composition graph of a family of n+1 disjoint graphs {Hi : 0 ≤
i ≤ n} is the graph H obtained by substituting the n vertices of H0

respectively by the graphs H1, H2, ..., Hn. If H has some hereditary
property P , then necessarily all its factors enjoy the same property.
For some sort of graphs it is sufficient that all factors {Hi : 0 ≤ i ≤ n}
have a certain common P to endow H with this P . For instance, it
is known that the composition graph of a family of perfect graphs is
also a perfect graph (B. Bollobas, 1978), and the composition graph
of a family of comparability graphs is a comparability graph as well
(M.C. Golumbic, 1980). In this paper we show that the composition
graph of a family of co-graphs (i.e., P4-free graphs), is also a co-graph,
whereas for θ1-perfect graphs (i.e., P4-free and C4-free graphs) and
for threshold graphs (i.e., P4-free, C4-free and 2K2-free graphs), the
corresponding factors {Hi : 0 ≤ i ≤ n} have to be equipped with some
special structure.
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1. Introduction

Let H = (V,E) be a simple graph (i.e., finite, undirected, loopless and
without multiple edges). We denote : its vertex set by V = V (H), its edge
set by E = E(H). If A,B are two nonempty and disjoint subsets of V (H),
by A ∼ B we mean that ab ∈ E(H), for any a ∈ A and b ∈ B. The
neighborhood of v ∈ V is N(v) = {w : w ∈ V and vw ∈ E}. By Kn, Cn, Pn,
we shall denote the complete graph on n ≥ 1 vertices, the chordless cycle
on n > 3 vertices and the chordless path on n ≥ 3 vertices, respectively.

Let H0 = (V0, E0) be a graph with n vertices V0 = {v1, v2, ..., vn} and
let H1,H2, ...,Hn be n disjoint graphs. The composition graph H = (V,E)
will be denoted by H = H0[H1,H2, ...,Hn] and is defined as follows:

V = ∪{Vi : 1 ≤ i ≤ n},
E = ∪{Ei : 1 ≤ i ≤ n} ∪ {xy : x ∈ Vi, y ∈ Vj , vivj ∈ E0, 1 ≤ i, j ≤ n}.

This operation was introduced by Sabidussi [17], and is a generalization of
both:

(a) lexicographic product of two graphs H0 and H1, defined as:
H0[H1] = H0[H1,H1, ...,H1], (i.e., H1 = Hi, 2 ≤ i ≤ n);

and of

(b) join of a family of graphs H1,H2, ...,Hn, defined as
∗[H1,H2, ...,Hn] = Kn[H1,H2, ...,Hn].

If H = H0[H1,H2, ...,Hn] has some hereditary property (e.g., as being a
perfect graph, a chordal graph, etc.), then both the outer factor H0 and
the inner factors Hi, i = 1, ..., n, enjoy the same property, since they are
isomorphic to some subgraphs of H. Usually, the inverse problem is not so
easy to solve. Sometimes, if both H0 and H1,H2, ...,Hn have a certain com-
mon hereditary property, then their composition graph H0[H1,H2, ...,Hn]
will have the same feature. This is true for:
(a) perfectness:

– ∗[H1,H2, ...,Hn] is a perfect graph if and only if all Hi, 1 ≤ i ≤ n, are
perfect, [10];

– H0[H1] is perfect if and only if both H0 and H1 are perfect, [16];

– H0[H1,H2, ...,Hn] is perfect if and only if all Hi, 0 ≤ i ≤ n, are
perfect, [1];

(b) comparability:

– H0[H1,H2, ...,Hn] is a comparability graph if and only if each Hi,
0 ≤ i ≤ n, is a comparability graph, [9];
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(c) permutation graphs and co-graphs, which will be discussed in Section 2.

Sometimes, in spite of the fact that all the factors enjoy a common heredi-
tary property, this is not sufficient to endow their composition graph with
the same feature. In other words, H0 and H1,H2, ...,Hn have to be equipped
with some additional structure. In Section 3 we investigate additional struc-
tures of factors induced by θ1-perfectness and thresholdness.

A number of other hereditary properties of graphs are discussed in [2],
[3], [5], [12]. For an excellent survey on this subject we refer a reader to [4].

2. Composition of Permutation Graphs and Co-Graphs

Let π be a permutation of the numbers 1, 2, ..., n, and G[π] = (V,E) be the
graph defined as follows:

V = {1, 2, ..., n} and ij ∈ E ⇔ (i − j)(π−1

i − π−1

j ) < 0.

A graph G is called a permutation graph if there is a permutation π such
that G is isomorphic to G[π].

Theorem 2.1. (Pnueli, Lempel and Even, [15]) A graph G is a permutation

graph if and only if G and its complement G are comparability graphs.

Remark. If H = H0[H1,H2, ...,Hn], then H = H0[H1,H2, ...,Hn].

Now, taking into account this simple remark, the Theorem 2.1 and the above
mentioned result for comparability graphs, we obtain:

Proposition 2.2. H0[H1,H2, ...,Hn] is a permutation graph if and only if

each Hi, 0 ≤ i ≤ n, is a permutation graph.

Proof. H = H0[H1,H2, ...,Hn] is a permutation graph ⇔ H and its com-
plement are comparability graphs ⇔ each Hi, 0 ≤ i ≤ n, and its complement
are comparability graphs ⇔ each factor Hi, 0 ≤ i ≤ n, is a permutation
graph.

A graph is called a co-graph if it contains no induced subgraph isomorphic
to P4.

Proposition 2.3. The graph H0[H1,H2, ...,Hn] is a co-graph if and only if

each factor Hi, 0 ≤ i ≤ n, is a co-graph.

Proof. “if”-part is clear.
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“only if”. On the contrary, suppose that there exists a P4 in H =
H0[H1,H2, ...,Hn], spanned by the vertices a, b, c, d and having the edges
ab, bc, cd. Since none of the factors contains such a subgraph, we may have:

Case I. If there is some i, 1 ≤ i ≤ n, such that a, b ∈ V (Hi), or
b, c ∈ V (Hi), or c, d ∈ V (Hi), then the subgraph induced by {a, b, c, d}
in H contains a triangle. (See Figure 1).
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Figure 1

Case II. a, c ∈ V (Hi) and b, d ∈ V (Hj); then also ad ∈ E(H). (See
Figure 2.a.)

Case III. vivj , vjvk ∈ E(H0), b ∈ V (Hi), a, c ∈ V (Hj) and d ∈ V (Hk);
then ad ∈ E(H). (See Figure 2.b.)

Case IV. vivj , vjvk, vivk ∈ E(H0), and a, d ∈ V (Hi), b ∈ V (Hj), c ∈
V (Hk); then we get that also ac, bd ∈ E(H). (See Figure 2.c.)

In fact, as we see in the above Figures 1,2, and according to the definition
of graph composition, the subgraph spanned by {a, b, c, d} is not a P4, in
contradiction with the assumption on these vertices. Consequently, H is
also a co-graph.
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Figure 2

3. Composition of θ1-Perfect Graphs and of Threshold Graphs

The stability number of graph G is the cardinality of a stable set of maximum
size of G. If for each A ⊆ V (G), the stability number of the subgraph H
induced by A equals:

(a) the minimal number of cliques of H which cover all the edges of H,
then G is called θ1-perfect (Parthasarathy, Choudum, Ravindra, [13]);

(b) the number of maximal cliques of H, then G is said to be trivially

perfect (Golumbic, [8]).

The following theorem emphasizes the connection between these two classes
of perfect graphs.

Theorem 3.1. For a graph G, the following statements are equivalent:

(i) G is θ1-perfect;

(ii) G is trivially perfect;

(iii) G is both P4-free and C4-free.

Proof. (i) ⇔ (iii) (Parthasarathy, Choudum, Ravindra, [13]);

(ii) ⇔ (iii) (Golumbic, [8]).

In order to investigate θ1-perfectness of composition graphs, we start with
the following lemma.

Lemma 3.2. If H1 and H2 are connected graphs, then H = K2[H1,H2]
contains C4 as an induced subgraph if and only if either

(i) C4 is an induced subgraph of H1 and / or H2, or

(ii) none of H1,H2 is a complete graph.
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Proof. “if”. Suppose H has a C4 as an induced subgraph, but none of
H1,H2 contains some C4. If both H1,H2 are complete, then H itself is
a complete graph and C4-free, which is in contradiction with the above
assumption. Assume that only H1 is a complete graph. Let C4 of H
be spanned by {a, b, c, d}, with the edges ab, bc, cd, da. Then the possible
cases are:

Case 1. a ∈ V (H1) and b, c, d ∈ V (H2), or a, c ∈ V (H1) and b, d ∈
V (H2); then also ac ∈ E(H).

Case 2. a, b ∈ V (H1) and c, d ∈ V (H2), or a, b, c ∈ V (H1) and d ∈
V (H2); then ac, bd ∈ E(H).

So, the completeness of H1 or the definition of the graph composition implies
the existence of at least a chord in the subgraph of H, induced by {a, b, c, d},
thus contradicting the assumption on these vertices. Therefore, none of
H1,H2 is a complete graph.

“only if”. If a, c and b, d are non-adjacent vertices in H1,H2 respectively,
then it is easy to see that {a, b, c, d} spans a C4 in H, with the edges
ab, bc, cd, da.

Corollary 3.3. If H1,H2 are connected graphs, then K2[H1,H2] has no

C4 as an induced subgraph if and only if one of H1,H2 is complete and the

other is C4-free.

Lemma 3.4. If H1,H2,H3 are connected, then H = P3[H1,H2,H3] is

a θ1-perfect graph if and only if H2 is a complete graph and H1,H3 are

θ1-perfect.

Proof. “if”. Clearly, if H is θ1-perfect, then all Hi, i = 1, 2, 3, are θ1-
perfect. Assume that H2 contains two non-adjacent vertices a2, b2; then
for a1 ∈ V (H1) and a3 ∈ V (H3), the set {a1, a2, b2, a3} spans a C4 in H,
which is at variance with the θ1-perfectness of H. Therefore, H2 must be a
complete graph.

“only if”. By Proposition 2.3, H is a co-graph, since P3, H1,H2,H3 are,
in particular, co-graphs. Suppose now that H contains a C4 as an in-
duced subgraph. According to Corollary 3.3, it follows V (C4) ∩ V (Hi) 6= ∅,
i = 1, 2, 3, and clearly |V (C4) ∩ V (H2)| = 2. Since H2 is a complete
graph, we infer that, actually, the vertices from V (C4) span a ”diamond”
in H, (i.e., K4 without an edge), in contradiction with the assumption on
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these vertices. So, H is both P4-free and C4-free, i.e., H is θ1-perfect, by
Theorem 3.1.

For a graph H let us denote:

EndP3(H) = {v : v ∈ V (H) and v is an endpoint of a P3 in H},

MidP3(H) = {v : v ∈ V (H) and v is the midpoint of a P3 in H}.

Proposition 3.5. Let {Hi, 0 ≤ i ≤ n} be a family of connected and disjoint

graphs; then H = H0[H1,H2, ...,Hn] is θ1-perfect if and only if the following

conditions hold:

(i) all Hi, 0 ≤ i ≤ n, are θ1-perfect;

(ii) if vivj ∈ E(H0), then at least one of Hi,Hj is complete;

(iii) if vi ∈ MidP3(H0), then the corresponding factor Hi is a complete

graph.

Proof. “if”. If H is θ1-perfect, then evidently, all Hi, 0 ≤ i ≤ n, are also
θ1-perfect and, by Corollary 3.3 and Lemma 3.4, (ii) and (iii) are clearly
fulfilled.

“only if”. Since all Hi, 0 ≤ i ≤ n, are also co-graphs, by Proposition 2.3
we get that H is a co-graph, too. Suppose that the vertices a, b, c, d span
a C4 in H. Because all the factors C4-free, using again Corollary 3.3 and
Lemma 3.4, we infer that |V (C4)∩V (Hi)| ≤ 1, i.e., H0 contains a C4, which
is contradictory to the fact that H is a co-graph (i.e., P4-free). Therefore,
H is also C4 -free and, consequently, is θ1-perfect, by Theorem 3.1.

Corollary 3.6. (i) Let {Hi, 1 ≤ i ≤ n} be a family of connected and disjoint

graphs; then ∗[H1,H2, ...,Hn] is θ1-perfect if and only if all Hi, 1 ≤ i ≤ n,

are θ1-perfect and at least n − 1 of them are complete graphs.

(ii) If H0,H1 are connected, then H0[H1] is θ1-perfect if and only if H0 is

θ1-perfect and H1 is a complete graph.

A 4-graph is a graph with 4 vertices that can be labeled a, b, c, d such that
a is adjacent to b but not to c, and d is adjacent to c but not to b (i.e., either
a P4 or a C4, or a 2K2 graph) (Peled, [14]).

A graph G = (V,E) is threshold if there is a labeling a of its vertices by
non-negative integers and an integer t such that:

X is stable ⇔
∑

x∈X

a(x) ≤ t, (X ⊆ V ).
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These graphs were defined by Chvátal and Hammer in [6], and extensively
studied in the work [11] of Mahadev and Peled. Further we make use of the
following characterization of threshold graphs in terms of forbidden induced
subgraphs.

Theorem 3.7. (Chvátal and Hammer, [6]) A graph is threshold if and only

if it has no induced subgraph isomorphic to a 4-graph.

Lemma 3.8. If H1,H2,H3 are connected graphs, then P3[H1,H2,H3] is

threshold if and only if the next two conditions hold:

(i) H2 is complete,

(ii) one of H1,H3 is a K1 graph and the other is a threshold graph.

Proof. “if”. If H is a threshold graph, then all Hi, i = 1, 2, 3, are also
threshold and by Lemma 3.4, we get that H2 is a complete graph. In addi-
tion, only one of the graphs H1,H3 may contain K2 as an induced subgraph
(since H is 2K2-free), and this ensures that one of H1,H3 is a K1 graph.

“only if”. According to Lemma 3.4, H must be θ1-perfect, because
P3,H1,H2,H3 are, in particular, θ1-perfect and H2 is complete. In addi-
tion, since:
– H1 is a K1 graph, H2 is a complete graph, and H3 is 2K2-free,

– each vertex of H2 is adjacent to any vertex of both H1 and H3,
we infer that H cannot contain a 2K2 as an induced subgraph.

Therefore, H is θ1-perfect and 2K2-free. Consequently, by Theorem 3.7,
we may conclude that H is a threshold graph.

Let us denote by N3 the 3-pan or paw graph, i.e., the graph with
V (N3) = {v1, v2, v3, v4} and E(N3) = {v1v2, v2v3, v3v4, v2v4}.

Lemma 3.9. If Hi, 1 ≤ i ≤ 4, are connected graphs, then N3[H1,H2,H3,H4]
is threshold if and only if the following assertions hold:

(a) H1 is a K1 graph;

(b) H2 is complete;

(c) one of H3, H4 is a complete graph, and the other is a threshold graph.

Proof. “if”. Since v1, v2, v3 and v1, v2, v4 span two P ′

3s in the outer factor
N3, with the vertices v1, v3 and v1, v4 as endpoints, respectively, we infer,
according to Lemma 3.8, that H2 must be a complete graph and either:
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Case I. H1 is threshold (with at least an edge, say a1b1) and H3,H4 are
K1 graphs contrary to thresholdness of H, because if V (Hi) = {ai}, i = 3, 4,
then {a1, b1, a3, a4} spans a 2K2 in H; or

Case II. H1 is a K1 graph and H3, H4 are threshold, but by Corollary 3.3,
one of them must be a complete graph.

“only if”. Suppose that V (H1) = {a1}, H2 and H3 are complete graphs,
while H4 is a threshold graph. By Proposition 3.5, H is θ1-perfect. In
addition, since:

{a1} ∼ V (H2) ∼ V (H3) ∼ V (H4) ∼ V (H2)

no 2K2 is contained in H, i.e., H is a threshold graph, according to
Theorem 3.7.

Lemma 3.10. Let H0,H1,H2, ...,Hn be a family of n > 1 disjoint and

connected graphs. If H = H0[H1,H2, ...,Hn] is a threshold graph, then all

Hi, 0 ≤ i ≤ n, are threshold, and at least n − 1 of Hi, 1 ≤ i ≤ n, are

complete graphs.

Proof. All Hi, 0 ≤ i ≤ n, must be threshold, as being isomorphic to some
subgraphs of H. If H0 is complete, then Corollary 3.3 implies that at least
n − 1 of the inner factors must be also complete. If H0 is not complete,
suppose, on the contrary, that there are two non-complete threshold graphs
Hi,Hk as inner factors. Since, by Corollary 3.3, vi, vk cannot be adjacent
and, on the other hand, H0 is connected and also P4-free, there must exist
some vertex vj in H0 such that {vi, vj , vk} spans a P3 in H0. By Lemma 3.8,
one of Hi, Hk must be K1, in contradiction with the choice of Hi, Hk.

Graph G is called a split graph (Foldes and Hammer, [7]) if there exists a
partition V (G) = K ∪S of its vertex set into a clique K and a stable set S.
From the work of Golumbic [9, Chapter 6, Theorem 6.2] it follows that K
may always be chosen maximum. Foldes and Hammer [7] proved that being
a split graph is equivalent to containing no induced subgraph isomorphic to
2K2, C4 or C5. Therefore, according to Theorem 3.7, any threshold graph
is a split graph.

For a graph G let us denote:

EndPan(G)={v :v ∈ V (G), v is the pendant vertex of an induced N3 in G}.

Lemma 3.11. If G is a connected non-complete split graph, then:
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(i) V (G) = EndP3(G) ∪ MidP3(G);

(ii) MidP3(G) spans a clique in G and EndPan(G) ⊆ EndP3(G) −
MidP3(G);

(iii) the vertex set of G can be decomposed into pairwise disjoint subsets

read as V (G) = MidP3(G)∪EndPan(G)∪ (EndP3(G)− (MidP3(G)∪
EndPan(G))).

Proof. G is a split graph. Hence, there exists a partition of V (G) as
V (G) = K ∪ S, where K is a maximum clique and S is a stable set of G.
Since G is also a connected non-complete graph, EndP3(G) and MidP3(G)
are non-empty sets.

(i) If v ∈ S, then there exist u,w ∈ K, such that uv ∈ E(G) and
vw 6∈ E(G), because G is connected and K is a maximum clique. Hence,
we get that v ∈ EndP3(G). If v ∈ K and N(v) ∩ S = ∅, then for w ∈ S
and u ∈ N(w), we obtain that u, v ∈ K, i.e., v ∈ EndP3(G), because
{v, u, w} spans a P3. If v ∈ K and there is some w ∈ N(v) ∩ S, then for
u ∈ K − N(w), (such u exists, because K is a maximum clique), we get
that v is the midpoint of the P3 spanned by {w, v, u}, i.e., v ∈ MidP3(G).
Hence, V (G) = EndP3(G) ∪ MidP3(G), but this cover is not necessarily a
partition for V (G) (see, for example, graph G in Figure 3).

(ii) If x ∈ MidP3(G), then there are y, z ∈ V (G), such that {y, x, z}
spans a P3, with x as its midpoint. Hence, yz 6∈ E(G) and necessarily x ∈ K.
So, we get that MidP3(G) ⊆ K, i.e., MidP3(G) spans a clique in G.

On the contrary, suppose that there exists some x ∈ EndPan(G) ∩
MidP3(G). Then also x ∈ K and there are a, b, c ∈ V (G), such that
{x, a, b, c} spans a N3 in G, with x as its pendant vertex and xa ∈ E(G).
If a ∈ K, then at least one of b, c, say b, is contained in K and hence
xb ∈ E(G), contradicting the fact that {x, a, b, c} spans a N3 in G. If
a 6∈ K, then b, c ∈ K, and we get the same contradiction.

(iii) It follows from (i) and (ii).

c

e

db
aG :

Figure 3. EndP3(G) = {a, c, d, e}, MidP3(G) = {b, d}, EndPan(G) = {a}
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Theorem 3.12. Let H0,H1,H2, ...,Hn be a family of n > 1 disjoint and

connected graphs.Then H = H0[H1,H2, ...,Hn] is a threshold graph if and

only if one of the two following conditions holds:

(a) H0 is complete, one of Hi, 1 ≤ i ≤ n, may be any threshold graph,

while the others must be complete graphs;

(b) H0 is a non-complete threshold graph, and:

for any vj ∈ EndPan(H0), the corresponding graph Hj is K1;

for any vj ∈ MidP3(H0), the corresponding graph Hj is complete;

for any vi ∈ EndP3(H0) − (MidP3(H0) ∪ EndPan(H0)), the corresponding

graph Hi is K1, except one, which may be any threshold graph.

Proof. “if”. If H is a threshold graph, then all its factors, both outer and
inner, are also threshold graphs.

Case I. H0 is a complete graph. Then, according to Lemma 3.10, one
of the inner factors may be any threshold graph, but the others must be
complete graphs. Thus, the assertion (a) is true.

Case II. H0 is not a complete graph. By Lemma 3.11 (iii), V (H0) can
be decomposed as follows:

V (H0) = MidP3(H0) ∪ EndPan(H0) ∪ (EndP3(H0)

− (MidP3(H0) ∪ EndPan(H0))).

According to Lemma 3.8, for any vj ∈ MidP3(H0), the corresponding
graph Hj must be complete, and by Lemma 3.9, Hj is K1, for every
vj ∈ EndPan(H0). Further, Lemmas 3.8 and 3.10 imply that at most
one of the inner factors, corresponding to the vertices in EndP3(H0) −
(MidP3(H0)∪EndPan(H0)), may be any threshold graph, while the others
must be K1.

“only if”. Clearly, the conditions (a) imply that H is 4-graph-free, i.e., by
Theorem 3.7, H is a threshold graph.

Suppose that the (b)-conditions are fulfilled.

Firstly, H has no 2K2 as an induced subgraph. Assuming, on the contrary,
that such a subgraph exists in H, we distinguish the three following cases:

Case 1. 2K2 is spanned by the edges aibi, ajbj from Hi, Hj, respectively.
Now, if:

– vivj ∈ E(H0), then, {ai, bi, aj , bj} spans a K4 in H instead of 2K2, which
brings a contradiction to our assumption;
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– vi, vj are not adjacent in H0, then there exists a vertex vk in H0, such
that the vertices vi, vk, vj span a P3 in H0, (since H0 is a connected and
P4-free graph). Hence, by Lemma 3.11 (ii), {vi, vk, vj} 6⊂ MidP3(H0) and
therefore at least one of Hi,Hj must be K1, contradicting the fact that
E(Hi), E(Hi) are non-empty sets.

Case 2. 2K2 is spanned by aibi ∈ E(Hi) and the edge ajak, where
aj ∈ V (Hj), ak ∈ V (Hk), and vjvk(E(H0).

Now, if:

– vivj ∈ E(H0), (or vivk ∈ E(H0)), then aiaj ∈ E(H), (aiak ∈ E(H),
respectively), in contradiction with the assumption that {ai, bi, aj , ak}
spans a 2K2;

– vi is adjacent to none of vj, vk; then there exists a vertex vp in V (H0),
such that vi, vp, vj , vk span a 3-pan in H0 with vi as its pendant vertex.
Henceforth, by the (b)-conditions, we infer that Hi must be K1, in con-
tradiction with E(Hi) 6= ∅.

Case 3. 2K2 is spanned by the edges aibj, akap, with i, j, k, p distinct.
This yields the following contradiction: H0 is threshold, but contains a 2K2,
spanned by {vi, vj , vk, vp}.

Secondly, by Proposition 3.5, H is also θ1-perfect. So, according to
Theorem 3.7, we may conclude that H is a threshold graph.

4. Conclusions

In this paper we present necessary and sufficient conditions for the compo-
sition graph H = H0[H1,H2, ...,Hn] of a family of graphs {Hi : 0 ≤ i ≤ n}
to have a certain hereditary property P , like being a permutation graph, a
co-graph, a θ1-perfect graph and a threshold graph. It seems to be inter-
esting to answer the inverse question: if a graph H possesses a hereditary
property P , how can it be represented as the composition graph of a family
of graphs enjoying the same property?
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