ON HEREDITARY PROPERTIES OF COMPOSITION GRAPHS*

Vadim E. Levit and Eugen Mandrescu
Department of Computer Systems
Center for Technological Education
Affiliated with Tel-Aviv University
52 Golomb St., P.O. Box 305
Holon 58102, Israel
e-mail: \{levitv,eugen_m\}@barley.cteh.ac.il

Abstract

The composition graph of a family of $n+1$ disjoint graphs $\left\{H_{i}: 0 \leq\right.$ $i \leq n\}$ is the graph H obtained by substituting the n vertices of H_{0} respectively by the graphs $H_{1}, H_{2}, \ldots, H_{n}$. If H has some hereditary property P, then necessarily all its factors enjoy the same property. For some sort of graphs it is sufficient that all factors $\left\{H_{i}: 0 \leq i \leq n\right\}$ have a certain common P to endow H with this P. For instance, it is known that the composition graph of a family of perfect graphs is also a perfect graph (B. Bollobas, 1978), and the composition graph of a family of comparability graphs is a comparability graph as well (M.C. Golumbic, 1980). In this paper we show that the composition graph of a family of co-graphs (i.e., P_{4}-free graphs), is also a co-graph, whereas for θ_{1}-perfect graphs (i.e., P_{4}-free and C_{4}-free graphs) and for threshold graphs (i.e., P_{4}-free, C_{4}-free and $2 K_{2}$-free graphs), the corresponding factors $\left\{H_{i}: 0 \leq i \leq n\right\}$ have to be equipped with some special structure.

Keywords: composition graph, co-graphs, θ_{1}-perfect graphs, threshold graphs.
1991 Mathematics Subject Classification: 05C38, 05C751.

[^0]
1. Introduction

Let $H=(V, E)$ be a simple graph (i.e., finite, undirected, loopless and without multiple edges). We denote : its vertex set by $V=V(H)$, its edge set by $E=E(H)$. If A, B are two nonempty and disjoint subsets of $V(H)$, by $A \sim B$ we mean that $a b \in E(H)$, for any $a \in A$ and $b \in B$. The neighborhood of $v \in V$ is $N(v)=\{w: w \in V$ and $v w \in E\}$. By K_{n}, C_{n}, P_{n}, we shall denote the complete graph on $n \geq 1$ vertices, the chordless cycle on $n>3$ vertices and the chordless path on $n \geq 3$ vertices, respectively.

Let $H_{0}=\left(V_{0}, E_{0}\right)$ be a graph with n vertices $V_{0}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and let $H_{1}, H_{2}, \ldots, H_{n}$ be n disjoint graphs. The composition graph $H=(V, E)$ will be denoted by $H=H_{0}\left[H_{1}, H_{2}, \ldots, H_{n}\right]$ and is defined as follows:

$$
\begin{aligned}
& V=\cup\left\{V_{i}: 1 \leq i \leq n\right\} \\
& E=\cup\left\{E_{i}: 1 \leq i \leq n\right\} \cup\left\{x y: x \in V_{i}, y \in V_{j}, v_{i} v_{j} \in E_{0}, 1 \leq i, j \leq n\right\}
\end{aligned}
$$

This operation was introduced by Sabidussi [17], and is a generalization of both:
(a) lexicographic product of two graphs H_{0} and H_{1}, defined as:

$$
\left.H_{0}\left[H_{1}\right]=H_{0}\left[H_{1}, H_{1}, \ldots, H_{1}\right], \text { (i.e., } H_{1}=H_{i}, 2 \leq i \leq n\right)
$$

and of
(b) join of a family of graphs $H_{1}, H_{2}, \ldots, H_{n}$, defined as

$$
*\left[H_{1}, H_{2}, \ldots, H_{n}\right]=K_{n}\left[H_{1}, H_{2}, \ldots, H_{n}\right]
$$

If $H=H_{0}\left[H_{1}, H_{2}, \ldots, H_{n}\right]$ has some hereditary property (e.g., as being a perfect graph, a chordal graph, etc.), then both the outer factor H_{0} and the inner factors $H_{i}, i=1, \ldots, n$, enjoy the same property, since they are isomorphic to some subgraphs of H. Usually, the inverse problem is not so easy to solve. Sometimes, if both H_{0} and $H_{1}, H_{2}, \ldots, H_{n}$ have a certain common hereditary property, then their composition graph $H_{0}\left[H_{1}, H_{2}, \ldots, H_{n}\right]$ will have the same feature. This is true for:
(a) perfectness:

- *[$\left.H_{1}, H_{2}, \ldots, H_{n}\right]$ is a perfect graph if and only if all $H_{i}, 1 \leq i \leq n$, are perfect, [10];
- $H_{0}\left[H_{1}\right]$ is perfect if and only if both H_{0} and H_{1} are perfect, [16];
- $H_{0}\left[H_{1}, H_{2}, \ldots, H_{n}\right]$ is perfect if and only if all $H_{i}, 0 \leq i \leq n$, are perfect, [1];
(b) comparability:
- $H_{0}\left[H_{1}, H_{2}, \ldots, H_{n}\right]$ is a comparability graph if and only if each H_{i}, $0 \leq i \leq n$, is a comparability graph, [9];
(c) permutation graphs and co-graphs, which will be discussed in Section 2. Sometimes, in spite of the fact that all the factors enjoy a common hereditary property, this is not sufficient to endow their composition graph with the same feature. In other words, H_{0} and $H_{1}, H_{2}, \ldots, H_{n}$ have to be equipped with some additional structure. In Section 3 we investigate additional structures of factors induced by θ_{1}-perfectness and thresholdness.

A number of other hereditary properties of graphs are discussed in [2], [3], [5], [12]. For an excellent survey on this subject we refer a reader to [4].

2. Composition of Permutation Graphs and Co-Graphs

Let π be a permutation of the numbers $1,2, \ldots, n$, and $G[\pi]=(V, E)$ be the graph defined as follows:

$$
V=\{1,2, \ldots, n\} \text { and } i j \in E \Leftrightarrow(i-j)\left(\pi_{i}^{-1}-\pi_{j}^{-1}\right)<0 .
$$

A graph G is called a permutation graph if there is a permutation π such that G is isomorphic to $G[\pi]$.

Theorem 2.1. (Pnueli, Lempel and Even, [15]) A graph G is a permutation graph if and only if G and its complement \bar{G} are comparability graphs.

Remark. If $H=H_{0}\left[H_{1}, H_{2}, \ldots, H_{n}\right]$, then $\bar{H}=\bar{H}_{0}\left[\bar{H}_{1}, \bar{H}_{2}, \ldots, \bar{H}_{n}\right]$.
Now, taking into account this simple remark, the Theorem 2.1 and the above mentioned result for comparability graphs, we obtain:

Proposition 2.2. $H_{0}\left[H_{1}, H_{2}, \ldots, H_{n}\right]$ is a permutation graph if and only if each $H_{i}, 0 \leq i \leq n$, is a permutation graph.

Proof. $H=H_{0}\left[H_{1}, H_{2}, \ldots, H_{n}\right]$ is a permutation graph $\Leftrightarrow H$ and its complement are comparability graphs \Leftrightarrow each $H_{i}, 0 \leq i \leq n$, and its complement are comparability graphs \Leftrightarrow each factor $H_{i}, 0 \leq i \leq n$, is a permutation graph.
A graph is called a co-graph if it contains no induced subgraph isomorphic to P_{4}.

Proposition 2.3. The graph $H_{0}\left[H_{1}, H_{2}, \ldots, H_{n}\right]$ is a co-graph if and only if each factor $H_{i}, 0 \leq i \leq n$, is a co-graph.
Proof. "if'-part is clear.
"only $i f$ ". On the contrary, suppose that there exists a P_{4} in $H=$ $H_{0}\left[H_{1}, H_{2}, \ldots, H_{n}\right]$, spanned by the vertices a, b, c, d and having the edges $a b, b c, c d$. Since none of the factors contains such a subgraph, we may have:

Case I. If there is some $i, 1 \leq i \leq n$, such that $a, b \in V\left(H_{i}\right)$, or $b, c \in V\left(H_{i}\right)$, or $c, d \in V\left(H_{i}\right)$, then the subgraph induced by $\{a, b, c, d\}$ in H contains a triangle. (See Figure 1).

Figure 1
Case II. $a, c \in V\left(H_{i}\right)$ and $b, d \in V(H j)$; then also $a d \in E(H)$. (See Figure 2.a.)

Case III. $v_{i} v_{j}, v_{j} v_{k} \in E\left(H_{0}\right), b \in V\left(H_{i}\right), a, c \in V\left(H_{j}\right)$ and $d \in V\left(H_{k}\right)$; then $a d \in E(H)$. (See Figure 2.b.)

Case IV. $v_{i} v_{j}, v_{j} v_{k}, v_{i} v_{k} \in E\left(H_{0}\right)$, and $a, d \in V\left(H_{i}\right), b \in V\left(H_{j}\right), c \in$ $V\left(H_{k}\right)$; then we get that also $a c, b d \in E(H)$. (See Figure 2.c.)

In fact, as we see in the above Figures 1,2 , and according to the definition of graph composition, the subgraph spanned by $\{a, b, c, d\}$ is not a P_{4}, in contradiction with the assumption on these vertices. Consequently, H is also a co-graph.

Figure 2

3. Composition of θ_{1}-Perfect Graphs and of Threshold Graphs

The stability number of graph G is the cardinality of a stable set of maximum size of G. If for each $A \subseteq V(G)$, the stability number of the subgraph H induced by A equals:
(a) the minimal number of cliques of H which cover all the edges of H, then G is called θ_{1}-perfect (Parthasarathy, Choudum, Ravindra, [13]);
(b) the number of maximal cliques of H, then G is said to be trivially perfect (Golumbic, [8]).
The following theorem emphasizes the connection between these two classes of perfect graphs.

Theorem 3.1. For a graph G, the following statements are equivalent:
(i) G is θ_{1}-perfect;
(ii) G is trivially perfect;
(iii) G is both P_{4}-free and C_{4}-free.

Proof. (i) \Leftrightarrow (iii) (Parthasarathy, Choudum, Ravindra, [13]);
(ii) \Leftrightarrow (iii) (Golumbic, [8]).

In order to investigate θ_{1}-perfectness of composition graphs, we start with the following lemma.

Lemma 3.2. If H_{1} and H_{2} are connected graphs, then $H=K_{2}\left[H_{1}, H_{2}\right]$ contains C_{4} as an induced subgraph if and only if either
(i) C_{4} is an induced subgraph of H_{1} and / or H_{2}, or
(ii) none of H_{1}, H_{2} is a complete graph.

Proof. "if". Suppose H has a C_{4} as an induced subgraph, but none of H_{1}, H_{2} contains some C_{4}. If both H_{1}, H_{2} are complete, then H itself is a complete graph and C_{4}-free, which is in contradiction with the above assumption. Assume that only H_{1} is a complete graph. Let C_{4} of H be spanned by $\{a, b, c, d\}$, with the edges $a b, b c, c d, d a$. Then the possible cases are:

Case 1. $a \in V\left(H_{1}\right)$ and $b, c, d \in V\left(H_{2}\right)$, or $a, c \in V\left(H_{1}\right)$ and $b, d \in$ $V\left(H_{2}\right)$; then also $a c \in E(H)$.

Case 2. $a, b \in V\left(H_{1}\right)$ and $c, d \in V\left(H_{2}\right)$, or $a, b, c \in V\left(H_{1}\right)$ and $d \in$ $V\left(H_{2}\right)$; then $a c, b d \in E(H)$.
So, the completeness of H_{1} or the definition of the graph composition implies the existence of at least a chord in the subgraph of H, induced by $\{a, b, c, d\}$, thus contradicting the assumption on these vertices. Therefore, none of H_{1}, H_{2} is a complete graph.
"only if". If a, c and b, d are non-adjacent vertices in H_{1}, H_{2} respectively, then it is easy to see that $\{a, b, c, d\}$ spans a C_{4} in H, with the edges $a b, b c, c d, d a$.

Corollary 3.3. If H_{1}, H_{2} are connected graphs, then $K_{2}\left[H_{1}, H_{2}\right]$ has no C_{4} as an induced subgraph if and only if one of H_{1}, H_{2} is complete and the other is C_{4}-free.

Lemma 3.4. If H_{1}, H_{2}, H_{3} are connected, then $H=P_{3}\left[H_{1}, H_{2}, H_{3}\right]$ is a θ_{1}-perfect graph if and only if H_{2} is a complete graph and H_{1}, H_{3} are θ_{1}-perfect.
Proof. "if". Clearly, if H is θ_{1}-perfect, then all $H_{i}, i=1,2,3$, are θ_{1} perfect. Assume that H_{2} contains two non-adjacent vertices a_{2}, b_{2}; then for $a_{1} \in V\left(H_{1}\right)$ and $a_{3} \in V\left(H_{3}\right)$, the set $\left\{a_{1}, a_{2}, b_{2}, a_{3}\right\}$ spans a C_{4} in H, which is at variance with the θ_{1}-perfectness of H. Therefore, H_{2} must be a complete graph.
"only if". By Proposition 2.3, H is a co-graph, since $P_{3}, H_{1}, H_{2}, H_{3}$ are, in particular, co-graphs. Suppose now that H contains a C_{4} as an induced subgraph. According to Corollary 3.3, it follows $V\left(C_{4}\right) \cap V\left(H_{i}\right) \neq \emptyset$, $i=1,2,3$, and clearly $\left|V\left(C_{4}\right) \cap V\left(H_{2}\right)\right|=2$. Since H_{2} is a complete graph, we infer that, actually, the vertices from $V\left(C_{4}\right)$ span a "diamond" in H, (i.e., K_{4} without an edge), in contradiction with the assumption on
these vertices. So, H is both P_{4}-free and C_{4}-free, i.e., H is θ_{1}-perfect, by Theorem 3.1.

For a graph H let us denote:
$E n d P_{3}(H)=\left\{v: v \in V(H)\right.$ and v is an endpoint of a P_{3} in $\left.H\right\}$, $\operatorname{MidP}_{3}(H)=\left\{v: v \in V(H)\right.$ and v is the midpoint of a P_{3} in $\left.H\right\}$.

Proposition 3.5. Let $\left\{H_{i}, 0 \leq i \leq n\right\}$ be a family of connected and disjoint graphs; then $H=H_{0}\left[H_{1}, H_{2}, \ldots, H_{n}\right]$ is θ_{1}-perfect if and only if the following conditions hold:
(i) all $H_{i}, 0 \leq i \leq n$, are θ_{1}-perfect;
(ii) if $v_{i} v_{j} \in E\left(H_{0}\right)$, then at least one of H_{i}, H_{j} is complete;
(iii) if $v_{i} \in \operatorname{MidP}_{3}\left(H_{0}\right)$, then the corresponding factor H_{i} is a complete graph.

Proof. "if". If H is θ_{1}-perfect, then evidently, all $H_{i}, 0 \leq i \leq n$, are also θ_{1}-perfect and, by Corollary 3.3 and Lemma 3.4, (ii) and (iii) are clearly fulfilled.
"only if". Since all $H_{i}, 0 \leq i \leq n$, are also co-graphs, by Proposition 2.3 we get that H is a co-graph, too. Suppose that the vertices a, b, c, d span a C_{4} in H. Because all the factors C_{4}-free, using again Corollary 3.3 and Lemma 3.4, we infer that $\left|V\left(C_{4}\right) \cap V\left(H_{i}\right)\right| \leq 1$, i.e., H_{0} contains a C_{4}, which is contradictory to the fact that H is a co-graph (i.e., P_{4}-free). Therefore, H is also C_{4}-free and, consequently, is θ_{1}-perfect, by Theorem 3.1.

Corollary 3.6. (i) Let $\left\{H_{i}, 1 \leq i \leq n\right\}$ be a family of connected and disjoint graphs; then $*\left[H_{1}, H_{2}, \ldots, H_{n}\right]$ is θ_{1}-perfect if and only if all $H_{i}, 1 \leq i \leq n$, are θ_{1}-perfect and at least $n-1$ of them are complete graphs.
(ii) If H_{0}, H_{1} are connected, then $H_{0}\left[H_{1}\right]$ is θ_{1}-perfect if and only if H_{0} is θ_{1}-perfect and H_{1} is a complete graph.
A 4-graph is a graph with 4 vertices that can be labeled a, b, c, d such that a is adjacent to b but not to c, and d is adjacent to c but not to b (i.e., either a P_{4} or a C_{4}, or a $2 K_{2}$ graph) (Peled, [14]).

A graph $G=(V, E)$ is threshold if there is a labeling a of its vertices by non-negative integers and an integer t such that:

$$
X \text { is stable } \Leftrightarrow \sum_{x \in X} a(x) \leq t,(X \subseteq V) .
$$

These graphs were defined by Chvátal and Hammer in [6], and extensively studied in the work [11] of Mahadev and Peled. Further we make use of the following characterization of threshold graphs in terms of forbidden induced subgraphs.

Theorem 3.7. (Chvátal and Hammer, [6]) A graph is threshold if and only if it has no induced subgraph isomorphic to a 4-graph.

Lemma 3.8. If H_{1}, H_{2}, H_{3} are connected graphs, then $P_{3}\left[H_{1}, H_{2}, H_{3}\right]$ is threshold if and only if the next two conditions hold:
(i) H_{2} is complete,
(ii) one of H_{1}, H_{3} is a K_{1} graph and the other is a threshold graph.

Proof. " $i f$ ". If H is a threshold graph, then all $H_{i}, i=1,2,3$, are also threshold and by Lemma 3.4, we get that H_{2} is a complete graph. In addition, only one of the graphs H_{1}, H_{3} may contain K_{2} as an induced subgraph (since H is $2 K_{2}$-free), and this ensures that one of H_{1}, H_{3} is a K_{1} graph.
"only if". According to Lemma 3.4, H must be θ_{1}-perfect, because $P_{3}, H_{1}, H_{2}, H_{3}$ are, in particular, θ_{1}-perfect and H_{2} is complete. In addition, since:

- H_{1} is a K_{1} graph, H_{2} is a complete graph, and H_{3} is $2 K_{2}$-free,
- each vertex of H_{2} is adjacent to any vertex of both H_{1} and H_{3}, we infer that H cannot contain a $2 K_{2}$ as an induced subgraph.

Therefore, H is θ_{1}-perfect and $2 K_{2}$-free. Consequently, by Theorem 3.7, we may conclude that H is a threshold graph.

Let us denote by N_{3} the 3 -pan or paw graph, i.e., the graph with $V\left(N_{3}\right)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and $E\left(N_{3}\right)=\left\{v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}, v_{2} v_{4}\right\}$.

Lemma 3.9. If $H_{i}, 1 \leq i \leq 4$, are connected graphs, then $N_{3}\left[H_{1}, H_{2}, H_{3}, H_{4}\right]$ is threshold if and only if the following assertions hold:
(a) H_{1} is a K_{1} graph;
(b) H_{2} is complete;
(c) one of H_{3}, H_{4} is a complete graph, and the other is a threshold graph.

Proof. "if". Since v_{1}, v_{2}, v_{3} and v_{1}, v_{2}, v_{4} span two P_{3}^{\prime} s in the outer factor N_{3}, with the vertices v_{1}, v_{3} and v_{1}, v_{4} as endpoints, respectively, we infer, according to Lemma 3.8, that H_{2} must be a complete graph and either:

Case I. H_{1} is threshold (with at least an edge, say $a_{1} b_{1}$) and H_{3}, H_{4} are K_{1} graphs contrary to thresholdness of H, because if $V\left(H_{i}\right)=\left\{a_{i}\right\}, i=3,4$, then $\left\{a_{1}, b_{1}, a_{3}, a_{4}\right\}$ spans a $2 K_{2}$ in H; or

Case II. H_{1} is a K_{1} graph and H_{3}, H_{4} are threshold, but by Corollary 3.3, one of them must be a complete graph.
"only if'. Suppose that $V\left(H_{1}\right)=\left\{a_{1}\right\}, H_{2}$ and H_{3} are complete graphs, while H_{4} is a threshold graph. By Proposition 3.5, H is θ_{1}-perfect. In addition, since:

$$
\left\{a_{1}\right\} \sim V\left(H_{2}\right) \sim V\left(H_{3}\right) \sim V\left(H_{4}\right) \sim V\left(H_{2}\right)
$$

no $2 K_{2}$ is contained in H, i.e., H is a threshold graph, according to Theorem 3.7.

Lemma 3.10. Let $H_{0}, H_{1}, H_{2}, \ldots, H_{n}$ be a family of $n>1$ disjoint and connected graphs. If $H=H_{0}\left[H_{1}, H_{2}, \ldots, H_{n}\right]$ is a threshold graph, then all $H_{i}, 0 \leq i \leq n$, are threshold, and at least $n-1$ of $H_{i}, 1 \leq i \leq n$, are complete graphs.

Proof. All $H_{i}, 0 \leq i \leq n$, must be threshold, as being isomorphic to some subgraphs of H. If H_{0} is complete, then Corollary 3.3 implies that at least $n-1$ of the inner factors must be also complete. If H_{0} is not complete, suppose, on the contrary, that there are two non-complete threshold graphs H_{i}, H_{k} as inner factors. Since, by Corollary 3.3, v_{i}, v_{k} cannot be adjacent and, on the other hand, H_{0} is connected and also P_{4}-free, there must exist some vertex v_{j} in H_{0} such that $\left\{v_{i}, v_{j}, v_{k}\right\}$ spans a P_{3} in H_{0}. By Lemma 3.8, one of H_{i}, H_{k} must be K_{1}, in contradiction with the choice of H_{i}, H_{k}.
Graph G is called a split graph (Foldes and Hammer, [7]) if there exists a partition $V(G)=K \cup S$ of its vertex set into a clique K and a stable set S. From the work of Golumbic [9, Chapter 6, Theorem 6.2] it follows that K may always be chosen maximum. Foldes and Hammer [7] proved that being a split graph is equivalent to containing no induced subgraph isomorphic to $2 K_{2}, C_{4}$ or C_{5}. Therefore, according to Theorem 3.7, any threshold graph is a split graph.

For a graph G let us denote:
$\operatorname{EndPan}(G)=\left\{v: v \in V(G), v\right.$ is the pendant vertex of an induced N_{3} in $\left.G\right\}$.
Lemma 3.11. If G is a connected non-complete split graph, then:
(i) $V(G)=E n d P_{3}(G) \cup \operatorname{MidP}_{3}(G)$;
(ii) $\operatorname{MidP}_{3}(G)$ spans a clique in G and $\operatorname{EndPan}(G) \subseteq \operatorname{EndP}_{3}(G)-$ $\mathrm{MidP}_{3}(G)$;
(iii) the vertex set of G can be decomposed into pairwise disjoint subsets read as $V(G)=\operatorname{MidP}_{3}(G) \cup \operatorname{EndPan}(G) \cup\left(E n d P_{3}(G)-\left(\operatorname{MidP}_{3}(G) \cup\right.\right.$ EndPan $(G))$).

Proof. G is a split graph. Hence, there exists a partition of $V(G)$ as $V(G)=K \cup S$, where K is a maximum clique and S is a stable set of G. Since G is also a connected non-complete graph, $\operatorname{EndP}_{3}(G)$ and $\operatorname{MidP}_{3}(G)$ are non-empty sets.
(i) If $v \in S$, then there exist $u, w \in K$, such that $u v \in E(G)$ and $v w \notin E(G)$, because G is connected and K is a maximum clique. Hence, we get that $v \in \operatorname{EndP}_{3}(G)$. If $v \in K$ and $N(v) \cap S=\emptyset$, then for $w \in S$ and $u \in N(w)$, we obtain that $u, v \in K$, i.e., $v \in \operatorname{EndP}_{3}(G)$, because $\{v, u, w\}$ spans a P_{3}. If $v \in K$ and there is some $w \in N(v) \cap S$, then for $u \in K-N(w)$, (such u exists, because K is a maximum clique), we get that v is the midpoint of the P_{3} spanned by $\{w, v, u\}$, i.e., $v \in \operatorname{MidP}_{3}(G)$. Hence, $V(G)=E n d P_{3}(G) \cup \operatorname{MidP} P_{3}(G)$, but this cover is not necessarily a partition for $V(G)$ (see, for example, graph G in Figure 3).
(ii) If $x \in \operatorname{MidP}_{3}(G)$, then there are $y, z \in V(G)$, such that $\{y, x, z\}$ spans a P_{3}, with x as its midpoint. Hence, $y z \notin E(G)$ and necessarily $x \in K$. So, we get that $\operatorname{MidP}_{3}(G) \subseteq K$, i.e., $\operatorname{MidP}_{3}(G)$ spans a clique in G.
On the contrary, suppose that there exists some $x \in \operatorname{EndPan}(G) \cap$ $\operatorname{MidP}_{3}(G)$. Then also $x \in K$ and there are $a, b, c \in V(G)$, such that $\{x, a, b, c\}$ spans a N_{3} in G, with x as its pendant vertex and $x a \in E(G)$. If $a \in K$, then at least one of b, c, say b, is contained in K and hence $x b \in E(G)$, contradicting the fact that $\{x, a, b, c\}$ spans a N_{3} in G. If $a \notin K$, then $b, c \in K$, and we get the same contradiction.
(iii) It follows from (i) and (ii).

Figure 3. $E n d P_{3}(G)=\{a, c, d, e\}, \operatorname{MidP} P_{3}(G)=\{b, d\}, \operatorname{EndPan}(G)=\{a\}$

Theorem 3.12. Let $H_{0}, H_{1}, H_{2}, \ldots, H_{n}$ be a family of $n>1$ disjoint and connected graphs. Then $H=H_{0}\left[H_{1}, H_{2}, \ldots, H_{n}\right]$ is a threshold graph if and only if one of the two following conditions holds:
(a) H_{0} is complete, one of $H_{i}, 1 \leq i \leq n$, may be any threshold graph, while the others must be complete graphs;
(b) H_{0} is a non-complete threshold graph, and:
for any $v_{j} \in \operatorname{EndPan}\left(H_{0}\right)$, the corresponding graph H_{j} is K_{1}; for any $v_{j} \in \operatorname{MidP}_{3}\left(H_{0}\right)$, the corresponding graph H_{j} is complete; for any $v_{i} \in \operatorname{EndP}_{3}\left(H_{0}\right)-\left(\operatorname{MidP}_{3}\left(H_{0}\right) \cup \operatorname{EndPan}\left(H_{0}\right)\right)$, the corresponding graph H_{i} is K_{1}, except one, which may be any threshold graph.

Proof. "if". If H is a threshold graph, then all its factors, both outer and inner, are also threshold graphs.

Case I. H_{0} is a complete graph. Then, according to Lemma 3.10, one of the inner factors may be any threshold graph, but the others must be complete graphs. Thus, the assertion (a) is true.

Case II. H_{0} is not a complete graph. By Lemma 3.11 (iii), $V\left(H_{0}\right)$ can be decomposed as follows:

$$
\begin{aligned}
V\left(H_{0}\right) & =M i d P_{3}\left(H_{0}\right) \cup \operatorname{EndPan}\left(H_{0}\right) \cup\left(E n d P_{3}\left(H_{0}\right)\right. \\
& \left.-\left(\operatorname{MidP}_{3}\left(H_{0}\right) \cup \operatorname{EndPan}\left(H_{0}\right)\right)\right) .
\end{aligned}
$$

According to Lemma 3.8, for any $v_{j} \in \operatorname{MidP} P_{3}\left(H_{0}\right)$, the corresponding graph H_{j} must be complete, and by Lemma 3.9, H_{j} is K_{1}, for every $v_{j} \in \operatorname{EndPan}\left(H_{0}\right)$. Further, Lemmas 3.8 and 3.10 imply that at most one of the inner factors, corresponding to the vertices in $E n d P_{3}\left(H_{0}\right)$ $\left(\operatorname{MidP}_{3}\left(H_{0}\right) \cup E n d P a n\left(H_{0}\right)\right)$, may be any threshold graph, while the others must be K_{1}.
"only if". Clearly, the conditions (a) imply that H is 4 -graph-free, i.e., by Theorem 3.7, H is a threshold graph.

Suppose that the (b)-conditions are fulfilled.
Firstly, H has no $2 K_{2}$ as an induced subgraph. Assuming, on the contrary, that such a subgraph exists in H, we distinguish the three following cases:

Case $1.2 K_{2}$ is spanned by the edges $a_{i} b_{i}, a_{j} b_{j}$ from H_{i}, H_{j}, respectively. Now, if:

- $v_{i} v_{j} \in E\left(H_{0}\right)$, then, $\left\{a_{i}, b_{i}, a_{j}, b_{j}\right\}$ spans a K_{4} in H instead of $2 K_{2}$, which brings a contradiction to our assumption;
- v_{i}, v_{j} are not adjacent in H_{0}, then there exists a vertex v_{k} in H_{0}, such that the vertices v_{i}, v_{k}, v_{j} span a P_{3} in H_{0}, (since H_{0} is a connected and P_{4}-free graph). Hence, by Lemma 3.11 (ii), $\left\{v_{i}, v_{k}, v_{j}\right\} \not \subset \operatorname{MidP}_{3}\left(H_{0}\right)$ and therefore at least one of H_{i}, H_{j} must be K_{1}, contradicting the fact that $E\left(H_{i}\right), E\left(H_{i}\right)$ are non-empty sets.

Case 2. $2 K_{2}$ is spanned by $a_{i} b_{i} \in E\left(H_{i}\right)$ and the edge $a_{j} a_{k}$, where $a_{j} \in V\left(H_{j}\right), a_{k} \in V\left(H_{k}\right)$, and $v_{j} v_{k}\left(E\left(H_{0}\right)\right.$.
Now, if:

- $v_{i} v_{j} \in E\left(H_{0}\right),\left(\right.$ or $\left.v_{i} v_{k} \in E\left(H_{0}\right)\right)$, then $a_{i} a_{j} \in E(H),\left(a_{i} a_{k} \in E(H)\right.$, respectively), in contradiction with the assumption that $\left\{a_{i}, b_{i}, a_{j}, a_{k}\right\}$ spans a $2 K_{2}$;
- v_{i} is adjacent to none of v_{j}, v_{k}; then there exists a vertex v_{p} in $V\left(H_{0}\right)$, such that $v_{i}, v_{p}, v_{j}, v_{k}$ span a 3 -pan in H_{0} with v_{i} as its pendant vertex. Henceforth, by the (b)-conditions, we infer that H_{i} must be K_{1}, in contradiction with $E\left(H_{i}\right) \neq \emptyset$.

Case 3. $2 K_{2}$ is spanned by the edges $a_{i} b_{j}, a_{k} a_{p}$, with i, j, k, p distinct. This yields the following contradiction: H_{0} is threshold, but contains a $2 K_{2}$, spanned by $\left\{v_{i}, v_{j}, v_{k}, v_{p}\right\}$.

Secondly, by Proposition 3.5, H is also θ_{1}-perfect. So, according to Theorem 3.7, we may conclude that H is a threshold graph.

4. Conclusions

In this paper we present necessary and sufficient conditions for the composition graph $H=H_{0}\left[H_{1}, H_{2}, \ldots, H_{n}\right]$ of a family of graphs $\left\{H_{i}: 0 \leq i \leq n\right\}$ to have a certain hereditary property P, like being a permutation graph, a co-graph, a θ_{1}-perfect graph and a threshold graph. It seems to be interesting to answer the inverse question: if a graph H possesses a hereditary property P, how can it be represented as the composition graph of a family of graphs enjoying the same property?

Acknowledgment

We gratefully thank an anonymous referee for carefully reading and commenting on our work. His proposals helped us to improve this paper.

References

[1] B. Bollobás, Extremal graph theory (Academic Press, London, 1978).
[2] B. Bollobás and A.G. Thomason, Hereditary and monotone properties of graphs, in: R.L. Graham and J. Nešetřil, eds., The Mathematics of Paul Erdös, II, Algorithms and Combinatorics 14 (Springer-Verlag, 1997) 70-78.
[3] M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V.R. Kulli ed., Advances in Graph Theory (Vishwa Intern. Publication, Gulbarga,1991) 41-68.
[4] M. Borowiecki, I. Broere, M. Frick, P. Mihók, G. Semanišin, A Survey of Hereditary Properties of Graphs, Discussiones Mathematicae Graph Theory 17 (1997) 5-50.
[5] P. Borowiecki and J. Ivančo, P-bipartitions of minor hereditary properties, Discussiones Mathematicae Graph Theory 17 (1997) 89-93.
[6] V. Chvátal and P.L. Hammer, Set-packing and threshold graphs, Res. Report CORR 73-21, University Waterloo, 1973.
[7] S. Foldes and P.L. Hammer, Split graphs, in: F. Hoffman et al., eds., Proc. 8th Conf. on Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton Rouge, Louisiana, 1977) 311-315.
[8] M.C. Golumbic, Trivially perfect graphs, Discrete Math. 24 (1978) 105-107.
[9] M.C. Golumbic, Algorithmic graph theory and perfect graphs (Academic Press, London, 1980).
[10] J.L. Jolivet, Sur le joint d' une famille de graphes, Discrete Math. 5 (1973) 145-158.
[11] N.V.R. Mahadev and U.N. Peled, Threshold graphs and related topics (NorthHolland, Amsterdam, 1995).
[12] E. Mandrescu, Triangulated graph products, Anal. Univ. Galatzi (1991) 37-44.
[13] K.R. Parthasarathy, S.A. Choudum and G. Ravindra, Line-clique cover number of a graph, Proc. Indian Nat. Sci. Acad., Part A 41 (3) (1975) 281-293.
[14] U.N. Peled, Matroidal graphs, Discrete Math. 20 (1977) 263-286.
[15] A. Pnueli, A. Lempel and S. Even, Transitive orientation of graphs and identification of permutation graphs, Canad. J. Math. 23 (1971) 160-175.
[16] G. Ravindra and K.R. Parthasarathy, Perfect Product Graphs, Discrete Math. 20 (1977) 177-186.
[17] G. Sabidussi, The composition of graphs, Duke Math. J. 26 (1959) 693-698.

[^0]: * A preliminary version of this paper was presented at The Graph Theory Day, August 1, 1996, Institute for Computer Science Research, Bar-Ilan University, Tel-Aviv, Israel.

