ON INDEPENDENT SETS AND NON-AUGMENTABLE PATHS IN DIRECTED GRAPHS

H. Galeana-Sánchez
Instituto de Matemáticas, UNAM
Circuito Exterior, Ciudad Universitaria
04510 México, D.F., México

Abstract

We investigate sufficient conditions, and in case that D be an asymmetrical digraph a necessary and sufficient condition for a digraph to have the following property: "In any induced subdigraph H of D, every maximal independent set meets every non-augmentable path". Also we obtain a necessary and sufficient condition for any orientation of a graph G results a digraph with the above property. The property studied in this paper is an instance of the property of a conjecture of J.M. Laborde, Ch. Payan and N.H. Huang: "Every digraph contains an independent set which meets every longest directed path" (1982).

Keywords: digraph, independent set, directed path, non-augmentable path.
1991 Mathematics Subject Classification: 05C20.

1. Introduction

For general concepts we refer the reader to [1]. Let D be a digraph; $V(D)$ and $A(D)$ will denote the sets of vertices and arcs of D respectively. If D_{0} is a subdigraph (resp. induced subdigraph) of D, we write $D_{0} \subset D$ (resp. $\left.D_{0} \subset^{*} D\right)$. If $S_{1}, S_{2} \subset V(D)$ the arc (u_{1}, u_{2}) of D will be called an $S_{1} S_{2}$-arc whenever $u_{1} \in S_{1}$ and $u_{2} \in S_{2} ; D\left[S_{1}\right]$ will denote the subdigraph induced by S_{1}. The set $I \subset V(D)$ is independent if $A(D[I])=\emptyset$.

An arc $\left(u_{1}, u_{2}\right) \in A(D)$ is called asymmetrical (resp. symmetrical) if $\left(u_{2}, u_{1}\right) \notin A(D)$ (resp. $\left.\left(u_{2}, u_{1}\right) \in A(D)\right)$. The asymmetrical part of D which is denoted by Asym (D) is the spanning subdigraph of D whose arcs are the asymmetrical arcs of $D ; D$ is called an asymmetrical digraph if Asym $(D)=D$.

A path $\mathcal{M}=\left(x_{0}, x_{1}, \ldots, x_{k}\right)$ will be always a directed elementary path (i.e. $\mathcal{M}=\left(x_{0}, x_{1}, \ldots, x_{k}\right)$ is a sequence of vertices of $D, x_{i} \neq x_{j}$ for any $i \neq j$, and $\left(x_{i}, x_{i+1}\right) \in A(D)$ for each $\left.i, 0 \leq i \leq k-1\right)$. It is a longest path if k is maximum. For $H \subset^{*} D$ a path $\mathcal{M} \subset H$ will be called non-augmentable in H if for every vertex $a \in V(H)$, none of the sequences: $\left(a, x_{0}, x_{1}, \ldots, x_{k}\right)$, $\left(x_{0}, x_{1}, \ldots, x_{i}, a, x_{i+1}, \ldots, x_{k}\right)$ or $\left(x_{0}, x_{1}, \ldots, x_{k}, a\right)$ are paths. When $H=D$ we simply say that \mathcal{M} is a non-augmentable path.

Let $G=(V(G), E(G))$ be a graph; an orientation \vec{G} of G is a digraph obtained from G by orientation of each edge of G in at least one of the two possible directions.

The problem considered in this paper is: for which digraphs do we have $\mathcal{M} \cap S \neq \emptyset$ for any maximal independent set and for every non-augmentable path \mathcal{M} ? This problem is an instance of a conjecture of J.M. Laborde, Ch. Payan and N.H. Huang [4] "Every digraph contains an independent set which meets every longest directed path" (1982).

It is not true that in any digraph every maximal indepedent set meets every non-augmentable path. Consider for example the digraph with a vertex set $\{a, b, c, d\}$ and arc set $\{(a, b),(c, b),(c, d)\}$.

When the vertices of D are elements of a poset and the arcs of D represents the partial order, we have a result due to Grillet [3], who proved that if every induced subdigraph isomorphic to $P=(V(P), A(P))$, $V(P)=\{a, b, c, d\}, A(P)=\{(a, b),(c, b),(c, d)\}$ is contained in an induced subdigraph isomorphic to $Q=(V(Q), A(Q)), V(Q)=\{a, b, c, d, e\}$, $A(Q)=\{(a, b),(c, b),(c, d),(c, e),(e, b)\}$ then every maximal independent set meets every non-augmentable path.

When D is an asymmetrical digraph we have the following result due to H. Galeana-Sánchez and H.A. Rincón-Mejía [2], they proved that if D is an asymmetrical digraph with no subdigraph isomorphic to $P=$ $(V(P), A(P)), V(P)=\{a, b, c, d\}, A(P)=\{(a, b),(c, b),(c, d)\}$, and no subgraph isomorphic to $Q=(V(Q), A(Q)), V(Q)=\{a, b, c, d\}, A(Q)=$ $\{(a, b),(c, b),(c, d),(b, d)\}$. Then any maximal independent set meets every non-augmentable path.

2. Independent Sets and Non-Augmentable Paths

In this section, sufficient conditions for any maximal independent set to meet every non-augmentable path are studied.

Definition 1. For each $m \in \mathbb{N}$ let $X_{m}=\left\{x_{0}, x_{1}, \ldots, x_{m}\right\}$ and $Y=\left\{y_{0}, y_{1}\right\}$ be two disjoint sets of cardinality $m+1$ and 2 , respectively. We will denote
by D_{m} the digraph defined as follows:

$$
V\left(D_{m}\right)=X_{m} \cup Y,
$$

$A\left(D_{m}\right)=\left\{\left(x_{i}, x_{i+1}\right) \mid 0 \leq i \leq m-1\right\} \cup\left\{\left(x_{i}, y_{0}\right) \mid 0 \leq i \leq m-1\right\} \cup\left\{\left(y_{1}, x_{i}\right) \mid\right.$ $1 \leq i \leq m\}$. See Figure 1 .

Theorem 1. Let D be a digraph such that for each $i(1 \leq i \leq m), D_{i} \subset D$ implies

$$
\begin{gathered}
A(D) \cap\left(\left\{\left(y_{0}, x_{j}\right) \mid 1 \leq j \leq i\right\} \cup\left\{\left(x_{j}, y_{1}\right) \mid 0 \leq j \leq i\right\}\right. \\
\left.\cup\left\{\left(y_{1}, x_{0}\right),\left(x_{i}, y_{0}\right),\left(y_{0}, y_{1}\right),\left(y_{1}, y_{0}\right)\right\}\right) \neq \emptyset .
\end{gathered}
$$

Then any maximal independent set of D meets every non-augmentable path of length at most m.

Proof. We proceed by contradiction. Suppose that D satisfies the hypothesis but there exists a maximal independent set S and a non-augmentable path $T=\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ of length $n, n \leq m$ such that $S \cap T=\emptyset$. Since S is a maximal independent set, T non-augmentable and $S \cap T=\emptyset$, we have that there exists $y \in S$ such that $\left(x_{0}, y\right) \in A(D)$ and $\left(y, x_{0}\right) \notin A(D)$.

Notice that since T is non-augmentable and $S \cap T=\emptyset$; there is no $\left\{x_{n}\right\} S$-arc in D. So we can define: $p=\min \{t \in\{0,1, \ldots, n\} \mid$ there is no $\left\{x_{t}\right\} S$-arc in $\left.D\right\}$. Observe that the above observation implies $p \geq 1$. Moreover, since S is a maximal independent set, the definition of p implies that: There exists $y_{1} \in S$ such that $\left(y_{1}, x_{p}\right) \in \operatorname{Asym}(D)$.

We will get a contradiction from the following assertion:
(I) For each $j(0 \leq j \leq p),\left(y_{1}, x_{j}\right) \in A(D)$.
(In particular, $\left(y_{1}, x_{0}\right) \in A(D)$ contradicting that T is non-augmentable).
In order to prove (I) we proceed again by contradiction; suppose that there exists $t,(0 \leq t \leq p)$ such that $\left(y_{1}, x_{t}\right) \notin A(D)$ and let $k=\max \left\{t \in\{0,1, \ldots, p\} \mid\left(y_{1}, x_{t}\right) \notin A(D)\right\}$. Clearly, $k<p$ (because $\left.\left(y_{1}, x_{p}\right) \in \operatorname{Asym}(D)\right)$.

Since $k<p$ the definition of p implies that there exists $y_{0} \in S$ such that $\left(x_{k}, y_{0}\right) \in A(D)$.
(I.1) For any $j,(k \leq j \leq p-1),\left(x_{j}, y_{0}\right) \in A(D)$.

To prove proposition (I.1) we proceed by contradiction. Suppose that there exists $t(k \leq t \leq p-1)$ suth that $\left(x_{t}, y_{0}\right) \notin A(D)$ and let $\ell=\min \{t \in$ $\left.\{k, k+1, \ldots, p-1\} \mid\left(x_{t}, y_{0}\right) \notin A(D)\right\}$ be.
(I.1.a) For each $j,(k \leq j \leq \ell-1) ;\left(x_{j}, y_{0}\right) \in A(D)$. It is a direct consequence of the definition of ℓ.
(I.1.b) For each $j,(k+1 \leq j \leq \ell) ;\left(y_{1}, x_{j}\right) \in A(D)$. It follows directly from the definition of k.
(I.1.c) $D_{\ell-k} \subset D\left[\left\{x_{k}, x_{k+1}, \ldots, x_{\ell}\right\} \cup\left\{y_{0}, y_{1}\right\}\right] \subset^{*} D$. It is a consequence of Definition 1, (I.1.a) and (I.1.b).

The hypothesis of Theorem 1 and (I.1.c) imply

$$
\begin{aligned}
A(D) \cap & \left(\left\{\left(y_{0}, x_{j}\right) \mid k+1 \leq j \leq \ell\right\} \cup\left\{\left(x_{j}, y_{1}\right) \mid k \leq j \leq \ell\right\}\right. \\
& \left.\cup\left\{\left(y_{1}, x_{k}\right),\left(x_{\ell}, y_{0}\right),\left(y_{0}, y_{1}\right),\left(y_{1}, y_{0}\right)\right\}\right) \neq \emptyset
\end{aligned}
$$

If $A(D) \cap\left\{\left(y_{0}, x_{j}\right) \mid k+1 \leq j \leq \ell\right\} \neq \emptyset$ we take $t, k+1 \leq t \leq \ell$ such that $\left(y_{0}, x_{t}\right) \in A(D)$. Then $k \leq t-1 \leq \ell-1$ and (I.1.a) implies $\left(x_{t-1}, y_{0}\right) \in$ $A(D)$. So we have $\left\{\left(x_{t-1}, y_{0}\right),\left(y_{0}, x_{t}\right)\right\} \subseteq A(D)$ and hence the succession $\left(x_{0}, x_{1}, \ldots, x_{t-1}, y_{0}, x_{t}, \ldots, x_{n}\right)$ is a path. A contradiction (because T is non-augmentable).

If $A(D) \cap\left\{\left(x_{j}, y_{1}\right) \mid k \leq j \leq \ell\right\} \neq \emptyset$ then, consider $t, k \leq t \leq \ell$ such that $\left(x_{t}, y_{1}\right) \in A(D)$; we have $k+1 \leq t+1 \leq \ell+1 \leq p$ and the definition of k implies $\left(y_{1}, x_{t+1}\right) \in A(D)$. So we have $\left\{\left(x_{t}, y_{1}\right),\left(y_{1}, x_{t+1}\right)\right\} \subseteq A(D)$ and hence $\left(x_{0}, \ldots, x_{t}, y_{1}, x_{t+1}, \ldots, x_{n}\right)$ is a path. A contradiction.

If $A(D) \cap\left\{\left(y_{1}, x_{k}\right),\left(x_{\ell}, y_{0}\right),\left(y_{0}, y_{1}\right),\left(y_{1}, y_{0}\right)\right\} \neq \emptyset$, then $A(D) \cap\left\{\left(y_{1}, x_{k}\right)\right.$, $\left.\left(x_{\ell}, y_{0}\right)\right\} \neq \emptyset$ (because $\left\{y_{0}, y_{1}\right\} \subseteq S$ and S is an independent set). Now, notice that the definition of ℓ implies $\left(x_{\ell}, y_{0}\right) \notin A(D)$; and the definition of k implies $\left(y_{1}, x_{k}\right) \notin A(D)$. So Proposition (I.1) is proved.
(I.2) For each $j,(k+1 \leq j \leq p),\left(y_{1}, x_{j}\right) \in A(D)$.

It follows directly from the definition of y_{1} and the definition of k.
$(\mathbf{I} .3) D_{p-k} \subset D\left[\left\{x_{k}, x_{k+1}, \ldots, x_{p}\right\} \cup\left\{y_{0}, y_{1}\right\}\right] \subset^{*} D$.
It is a direct consequence of (I.1) and (I.2).
Now (I.3) and the hypothesis of Theorem 1 imply

$$
\begin{aligned}
A(D) \cap & \left(\left\{\left(y_{0}, x_{j}\right) \mid k+1 \leq j \leq p\right\} \cup\left\{\left(x_{j}, y_{1}\right) \mid k \leq j \leq p\right\}\right. \\
& \left.\cup\left\{\left(y_{1}, x_{k}\right),\left(x_{p}, y_{0}\right),\left(y_{0}, y_{1}\right),\left(y_{1}, y_{0}\right)\right\}\right) \neq \emptyset
\end{aligned}
$$

If $A(D) \cap\left\{\left(y_{0}, x_{j}\right) \mid k+1 \leq j \leq p\right\} \neq \emptyset$, then we take $t, k+1 \leq t \leq p$ such that $\left(y_{0}, x_{t}\right) \in A(D)$ and we have $k \leq t-1 \leq p-1$. Proposition (I.1) implies $\left(x_{t-1}, y_{0}\right) \in A(D)$, so $\left\{\left(x_{t-1}, y_{0}\right),\left(y_{0}, x_{t}\right)\right\} \subseteq A(D)$ and the succession $\left(x_{0}, x_{1}, \ldots, x_{t-1}, y_{0}, x_{t}, \ldots, x_{n}\right)$ is a path. A contradiction (because T is nonaugmentable).

If $A(D) \cap\left\{\left(x_{j}, y_{1}\right) \mid k \leq j \leq p\right\} \neq \emptyset$ then, taking $t, k \leq t \leq p$ such that $\left(x_{t}, y_{1}\right) \in A(D)$ we have that $t \leq p-1$, (recall the definition of p) hence $k+1 \leq t+1 \leq p$ and (I.2) implies $\left(y_{1}, x_{t+1}\right) \in A(D)$. We conclude $\left\{\left(x_{t}, y_{1}\right),\left(y_{1}, x_{t+1}\right)\right\} \subseteq A(D)$ and the succession $\left(x_{0}, \ldots, x_{t}, y_{1}, x_{t+1}, \ldots, x_{n}\right)$ is a path. A contradiction.

If $A(D) \cap\left\{\left(y_{1}, x_{k}\right),\left(x_{p}, y_{0}\right),\left(y_{0}, y_{1}\right),\left(y_{1}, y_{0}\right)\right\} \neq \emptyset$ then $A(D) \cap\left\{\left(y_{1}, x_{k}\right)\right.$, $\left.\left(x_{p}, y_{0}\right)\right\} \neq \emptyset$ because $\left\{y_{0}, y_{1}\right\} \subseteq S$ and S is an independent set. Notice that the definition of k implies $\left(y_{1}, x_{k}\right) \notin A(D)$ and the definition of y_{0} and p imply $\left(x_{p}, y_{0}\right) \notin A(D)$.

Corollary 1. Let D be a digraph such that for each $i,(1 \leq i \leq m) D_{i} \subset D$ implies

$$
\begin{aligned}
A(D) & \cap\left(\left\{\left(y_{0}, x_{j}\right) \mid 1 \leq j \leq i\right\} \cup\left\{\left(x_{j}, y_{1}\right) \mid 0 \leq j \leq i\right\}\right. \\
& \left.\cup\left\{\left(y_{1}, x_{0}\right),\left(x_{i}, y_{0}\right),\left(y_{0}, y_{1}\right),\left(y_{1}, y_{0}\right)\right\}\right) \neq \emptyset
\end{aligned}
$$

and H an induced subdigraph of D. Then any maximal independent set of H meets every non-augmentable in H path of H whose length is at most m.

Corollary 2. Let D be a digraph such that for each natural number i, $D_{i} \subset D$ implies

$$
\begin{gathered}
A(D) \cap\left(\left\{\left(y_{0}, x_{j}\right) \mid 1 \leq j \leq i\right\} \cup\left\{\left(x_{j}, y_{1}\right) \mid 0 \leq j \leq i\right\}\right. \\
\left.\cup\left\{\left(y_{1}, x_{0}\right),\left(x_{i}, y_{0}\right),\left(y_{0}, y_{1}\right),\left(y_{1}, y_{0}\right)\right\}\right) \neq \emptyset
\end{gathered}
$$

Then for any induced subdigraph H of D, every maximal independent set of H meets any non-augmentable in H path of H.

Theorem 2. Let D be a digraph such that for each $i(1 \leq i \leq m) D_{i} \subset D$ implies

$$
\begin{aligned}
A(D) \cap & \left(\left\{\left(y_{0}, x_{j}\right) \mid 0 \leq j \leq i\right\} \cup\left\{\left(x_{j}, y_{1}\right) \mid 0 \leq j \leq i-1\right\}\right. \\
& \left.\cup\left\{\left(y_{1}, x_{0}\right),\left(x_{i}, y_{0}\right),\left(y_{0}, y_{1}\right),\left(y_{1}, y_{0}\right)\right\}\right) \neq \emptyset
\end{aligned}
$$

Then any maximal independent set meets every non-augmentable path of length at most m.

Proof. We proceed by contradiction. Suppose that D satisfies the hypothesis but there exists a maximal independent set S and a non-augmentable path $T=\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ of length $n, n \leq m$ such that $S \cap T=\emptyset$. Since S
is a maximal independent set, T non-augmentable and $S \cap T=\emptyset$ we have that there exists $y \in S$ such that $\left(y, x_{n}\right) \in A(D)$ and $\left(x_{n}, y\right) \notin A(D)$.

Notice that, since G is non-augmentable and $S \cap T=\emptyset$; there is no $S\left\{x_{0}\right\}$-arc in D. So we can define $p=\max \{i \in\{0,1, \ldots, n\} \mid$ there is no $S\left\{x_{i}\right\}$-arc in $\left.D\right\}$, the observation of above implies $p \leq n-1$. Moreover, since S is a maximal independent set, the definition of x_{p} implies that there exists $y_{o} \in S$ such that $\left(x_{p}, y_{0}\right) \in \operatorname{Asym}(D)$.

We will get a contradiction from the following assertion:
(I) For each $j(p \leq j \leq n),\left(x_{j}, y_{0}\right) \in A(D)$.
(In particular, $\left(x_{n}, y_{0}\right) \in A(D)$ and then the succession $\left(x_{0}, x_{1}, \ldots, x_{n}, y_{0}\right)$ is path contradicting that T is non-augmentable).

In order to prove (I) we proceed again by contradiction; suppose that there exists $j,(p \leq j \leq n)$ such that $\left(x_{j}, y_{0}\right) \notin A(D)$ and let $k=\min \{j \in$ $\left.\{p, \ldots, n\} \mid\left(x_{j}, y_{0}\right) \notin A(D)\right\}$. Clearly, $k>p$ because $\left(x_{p}, y_{0}\right) \in \operatorname{Asym}(D)$. Since $k>p$ the definition of p implies that there exists $y_{1} \in S$ such that $\left(y_{1}, x_{k}\right) \in A(D)$.
(I.1) For each $j,(p+1 \leq j \leq k),\left(y_{1}, x_{j}\right) \in A(D)$.

We proceed by contradiction to prove Proposition (I.1). Suppose that there exists $t(p+1 \leq t \leq k)$ suth that $\left(y_{1}, x_{t}\right) \notin A(D)$ and let $\ell=\max \{t \in$ $\left.\{p+1, \ldots, k\} \mid\left(y_{1}, x_{t}\right) \notin A(D)\right\}$ be.
(I.1.a) For each $j,(\ell+1 \leq j \leq k),\left(y_{1}, x_{j}\right) \in A(D)$.

It is a direct consequence of the definition of ℓ.
(I.1.b) For each $j,(\ell \leq j \leq k-1),\left(x_{j}, y_{0}\right) \in A(D)$. It follows directly from the definition of k.
(I.1.c) $D_{k-\ell} \subset D\left[\left\{x_{\ell}, \ldots, x_{k}\right\} \cup\left\{y_{0}, y_{1}\right\}\right] \subset^{*} D$.

It is a consequence of (I.1.a) and (I.1.b). The hypothesis of Theorem 2 and (I.1.c) imply

$$
\begin{aligned}
A(D) \cap & \left(\left\{\left(y_{0}, x_{j}\right) \mid \ell \leq j \leq k\right\} \cup\left\{\left(x_{j}, y_{1}\right) \mid \ell \leq j \leq k-1\right\}\right. \\
& \left.\cup\left\{\left(y_{1}, x_{\ell}\right),\left(x_{k}, y_{0}\right),\left(y_{0}, y_{1}\right),\left(y_{1}, y_{0}\right)\right\}\right) \neq \emptyset
\end{aligned}
$$

If $A(D) \cap\left\{\left(y_{0}, x_{j}\right) \mid \ell \leq j \leq k\right\} \neq \emptyset$, we take $t, \ell \leq t \leq k$ such that $\left(y_{0}, x_{t}\right) \in A(D)$. The definition of ℓ implies $\ell-1 \geq p$, hence $p \leq \ell-1 \leq t-1 \leq k-1$, and the definition of k implies $\left(x_{t-1}, y_{0}\right) \in$ $A(D)$. So, we have $\left\{\left(x_{t-1}, y_{0}\right),\left(y_{0}, x_{t}\right)\right\} \subseteq A(D)$ and then the succession $\left(x_{0}, x_{1}, \ldots, x_{t-1}, y_{0}, x_{t}, \ldots, x_{n}\right)$ is a path. A contradiction (because T is non-augmentable).

If $A(D) \cap\left\{\left(x_{j}, y_{1}\right) \mid \ell \leq j \leq k-1\right\} \neq \emptyset$, let $t, \ell \leq t \leq k-1$ be such that $\left(x_{t}, y_{1}\right) \in A(D)$. Then $\ell+1 \leq t+1 \leq k$ and the definition of ℓ implies $\left(y_{1}, x_{t+1}\right) \in A(D)$. Hence we have $\left\{\left(x_{t}, y_{1}\right),\left(y_{1}, x_{t+1}\right)\right\} \subseteq A(D)$ and the succession $\left(x_{0}, \ldots, x_{t}, y_{1}, x_{t+1}, \ldots, x_{n}\right)$ is a path. A contradiction.

If $A(D) \cap\left\{\left(y_{1}, x_{\ell}\right),\left(x_{k}, y_{0}\right),\left(y_{0}, y_{1}\right),\left(y_{1}, y_{0}\right)\right\} \neq \emptyset$, then $A(D) \cap\left\{\left(y_{1}, x_{\ell}\right)\right.$, $\left.\left(x_{k}, y_{0}\right)\right\} \neq \emptyset$ because $\left\{y_{0}, y_{1}\right\} \subseteq S$ and S is an independent set. But the definition of ℓ implies $\left(y_{1}, x_{\ell}\right) \notin A(D)$ and the definition of k implies $\left(x_{k}, y_{0}\right) \notin A(D)$. So Proposition (I.1) is proved.
(I.2) For each $j,(p \leq j \leq k-1),\left(x_{j}, y_{0}\right) \in A(D)$.

It follows directly from the definition of k.
(I.3) $D_{k-p} \subset D\left[\left\{x_{p}, x_{p+1}, \ldots, x_{k}\right\} \cup\left\{y_{0}, y_{1}\right\}\right] \subset^{*} D$.

It is a direct consequence of (I.1) and (I.2).
Now (I.3) and the hypothesis of Theorem 2 imply

$$
\begin{aligned}
A(D) \cap & \left(\left\{\left(y_{0}, x_{j}\right) \mid p \leq j \leq k\right\} \cup\left\{\left(x_{j}, y_{1}\right) \mid p \leq j \leq k-1\right\}\right. \\
& \left.\cup\left\{\left(y_{1}, x_{p}\right),\left(x_{k}, y_{0}\right),\left(y_{0}, y_{1}\right),\left(y_{1}, y_{0}\right)\right\}\right) \neq \emptyset .
\end{aligned}
$$

If $A(D) \cap\left\{\left(y_{0}, x_{j}\right) \mid p \leq j \leq k\right\} \neq \emptyset$, then we take $t, p \leq t \leq k$ such that $\left(y_{0}, x_{t}\right) \in A(D)$. The definition of p, and the fact $y_{0} \in S$ imply $t \neq p$, so $p+1 \leq t \leq k$ and $p \leq t-1 \leq k-1$. Now it follows from (I.2) that $\left(x_{t-1}, y_{0}\right) \in A(D)$. Hence $\left\{\left(x_{t-1}, y_{0}\right),\left(y_{0}, x_{t}\right)\right\} \subseteq A(D)$ and so the succession $\left(x_{0}, x_{1}, \ldots, x_{t-1}, y_{0}, x_{t}, \ldots, x_{n}\right)$ is a path. A contradiction.

If $A(D) \cap\left\{\left(x_{j}, y_{1}\right) \mid p \leq j \leq k-1\right\} \neq \emptyset$, then there exists $t, p \leq t \leq k-1$ such that $\left(x_{t}, y_{1}\right) \in A(D)$. Since $p+1 \leq t+1 \leq k$, it follows from (I.1) that $\left(y_{1}, x_{t+1}\right) \in A(D)$. Hence $\left\{\left(x_{t}, y_{1}\right),\left(y_{1}, x_{t+1}\right)\right\} \subseteq A(D)$ and the succession $\left(x_{0}, x_{1}, \ldots, x_{t}, y_{1}, x_{t+1}, \ldots, x_{n}\right)$ is a path. A contradiction.

If $A(D) \cap\left\{\left(y_{1}, x_{p}\right),\left(x_{k}, y_{0}\right),\left(y_{0}, y_{1}\right),\left(y_{1}, y_{0}\right)\right\} \neq \emptyset$ then $A(D) \cap\left\{\left(y_{1}, x_{p}\right)\right.$, $\left.\left(x_{k}, y_{0}\right)\right\} \neq \emptyset$ because $\left\{y_{0}, y_{1}\right\} \subseteq S$ and S is an independent set. But the definition of p (and the fact $y_{1} \in S$) implies $\left(y_{1}, x_{p}\right) \notin A(D)$ and the definition of k implies that $\left(x_{k}, y_{0}\right) \notin A(D)$. So Proposition (I) is proved.

Corollary 3. Let D be a digraph such that for each $i,(1, \leq i \leq m), D_{i} \subset D$ implies

$$
\begin{aligned}
A(D) \cap & \left(\left\{\left(y_{0}, x_{j}\right) \mid 0 \leq j \leq i\right\} \cup\left\{\left(x_{j}, y_{1}\right) \mid 0 \leq j \leq i-1\right\}\right. \\
& \left.\cup\left\{\left(y_{1}, x_{0}\right),\left(x_{i}, y_{0}\right),\left(y_{0}, y_{1}\right),\left(y_{1}, y_{0}\right)\right\}\right) \neq \emptyset,
\end{aligned}
$$

and H an induced subdigraph of D. Then any maximal independent set of H meets every non-augmentable in H path of H whose length is at most m.

Corollary 4. Let D be a digraph such that for each natural number i, $D_{i} \subset D$ implies

$$
\begin{aligned}
A(D) \cap & \left(\left\{\left(y_{0}, x_{j}\right) \mid 0 \leq j \leq i\right\} \cup\left\{\left(x_{j}, y_{1}\right) \mid 0 \leq j \leq i-1\right\}\right. \\
& \left.\cup\left\{\left(y_{1}, x_{0}\right),\left(x_{i}, y_{0}\right),\left(y_{0}, y_{1}\right),\left(y_{1}, y_{0}\right)\right\}\right) \neq \emptyset .
\end{aligned}
$$

Then for any induced subdigraph H of D, every maximal independent set of H meets every non-augmentable in H path of H.

Theorem 3. Let D be an asymmetrical digraph. The two following statements are equivalent:
(i) For each $i(1 \leq i \leq m) D_{i} \subset D$ implies

$$
A(D) \cap\left(\left\{\left(x_{0}, y_{1}\right),\left(y_{1}, x_{0}\right),\left(y_{0}, x_{i}\right),\left(x_{i}, y_{0}\right),\left(y_{0}, y_{1}\right),\left(y_{1}, y_{0}\right)\right\}\right) \neq \emptyset .
$$

(ii) For any induced subdigraph $H \subseteq^{*} D$ it holds that every maximal independent set of H meets each non-augmentable in H path of length at most m.

Proof. It follows directly from Theorem 1 that (i) implies (ii). Now suppose (ii) holds and let $i \in\{1, \ldots, m\}$ such that $D_{i} \subset D$; denote $H=D\left[V\left(D_{i}\right)\right]$. Suppose by contradiction that $A(D) \cap\left\{\left(x_{0}, y_{1}\right),\left(y_{1}, x_{0}\right),\left(y_{0}, x_{i}\right),\left(x_{i}, y_{0}\right)\right.$, $\left.\left(y_{0}, y_{1}\right),\left(y_{1}, y_{0}\right)\right\} \neq \emptyset$. Then $A(H) \cap\left\{\left(x_{0}, y_{1}\right),\left(y_{1}, x_{0}\right),\left(y_{0}, x_{i}\right),\left(x_{i}, y_{0}\right)\right.$, $\left.\left(y_{0}, y_{1}\right),\left(y_{1}, y_{0}\right)\right\} \neq \emptyset$. So $T=\left(x_{0}, x_{1}, \ldots, x_{i}\right)$ is a non-augmentable in H path of length $i \leq m$, and $S=\left\{y_{0}, y_{1}\right\}$ is a maximal independent set in H such that $S \cap T=\emptyset$ contradicting our assumption (ii).
If β is a class of graphs, a graph G is said to be a β-free graph whenever G has no induced subgraph isomorphic to a member of β. In what follows, we will denote by \mathcal{F} the set $\mathcal{F}=\left\{F_{1}, F_{2}\right\}$ where F_{1}, F_{2} are the graphs of Figure 2.

Theorem 4. Let G be a graph. The following statements are equivalent:
(i) G is an \mathcal{F}-free graph.
(ii) For any orientation \vec{G} of G and any induced subdigraph $H \subseteq \subseteq^{*} \vec{G}$ of \vec{G}; if T_{H} is a non-augmentable in H path and I_{H} is a maximal independent set of H, then $T_{H} \cap I_{H} \neq \emptyset$.

Proof. First let G be an \mathcal{F}-free graph and \vec{G} any orientation of G. We will prove the following assertion:
(a) If $D_{i} \subset D$, then $A(D) \cap\left\{\left(x_{0}, y_{1}\right),\left(y_{1}, x_{0}\right),\left(x_{i}, y_{0}\right),\left(y_{0}, x_{i}\right),\left(y_{0}, y_{1}\right)\right.$, $\left.\left(y_{1}, y_{0}\right)\right\} \neq \emptyset$ for any natural number i.

We consider two possible cases:
Case 1. If ($x_{0}, x_{1}, \ldots, x_{i}$) is an induced subdigraph of \vec{G}.
In this case we have $i \in\{1,2\}$ because if $i \geq 3$ then $G\left[\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\}\right]$ is an induced subgraph of G isomorphic to F_{1}, contradicting that G is \mathcal{F}-free.

When $i=1$, we have $D_{1} \subset \vec{G}$ and hence $F_{1} \subset G$ (notice that the underlying graph of D_{1} is isomorphic to F_{1}). Since G has no induced subgraph isomorphic to F_{1} we have $A(D) \cap\left\{\left(x_{0}, y_{1}\right),\left(y_{1}, x_{0}\right),\left(y_{0}, x_{1}\right),\left(x_{1}, y_{0}\right),\left(y_{0}, y_{1}\right)\right.$, $\left.\left(y_{1}, y_{0}\right)\right\} \neq \emptyset$ and (a) holds.

When $i=2$, we have $D_{2} \subset \vec{G}$ and hence $F_{2} \subset G$ (notice that the underlying graph of D_{2} is isomorphic to F_{2}). Since G has no induced subgraph isomorphic to F_{2}, we have $A(D) \cap\left\{\left(x_{0}, y_{1}\right),\left(y_{1}, x_{0}\right),\left(y_{0}, x_{2}\right),\left(x_{2}, y_{0}\right),\left(y_{0}, y_{1}\right)\right.$, $\left.\left(y_{1}, y_{0}\right)\right\} \neq \emptyset$ and (a) holds.

Case 2. If $\left(x_{0}, \ldots, x_{i}\right)$ is not an induced subdigraph of \vec{G}. (i.e. there exists $r, s\{r, s\} \subseteq\{0, \ldots, i\}|r-s| \geq 2$ such that $\left\{\left(x_{r}, x_{s}\right),\left(x_{s}, x_{r}\right)\right\} \cap$ $A(D) \neq \emptyset)$.

Let $j, k \in\{0, \ldots, i\}$ such that $k-j=\max \left\{r-s \mid s<r,\left\{\left(x_{r}, x_{s}\right)\right.\right.$, $\left.\left.\left(x_{s}, x_{r}\right)\right\} \cap A(D) \neq \emptyset\right\}$; the choice of k and j implies that the undirected path $\left(x_{0}, \ldots, x_{j}, x_{k}, x_{k+1}, \ldots, x_{i}\right)$ is an induced subgraph of G. Since G has no induced subgraph isomorphic to F_{1} (notice that F_{1} is the undirected path of length 3), we have that the length of the undirected path $\left(x_{0}, x_{1}, \ldots, x_{j}, x_{k}, x_{k+1}, \ldots, x_{i}\right)$ is one or two. We will analyze the two cases:

Case 2.1. The length of $\left(x_{0}, \ldots, x_{j}, x_{k}, \ldots, x_{i}\right)$ is one.
In this case $j=0, k=i=1$ and the underlying graph of $D\left[\left\{y_{0}, x_{0}, x_{1}, y_{1}\right\}\right]$ is isomorphic to F_{1}. Now since G has no induced subgraph isomorphic to F_{1}, we conclude that $A(D) \cap\left\{\left(x_{0}, y_{1}\right),\left(y_{1}, x_{0}\right),\left(x_{i}, y_{1}\right),\left(y_{1}, x_{i}\right),\left(y_{1}, y_{0}\right)\right.$, $\left.\left(y_{0}, y_{1}\right)\right\} \neq \emptyset$.

Case 2.2. The length of $\left(x_{0}, \ldots, x_{j}, x_{k}, \ldots, x_{i}\right)$ is two.
In this case $j=0, k=i-1$ or $j=1$ and $k=i$; in any case the underlying graph of $D\left[\left\{x_{0}, \ldots, x_{j}, x_{k}, \ldots, x_{i}\right\} \cup\left\{y_{0}, y_{1}\right\}\right]$ is isomorphic to F_{2}. The choice of j and k, and the fact that G has no induced subgraph isomorphic to F_{2} imply that $A(D) \cap\left\{\left(x_{0}, y_{1}\right),\left(y_{1}, x_{0}\right),\left(x_{i}, y_{0}\right),\left(y_{0}, x_{i}\right),\left(y_{0}, y_{1}\right),\left(y_{1}, y_{0}\right)\right\} \neq \emptyset$. So Proposition (a) is proved. Hence it follows from Corollary 1 that any maximal independent set of H meets every non-augmentable in H path of H. We conclude (i) implies (ii).

Now let G be a graph satisfying property (ii). If G contains an induced subgraph isomorphic to F_{1}, say $V\left(F_{1}\right)=\left\{y_{0}, x_{0}, x_{1}, y_{1}\right\}, E\left(F_{1}\right)=$ $\left\{y_{0} x_{0}, x_{0} x_{1}, x_{1} y_{1}\right\}$. Then considereing the orientation \vec{G} of G (where $V(\vec{G})=V(G)$ and $A(\vec{G})=\left\{\left(x_{0}, y_{0}\right),\left(x_{0}, x_{1}\right),\left(y_{1}, x_{1}\right)\right\} \cup\{(y, z),(z, y) \mid$ $\left.\left|\{y, z\} \cap V\left(F_{1}\right)\right| \leq 1\right\}$), we have: $H=\vec{G}\left[\left\{y_{0}, x_{0}, x_{1}, y_{1}\right\}\right]$ is an induced subdigraph of $\vec{G} ; T_{H}=\left(x_{0}, x_{1}\right)$ is a non-augmentable in H path of H and $I_{H}=\left\{y_{0}, y_{1}\right\}$ is a maximal independent set of H such that $T_{H} \cap I_{H}=\emptyset$ contradicting the assertion (ii).

If G contains an induced subgraph isomorphic to F_{2}, say $F_{2}=$ $G\left[\left\{y_{0}, x_{0}, x_{1}, x_{2}, y_{1}\right\}\right], V\left(F_{2}\right)=\left\{y_{0}, x_{0}, x_{1}, x_{2}, y_{1}\right\}, E\left(F_{2}\right)=\left\{y_{0} x_{0}, y_{0} x_{1}, y_{1} x_{1}\right.$, $\left.y_{1} x_{2}, x_{0} x_{1}, x_{1} x_{2}\right\}$. Then considering the orientation \vec{G} of G where $V(\vec{G})=$ $V(G)$

$$
\begin{aligned}
A(\vec{G})= & \left\{\left(y_{0}, x_{0}\right),\left(y_{0}, x_{1}\right),\left(y_{1}, x_{1}\right),\left(y_{1}, x_{2}\right),\left(x_{0}, x_{1}\right),\left(x_{1}, x_{2}\right)\right\} \\
& \cup\left\{(y, z),(z, y)| |\{y, z\} \cap V\left(F_{2}\right) \mid \leq 1\right\}
\end{aligned}
$$

we have: $H=\vec{G}\left[\left\{x_{0}, x_{1}, x_{2}, y_{0}, y_{1}\right\}\right]$ is an induced subdigraph of $\vec{G}, T_{H}=$ $\left(x_{0}, x_{1}, x_{2}\right)$ is a non-augmentable in H path of H and $I_{H}=\left\{y_{0}, y_{1}\right\}$ is a maximal independent set of H such that $T_{H} \cap I_{H}=\emptyset$ contradicting (ii).

Observation 1. Notice that D_{i} contains no induced subdigraph isomorphic to D_{j}, for each $j, 1 \leq j<i$; and D_{i} is a digraph with a non-augmentable in D_{i} path namely $T=\left(x_{0}, \ldots, x_{i}\right)$ and a maximal independent set $\alpha=\left\{y_{0}, y_{1}\right\}$ such that $T \cap \alpha=\emptyset$.

Figure 1

F_{1}

F_{2}

Figure 2

References

[1] C. Berge, Graphs (North-Holland, 1985).
[2] H. Galeana-Sánchez and H.A. Rincón-Mejía, Independent sets which meet all longest paths, Discrete Math. 152 (1996) 141-145.
[3] P.A. Grillet, Maximal chains and antichains, Fund. Math. 65 (1969) 157-167.
[4] J.M. Laborde, C. Payan and N.H. Huang, Independent sets and longest directed paths in digraphs, in: Graphs and Other Combinatorial Topics. Proceedings of the Third Czechoslovak Symposium of Graph Theory (1982) 173-177.

Received 16 January 1998
Revised 5 June 1998

