Discussiones Mathematicae Graph Theory 18 (1998) 165–169

ON THE SIMPLEX GRAPH OPERATOR

Bohdan Zelinka

Department of Applied Mathematics Faculty of Education, Technical University of Liberec Voroněžská 13, 461 17 Liberec Czech Republic e-mail: bohdan.zelinka@vslib.cz

Abstract

A simplex of a graph G is a subgraph of G which is a complete graph. The simplex graph $\operatorname{Simp}(G)$ of G is the graph whose vertex set is the set of all simplices of G and in which two vertices are adjacent if and only if they have a non-empty intersection. The simplex graph operator is the operator which to every graph G assigns its simplex graph $\operatorname{Simp}(G)$. The paper studies graphs which are fixed in this operator and gives a partial answer to a problem suggested by E. Prisner.

Keywords: simplex of a graph, simplex operator, limit cardinal number.

1991 Mathematics Subject Classification: 05C75.

In [1], page 131, E. Prisner posed the problem whether there are infinite Simp-periodic graphs other than those consisting of isolated vertices. This paper is a contribution to that problem. We consider undirected graphs without loops and multiple edges.

A simplex in a graph G is a subgraph of G which is a complete graph. (It need not be maximal, hence this concept is broader than that of a clique). If a simplex has k vertices, it is called a k-simplex. Also a 1-simplex is considered; it consists of one vertex. The simplex graph $\operatorname{Simp}(G)$ of G is the graph whose vertex set is the set of all simplices of G and in which two vertices are adjacent if and only if they have a non-empty intersection (as simplices). The simplex graph operator is the operator which assigns to every graph G its simplex graph $\operatorname{Simp}(G)$. A graph G is said to be Simp fixed, if it is a fixpoint of the simplex graph operator, i.e. if $\operatorname{Simp}(G) \cong G$. The graph G is said to be Simp-periodic, if it is a fixpoint of some iteration of the simplex graph operator.

The mentioned problem from [1] concerns Simp-periodic graphs, but we shall treat only Simp-fixed graphs. Obviously every graph consisting of isolated vertices (regular graph of degree 0) is Simp-fixed and also the empty graph (in which both the vertex set and the edge set are empty) is Simp-fixed. No other finite graph is Simp-fixed. Namely, the set of simplices of G includes all 1-simplices and their number is equal to the number of vertices of G. If G has at least one edge, it has, moreover, k-simplices for $k \geq 2$ and thus the vertex set of Simp(G) has more elements than the vertex set of G and Simp(G) cannot be isomorphic to G. Therefore there is a question whether an infinite graph exists which is Simp-fixed and has at least one edge.

The first theorem will have a preparatory character.

Theorem 1. Let G be a Simp-fixed graph. Then no vertex of G has a finite degree greater than one.

Proof. Suppose the contrary. Let r be the least integer greater than one such that G contains a vertex of degree r. Let a vertex v_0 have the degree r. By v_1, \ldots, v_r we denote the vertices adjacent to v_0 . As G is Simp-fixed, there exist simplices S_0, S_1, \ldots, S_r in G to which the vertices v_0, v_1, \ldots, v_r correspond; the simplex S_0 has non-empty intersections with all the simplices S_1, \ldots, S_r . Suppose that S_0 is a k-simplex for $k \ge 2$. Then it contains two distinct vertices w_1, w_2 . If both w_1, w_2 have degree 1, then S_0 is a 2-simplex forming a connected component of G. Then G must contain a connected component whose image in the operator Simp is S_0 ; but a 2-simplex is not a simplex graph for any graph. Therefore at least one of the vertices w_1, w_2 , say w_1 , has degree greater than one. As r is the minimum of such degrees, the degree of w_1 is at least r. The vertex w_1 is incident to at least r-1 edges distinct from w_1w_2 ; these edges with their end vertices form 2-simplices having a non-empty intersection with S_0 . Further such simplices are 1-simplices consisting of w_1 and consisting of w_2 . There are at least r+1 simplices having non-empty intersections with S_0 and thus the degree of v_0 is at least r+1, which is a contradiction. We have proved that S_0 is a 1-simplex; let it consist of a vertex S_0 . The vertex S_0 cannot have degree 0 or 1, because so would have also v_0 . Therefore the degree of S_0 is at least r. Each edge incident with S_0 forms a 2- simplex. As the degree of v_0 is r, no k-simplices for $k \geq 3$ containing S_0 exist; the neighbours of S_0 form an independent set and their number, i.e. the degree of S_0 , is exactly r. Any two of the mentioned 2-simplices have a common vertex S_0 and thus the neighbours of v_0 form an *r*-simplex. We have proved that a vertex of *G* with degree *r* has the property that its neighbours form an *r*-simplex. But then this must hold for S_0 , too, which is a contradiction. This proves the assertion.

At considerations concerning infinite cardinal numbers we shall suppose the validity of Axiom of Choice and the existence of well-ordering of cardinal numbers which follows from it. As usual, by \aleph_0 we denote the cardinality of the set of positive integers, by $\aleph_{\alpha+1}$ for a positive integer α we denote the cardinal number immediately following after \aleph_{α} . By \aleph_{ω} we denote the least cardinal number which is greater then \aleph_{α} for every non-negative integer α . It is well-known $\aleph_{\omega} = \sum_{\alpha < \omega} \aleph_{\alpha}$.

Theorem 2. Any graph G which contains at least one edge and whose vertex set has cardinality less that \aleph_{ω} is not Simp-fixed.

Proof. Suppose that there exists a Simp-fixed graph G having at least one edge. Then G contains vertices of non-zero degrees. If the maximum degree of a vertex of G is 1, then G contains at least one connected component which is a 2-simplex. The existence of such connected component was excluded in the proof of Theorem 1. Therefore G contains at least one vertex of degree grather than 1. According to Theorem 1 such a degree cannot be finite. Thus G contains a vertex v_0 of infinite degree r. If $r \geq \aleph_{\omega}$, then also $|V(G)| \geq \aleph_{\omega}$ and the assertion is true. Thus suppose $r = \aleph_{\alpha}$ for some non-negative integer α . The edges incident with v_0 together with their end vertices form 2-simplices. Any two of these 2-simplices have a common vertex v_0 and, as G is Simp-fixed, vertices of an \aleph_{α} -simplex S_1 in G correspond to them. Choose a vertex v_1 in S_1 and consider all simplices which are subgraphs of S and contain v_1 . Their number is $\exp \aleph_{\alpha}$ and any two of them have a common vertex v_1 ; therefore vertices of an $(\exp \aleph_{\alpha})$ -simplex S_2 in G correspond to them. We can proceed further, constructing always S_{n+1} from S_n . We have $|V(S_2)| = \exp \aleph_{\alpha} \ge \aleph_{\alpha+1}, |V(S_3)| = \exp \aleph_{\alpha} \ge \exp \aleph_{\alpha+1} \ge \aleph_{\alpha+2}$ etc., in general $|V(S_n)| \geq \aleph_{\alpha+n+1}$. Therefore the vertex set of G contains subsets of all cardinalities which are less that \aleph_{ω} and hence its cardinality is at least \aleph_{ω} .

A further theorem concerns a more general question.

Theorem 3. Let G be a connected graph such that the cardinalities of V(G)and of V(Simp(Simp(G))) are equal. Then the cardinality of V(G) is 0, 1 or a limit cardinal number.

Proof. At the beginning of this paper we have written that for a finite graph G having at least one edge always $|V(\operatorname{Simp}(G))| > |V(G)|$. Thus suppose that |V(G)| is equal to some isolated infinite cardinal number $\aleph_{\beta+1}$, where β is an ordinal number. If G contains a vertex of degree $\aleph_{\beta+1}$, then Simp(G) contains an $\aleph_{\beta+1}$ -simplex and Simp(Simp(G)) contains an $(\exp \aleph_{\beta+1})$ -simplex and thus $|V(\operatorname{Simp}(\operatorname{Simp}(G)))| \ge \exp \aleph_{\beta+1} > \aleph_{\beta+1}$. Hence all vertices of G must have degrees less than $\aleph_{\beta+1}$, i.e. less than or equal to \aleph_{β} . Choose a vertex v of G and for each non-negative integer k by $N_k(v)$ denote the set of all vertices whose distance from v in G is equal to k. As G is connected, the union of $N_k(v)$ for all non-negative integers k is V(G). By induction we prove that $|N_k(v)| \leq \aleph_\beta$ for each k. For k = 0 we have $N_0(v) = \{v\}$ and $|N_0(v)| = 1 < \aleph_{\beta}$. Now suppose that the assertion is true for some k. Each vertex of $N_{k+1}(v)$ is adjacent to a vertex of $N_k(v)$ and the cardinality of $N_{k+1}(v)$ cannot exceed the cardinality of the set of edges joining vertices of $N_k(v)$ with vertices of $N_{k+1}(v)$. As $|N_k(v)| \leq \aleph_\beta$ and each vertex of $N_k(v)$ has degree at most \aleph_β , there are at most \aleph_β such edges and $|N_{k+1}(v)| \leq \aleph_{\beta}$. And then V(G) is the union of \aleph_0 disjoint sets of cardinalities at most \aleph_{β} , hence also $|V(G)| \leq \aleph_{\beta} < \aleph_{\beta+1}$, which is a contradiction. This proves the assertion.

Note that in this case also the limit cardinal number \aleph_0 may occur. This theorem has importance for Simp-periodic graphs. By Simp^k we denote the k-th iteration of Simp, where k is a positive integer. From the inequality $|V(G)| \leq |V(\operatorname{Simp}(G))|$ it is clear that if $\operatorname{Simp}^k(G) \cong G$, then $|V(G)| = |V(\operatorname{Simp}(\operatorname{Simp}(G)))|$, the number k being an arbitrary positive integer, and the following corollary holds.

Corollary. Let G be a connected Simp-periodic graph. Then the cardinality of V(G) is 0, 1 or a limit cardinal number.

The last theorem will concern locally finite graphs. Remember the wellknown fact that a connected infinite locally finite graph has always a countable vertex set.

Theorem 4. Let G be an infinite locally finite graph. Then so is Simp(G).

Proof. Let S be a simplex in G; as G is locally finite, S is finite. Each vertex v of S can be contained only in a finite number of simplices of G, because this number cannot exceed the number of all subsets of the set of neighbours of v. As also S is finite, the set of all simplices having non-empty intersections with S is finite: the vertex of Simp(G) corresponding to S has

a finite degree. As S was chosen arbitrarily, the graph $\operatorname{Simp}(G)$ is locally finite. \blacksquare

References

[1] E. Prisner, Graph dynamics, Longman House, Burnt Mill, Harlow, Essex 1995.

Received 15 October 1997 Revised 18 March 1998