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Abstract

A simplex of a graph G is a subgraph of G which is a complete
graph. The simplex graph Simp(G) of G is the graph whose vertex
set is the set of all simplices of G and in which two vertices are adja-
cent if and only if they have a non-empty intersection. The simplex
graph operator is the operator which to every graph G assigns its
simplex graph Simp(G). The paper studies graphs which are fixed
in this operator and gives a partial answer to a problem suggested
by E. Prisner.
Keywords: simplex of a graph, simplex operator, limit cardinal
number.
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In [1], page 131, E. Prisner posed the problem whether there are infinite
Simp-periodic graphs other than those consisting of isolated vertices. This
paper is a contribution to that problem. We consider undirected graphs
without loops and multiple edges.

A simplex in a graph G is a subgraph of G which is a complete graph. (It
need not be maximal, hence this concept is broader than that of a clique).
If a simplex has k vertices, it is called a k-simplex. Also a 1-simplex is
considered; it consists of one vertex. The simplex graph Simp(G) of G is
the graph whose vertex set is the set of all simplices of G and in which two
vertices are adjacent if and only if they have a non-empty intersection (as
simplices). The simplex graph operator is the operator which assigns to
every graph G its simplex graph Simp(G). A graph G is said to be Simp-
fixed, if it is a fixpoint of the simplex graph operator, i.e. if Simp(G) ∼= G.
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The graph G is said to be Simp-periodic, if it is a fixpoint of some iteration
of the simplex graph operator.

The mentioned problem from [1] concerns Simp-periodic graphs, but we shall
treat only Simp-fixed graphs. Obviously every graph consisting of isolated
vertices (regular graph of degree 0) is Simp-fixed and also the empty graph
(in which both the vertex set and the edge set are empty) is Simp-fixed. No
other finite graph is Simp-fixed. Namely, the set of simplices of G includes
all 1-simplices and their number is equal to the number of vertices of G. If
G has at least one edge, it has, moreover, k-simplices for k ≥ 2 and thus
the vertex set of Simp(G) has more elements than the vertex set of G and
Simp(G) cannot be isomorphic to G. Therefore there is a question whether
an infinite graph exists which is Simp-fixed and has at least one edge.

The first theorem will have a preparatory character.

Theorem 1. Let G be a Simp-fixed graph. Then no vertex of G has a finite
degree greater than one.

Proof. Suppose the contrary. Let r be the least integer greater than one
such that G contains a vertex of degree r. Let a vertex v0 have the degree r.
By v1, . . . , vr we denote the vertices adjacent to v0. As G is Simp-fixed, there
exist simplices S0, S1, . . . , Sr in G to which the vertices v0, v1, . . . , vr corre-
spond; the simplex S0 has non-empty intersections with all the simplices
S1, . . . , Sr. Suppose that S0 is a k-simplex for k ≥ 2. Then it contains two
distinct vertices w1, w2. If both w1, w2 have degree 1, then S0 is a 2-simplex
forming a connected component of G. Then G must contain a connected
component whose image in the operator Simp is S0; but a 2-simplex is not
a simplex graph for any graph. Therefore at least one of the vertices w1, w2,
say w1, has degree greater than one. As r is the minimum of such degrees,
the degree of w1 is at least r. The vertex w1 is incident to at least r−1 edges
distinct from w1w2; these edges with their end vertices form 2-simplices hav-
ing a non-empty intersection with S0. Further such simplices are 1-simplices
consisting of w1 and consisting of w2. There are at least r+1 simplices hav-
ing non-empty intersections with S0 and thus the degree of v0 is at least
r + 1, which is a contradiction. We have proved that S0 is a 1-simplex; let
it consist of a vertex S0. The vertex S0 cannot have degree 0 or 1, because
so would have also v0. Therefore the degree of S0 is at least r. Each edge
incident with S0 forms a 2- simplex. As the degree of v0 is r, no k-simplices
for k ≥ 3 containing S0 exist; the neighbours of S0 form an independent
set and their number, i.e. the degree of S0, is exactly r. Any two of the
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mentioned 2-simplices have a common vertex S0 and thus the neighbours
of v0 form an r-simplex. We have proved that a vertex of G with degree r
has the property that its neighbours form an r-simplex. But then this must
hold for S0, too, which is a contradiction. This proves the assertion.

At considerations concerning infinite cardinal numbers we shall suppose the
validity of Axiom of Choice and the existence of well-ordering of cardinal
numbers which follows from it. As usual, by ℵ0 we denote the cardinality of
the set of positive integers, by ℵα+1 for a positive integer α we denote the
cardinal number immediately following after ℵα. By ℵω we denote the least
cardinal number which is greater then ℵα for every non-negative integer α.
It is well-known ℵω =

∑
α<ω ℵα.

Theorem 2. Any graph G which contains at least one edge and whose
vertex set has cardinality less that ℵω is not Simp-fixed.

Proof. Suppose that there exists a Simp-fixed graph G having at least one
edge. Then G contains vertices of non-zero degrees. If the maximum degree
of a vertex of G is 1, then G contains at least one connected component which
is a 2-simplex. The existence of such connected component was excluded in
the proof of Theorem 1. Therefore G contains at least one vertex of degree
grather than 1. According to Theorem 1 such a degree cannot be finite. Thus
G contains a vertex v0 of infinite degree r. If r ≥ ℵω, then also |V (G)| ≥ ℵω

and the assertion is true. Thus suppose r = ℵα for some non-negative
integer α. The edges incident with v0 together with their end vertices form
2-simplices. Any two of these 2-simplices have a common vertex v0 and,
as G is Simp-fixed, vertices of an ℵα-simplex S1 in G correspond to them.
Choose a vertex v1 in S1 and consider all simplices which are subgraphs of S
and contain v1. Their number is expℵα and any two of them have a common
vertex v1; therefore vertices of an (expℵα)-simplex S2 in G correspond to
them. We can proceed further, constructing always Sn+1 from Sn. We
have |V (S2)| = expℵα ≥ ℵα+1, |V (S3)| = expℵα ≥ expℵα+1 ≥ ℵα+2

etc., in general |V (Sn)| ≥ ℵα+n+1. Therefore the vertex set of G contains
subsets of all cardinalities which are less that ℵω and hence its cardinality is
at least ℵω.

A further theorem concerns a more general question.

Theorem 3. Let G be a connected graph such that the cardinalities of V (G)
and of V (Simp(Simp(G))) are equal. Then the cardinality of V (G) is 0, 1
or a limit cardinal number.
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Proof. At the beginning of this paper we have written that for a finite
graph G having at least one edge always |V (Simp(G))| > |V (G)|. Thus
suppose that |V (G)| is equal to some isolated infinite cardinal number
ℵβ+1, where β is an ordinal number. If G contains a vertex of degree
ℵβ+1, then Simp(G) contains an ℵβ+1-simplex and Simp(Simp(G)) contains
an (expℵβ+1)-simplex and thus |V (Simp(Simp(G)))| ≥ expℵβ+1 > ℵβ+1.
Hence all vertices of G must have degrees less than ℵβ+1, i.e. less than or
equal to ℵβ. Choose a vertex v of G and for each non-negative integer k by
Nk(v) denote the set of all vertices whose distance from v in G is equal to
k. As G is connected, the union of Nk(v) for all non-negative integers k is
V (G). By induction we prove that |Nk(v)| ≤ ℵβ for each k. For k = 0 we
have N0(v) = {v} and |N0(v)| = 1 < ℵβ. Now suppose that the assertion
is true for some k. Each vertex of Nk+1(v) is adjacent to a vertex of Nk(v)
and the cardinality of Nk+1(v) cannot exceed the cardinality of the set of
edges joining vertices of Nk(v) with vertices of Nk+1(v). As |Nk(v)| ≤ ℵβ

and each vertex of Nk(v) has degree at most ℵβ, there are at most ℵβ such
edges and |Nk+1(v)| ≤ ℵβ. And then V (G) is the union of ℵ0 disjoint sets
of cardinalities at most ℵβ, hence also |V (G)| ≤ ℵβ < ℵβ+1, which is a
contradiction. This proves the assertion.

Note that in this case also the limit cardinal number ℵ0 may occur. This
theorem has importance for Simp-periodic graphs. By Simpk we denote the
k-th iteration of Simp, where k is a positive integer. From the inequality
|V (G)| ≤ |V (Simp(G))| it is clear that if Simpk(G) ∼= G, then |V (G)| =
|V (Simp(Simp(G)))|, the number k being an arbitrary positive integer, and
the following corollary holds.

Corollary. Let G be a connected Simp-periodic graph. Then the cardinality
of V (G) is 0, 1 or a limit cardinal number.

The last theorem will concern locally finite graphs. Remember the well-
known fact that a connected infinite locally finite graph has always a count-
able vertex set.

Theorem 4. Let G be an infinite locally finite graph. Then so is Simp(G).

Proof. Let S be a simplex in G; as G is locally finite, S is finite. Each
vertex v of S can be contained only in a finite number of simplices of G,
because this number cannot exceed the number of all subsets of the set of
neighbours of v. As also S is finite, the set of all simplices having non-empty
intersections with S is finite: the vertex of Simp(G) coressponding to S has
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a finite degree. As S was chosen arbitrarily, the graph Simp(G) is locally
finite.
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