ON THE SIMPLEX GRAPH OPERATOR

Bohdan Zelinka
Department of Applied Mathematics
Faculty of Education, Technical University of Liberec
Voroněžská 13, 46117 Liberec
Czech Republic
e-mail: bohdan.zelinka@vslib.cz

Abstract

A simplex of a graph G is a subgraph of G which is a complete graph. The simplex graph $\operatorname{Simp}(G)$ of G is the graph whose vertex set is the set of all simplices of G and in which two vertices are adjacent if and only if they have a non-empty intersection. The simplex graph operator is the operator which to every graph G assigns its simplex graph $\operatorname{Simp}(G)$. The paper studies graphs which are fixed in this operator and gives a partial answer to a problem suggested by E. Prisner.

Keywords: simplex of a graph, simplex operator, limit cardinal number.
1991 Mathematics Subject Classification: 05C75.

In [1], page 131, E. Prisner posed the problem whether there are infinite Simp-periodic graphs other than those consisting of isolated vertices. This paper is a contribution to that problem. We consider undirected graphs without loops and multiple edges.

A simplex in a graph G is a subgraph of G which is a complete graph. (It need not be maximal, hence this concept is broader than that of a clique). If a simplex has k vertices, it is called a k-simplex. Also a 1 -simplex is considered; it consists of one vertex. The simplex $\operatorname{graph} \operatorname{Simp}(G)$ of G is the graph whose vertex set is the set of all simplices of G and in which two vertices are adjacent if and only if they have a non-empty intersection (as simplices). The simplex graph operator is the operator which assigns to every graph G its simplex graph $\operatorname{Simp}(G)$. A graph G is said to be Simpfixed, if it is a fixpoint of the simplex graph operator, i.e. if $\operatorname{Simp}(G) \cong G$.

The graph G is said to be Simp-periodic, if it is a fixpoint of some iteration of the simplex graph operator.

The mentioned problem from [1] concerns Simp-periodic graphs, but we shall treat only Simp-fixed graphs. Obviously every graph consisting of isolated vertices (regular graph of degree 0) is Simp-fixed and also the empty graph (in which both the vertex set and the edge set are empty) is Simp-fixed. No other finite graph is Simp-fixed. Namely, the set of simplices of G includes all 1 -simplices and their number is equal to the number of vertices of G. If G has at least one edge, it has, moreover, k-simplices for $k \geq 2$ and thus the vertex set of $\operatorname{Simp}(G)$ has more elements than the vertex set of G and $\operatorname{Simp}(G)$ cannot be isomorphic to G. Therefore there is a question whether an infinite graph exists which is Simp-fixed and has at least one edge.

The first theorem will have a preparatory character.
Theorem 1. Let G be a Simp-fixed graph. Then no vertex of G has a finite degree greater than one.

Proof. Suppose the contrary. Let r be the least integer greater than one such that G contains a vertex of degree r. Let a vertex v_{0} have the degree r. By v_{1}, \ldots, v_{r} we denote the vertices adjacent to v_{0}. As G is Simp-fixed, there exist simplices $S_{0}, S_{1}, \ldots, S_{r}$ in G to which the vertices $v_{0}, v_{1}, \ldots, v_{r}$ correspond; the simplex S_{0} has non-empty intersections with all the simplices S_{1}, \ldots, S_{r}. Suppose that S_{0} is a k-simplex for $k \geq 2$. Then it contains two distinct vertices w_{1}, w_{2}. If both w_{1}, w_{2} have degree 1 , then S_{0} is a 2 -simplex forming a connected component of G. Then G must contain a connected component whose image in the operator Simp is S_{0}; but a 2 -simplex is not a simplex graph for any graph. Therefore at least one of the vertices w_{1}, w_{2}, say w_{1}, has degree greater than one. As r is the minimum of such degrees, the degree of w_{1} is at least r. The vertex w_{1} is incident to at least $r-1$ edges distinct from $w_{1} w_{2}$; these edges with their end vertices form 2 -simplices having a non-empty intersection with S_{0}. Further such simplices are 1-simplices consisting of w_{1} and consisting of w_{2}. There are at least $r+1$ simplices having non-empty intersections with S_{0} and thus the degree of v_{0} is at least $r+1$, which is a contradiction. We have proved that S_{0} is a 1 -simplex; let it consist of a vertex S_{0}. The vertex S_{0} cannot have degree 0 or 1 , because so would have also v_{0}. Therefore the degree of S_{0} is at least r. Each edge incident with S_{0} forms a 2 - simplex. As the degree of v_{0} is r, no k-simplices for $k \geq 3$ containing S_{0} exist; the neighbours of S_{0} form an independent set and their number, i.e. the degree of S_{0}, is exactly r. Any two of the
mentioned 2-simplices have a common vertex S_{0} and thus the neighbours of v_{0} form an r-simplex. We have proved that a vertex of G with degree r has the property that its neighbours form an r-simplex. But then this must hold for S_{0}, too, which is a contradiction. This proves the assertion.

At considerations concerning infinite cardinal numbers we shall suppose the validity of Axiom of Choice and the existence of well-ordering of cardinal numbers which follows from it. As usual, by \aleph_{0} we denote the cardinality of the set of positive integers, by $\aleph_{\alpha+1}$ for a positive integer α we denote the cardinal number immediately following after \aleph_{α}. By \aleph_{ω} we denote the least cardinal number which is greater then \aleph_{α} for every non-negative integer α. It is well-known $\aleph_{\omega}=\sum_{\alpha<\omega} \aleph_{\alpha}$.

Theorem 2. Any graph G which contains at least one edge and whose vertex set has cardinality less that \aleph_{ω} is not Simp-fixed.
Proof. Suppose that there exists a Simp-fixed graph G having at least one edge. Then G contains vertices of non-zero degrees. If the maximum degree of a vertex of G is 1 , then G contains at least one connected component which is a 2 -simplex. The existence of such connected component was excluded in the proof of Theorem 1. Therefore G contains at least one vertex of degree grather than 1 . According to Theorem 1 such a degree cannot be finite. Thus G contains a vertex v_{0} of infinite degree r. If $r \geq \aleph_{\omega}$, then also $|V(G)| \geq \aleph_{\omega}$ and the assertion is true. Thus suppose $r=\aleph_{\alpha}$ for some non-negative integer α. The edges incident with v_{0} together with their end vertices form 2 -simplices. Any two of these 2 -simplices have a common vertex v_{0} and, as G is Simp-fixed, vertices of an \aleph_{α}-simplex S_{1} in G correspond to them. Choose a vertex v_{1} in S_{1} and consider all simplices which are subgraphs of S and contain v_{1}. Their number is $\exp \aleph_{\alpha}$ and any two of them have a common vertex v_{1}; therefore vertices of an $\left(\exp \aleph_{\alpha}\right)$-simplex S_{2} in G correspond to them. We can proceed further, constructing always S_{n+1} from S_{n}. We have $\left|V\left(S_{2}\right)\right|=\exp \aleph_{\alpha} \geq \aleph_{\alpha+1},\left|V\left(S_{3}\right)\right|=\exp \aleph_{\alpha} \geq \exp \aleph_{\alpha+1} \geq \aleph_{\alpha+2}$ etc., in general $\left|V\left(S_{n}\right)\right| \geq \aleph_{\alpha+n+1}$. Therefore the vertex set of G contains subsets of all cardinalities which are less that \aleph_{ω} and hence its cardinality is at least \aleph_{ω}.
A further theorem concerns a more general question.
Theorem 3. Let G be a connected graph such that the cardinalities of $V(G)$ and of $V(\operatorname{Simp}(\operatorname{Simp}(G)))$ are equal. Then the cardinality of $V(G)$ is 0,1 or a limit cardinal number.

Proof. At the beginning of this paper we have written that for a finite graph G having at least one edge always $|V(\operatorname{Simp}(G))|>|V(G)|$. Thus suppose that $|V(G)|$ is equal to some isolated infinite cardinal number $\aleph_{\beta+1}$, where β is an ordinal number. If G contains a vertex of degree $\aleph_{\beta+1}$, then $\operatorname{Simp}(G)$ contains an $\aleph_{\beta+1}$-simplex and $\operatorname{Simp}(\operatorname{Simp}(G))$ contains an $\left(\exp \aleph_{\beta+1}\right)$-simplex and thus $|V(\operatorname{Simp}(\operatorname{Simp}(G)))| \geq \exp \aleph_{\beta+1}>\aleph_{\beta+1}$. Hence all vertices of G must have degrees less than $\aleph_{\beta+1}$, i.e. less than or equal to \aleph_{β}. Choose a vertex v of G and for each non-negative integer k by $N_{k}(v)$ denote the set of all vertices whose distance from v in G is equal to k. As G is connected, the union of $N_{k}(v)$ for all non-negative integers k is $V(G)$. By induction we prove that $\left|N_{k}(v)\right| \leq \aleph_{\beta}$ for each k. For $k=0$ we have $N_{0}(v)=\{v\}$ and $\left|N_{0}(v)\right|=1<\aleph_{\beta}$. Now suppose that the assertion is true for some k. Each vertex of $N_{k+1}(v)$ is adjacent to a vertex of $N_{k}(v)$ and the cardinality of $N_{k+1}(v)$ cannot exceed the cardinality of the set of edges joining vertices of $N_{k}(v)$ with vertices of $N_{k+1}(v)$. As $\left|N_{k}(v)\right| \leq \aleph_{\beta}$ and each vertex of $N_{k}(v)$ has degree at most \aleph_{β}, there are at most \aleph_{β} such edges and $\left|N_{k+1}(v)\right| \leq \aleph_{\beta}$. And then $V(G)$ is the union of \aleph_{0} disjoint sets of cardinalities at most \aleph_{β}, hence also $|V(G)| \leq \aleph_{\beta}<\aleph_{\beta+1}$, which is a contradiction. This proves the assertion.

Note that in this case also the limit cardinal number \aleph_{0} may occur. This theorem has importance for Simp-periodic graphs. By Simp ${ }^{k}$ we denote the k-th iteration of Simp, where k is a positive integer. From the inequality $|V(G)| \leq|V(\operatorname{Simp}(G))|$ it is clear that if $\operatorname{Simp}^{k}(G) \cong G$, then $|V(G)|=$ $|V(\operatorname{Simp}(\operatorname{Simp}(G)))|$, the number k being an arbitrary positive integer, and the following corollary holds.

Corollary. Let G be a connected Simp-periodic graph. Then the cardinality of $V(G)$ is 0,1 or a limit cardinal number.

The last theorem will concern locally finite graphs. Remember the wellknown fact that a connected infinite locally finite graph has always a countable vertex set.

Theorem 4. Let G be an infinite locally finite graph. Then so is $\operatorname{Simp}(G)$.
Proof. Let S be a simplex in G; as G is locally finite, S is finite. Each vertex v of S can be contained only in a finite number of simplices of G, because this number cannot exceed the number of all subsets of the set of neighbours of v. As also S is finite, the set of all simplices having non-empty intersections with S is finite: the vertex of $\operatorname{Simp}(G)$ coressponding to S has
a finite degree. As S was chosen arbitrarily, the $\operatorname{graph} \operatorname{Simp}(G)$ is locally finite.

References

[1] E. Prisner, Graph dynamics, Longman House, Burnt Mill, Harlow, Essex 1995.
Received 15 October 1997
Revised 18 March 1998

