
Discussiones Mathematicae 159
Graph Theory 18 (1998 ) 159–164

SHORT CYCLES OF LOW WEIGHT IN NORMAL

PLANE MAPS WITH MINIMUM DEGREE 5

Oleg V. Borodin∗

Novosibirsk State University

Siberian Branch, Russian Academy of Sciences

Novosibirsk, 630090, Russia

and

Douglas R. Woodall

Department of Mathematics, University of Nottingham

Nottingham, NG7 2RD, England

Abstract

In this note, precise upper bounds are determined for the minimum
degree-sum of the vertices of a 4-cycle and a 5-cycle in a plane trian-
gulation with minimum degree 5: w(C4) ≤ 25 and w(C5) ≤ 30. These
hold because a normal plane map with minimum degree 5 must contain
a 4-star with w(K1,4) ≤ 30. These results answer a question posed by
Kotzig in 1979 and recent questions of Jendrol’ and Madaras.
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The weight of a subgraph in a plane map M is the sum of the degrees
(in M) of its vertices. By w(S), we denote the minimum weight of a sub-
graph isomorphic to S in M . By M5 or T5 we mean a connected plane
map with minimum degree 5 and each face having size at least 3 (that is,
a normal plane map) or exactly 3 (that is, a triangulation), respectively.
As conjectured by Kotzig [4] for each T5 and proved in [1] for each M5,
w(C3) ≤ 17, and this bound is precise. Also, Kotzig [5] announced that 25 ≤
w(C4) ≤ 26 for each T5. Jendrol’ and Madaras [3] proved that w(C4) ≤ 35,
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w(C5) ≤ 45 and w(K1,4) ≤ 39 for each T5 and w(K1,3) ≤ 23, which bound
is best possible, and w(K1,4) ≤ 45 for each M5.

Our main result is:

Theorem 1. Each normal plane map with minimum degree 5 contains a

4-star with weight at most 30 with a 5-vertex as its centre.

This clearly implies:

Corollary 2. Each plane triangulation with minimum degree 5 contains a

4-cycle with weight at most 25 and a 5-cycle with weight at most 30.

The bounds in Theorem 1 and Corollary 2 are all precise, as the follow-
ing examples show. Take any polyhedron in which every vertex is of type
5.62 or 63, such as the Archimedean solid in which every vertex is inci-
dent with a 5-face and two 6-faces. Truncate all the vertices to obtain a
graph in which every vertex has type 3.10.12 or 3.122. Cap each 10-face and
12-face by putting a new vertex inside it and joining it to all the boundary
vertices. We have obtained a triangulation with minimum degree 5 in which
the neighbours of every 5-vertex v have degrees (in cyclic order round v)
(5, 5, 10, 5, 12) or (5, 5, 12, 5, 12). This graph clearly has w(C4) = 25 and
w(C5) = w(K1,4) = 30.

It follows that our results above completely solve the problems raised
by Kotzig [5] and Jendrol’ and Madaras [3]. In the proof below, we use some
ideas from our unpublished manuscript [2].

We shall use the following terminology. The number of edges incident
with a vertex v or r(f) respectively, and v1, . . . , vd(v) denote the neighbours
of v, in cyclic order round v. If d(vi) = 5 then vi is a strong, semiweak

or weak neighbour of v according as none, one or both of vi−1, vi+1 have
degree 5, and vi is twice weak if d(vj) = 5 whenever |j−i| ≤ 2 (modulo d(v)).
A k-vertex is a vertex v with d(v) = k, and a >k-vertex has d(v) > k, etc.

Proof of Theorem 1. It suffices to prove the theorem for triangulations,
since adding an extra edge to a normal plane map with minimum degree 5
cannot create a new 4-star with a 5-vertex as its centre, nor can it reduce
the weight of any existing 4-star. So suppose that G = (V,E, F ) is a trian-
gulation that is a counterexample to Theorem 1. Since G is a triangulation,
2|E| = 3|F |, and so Euler’s formula |V | − |E| + |F | = 2 implies

∑

v∈V

(d(v) − 6) = −12.(1)
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Assign a charge µ(v) = d(v)−6 to each vertex v ∈ V , so that only 5-vertices
have negative charge. Using the properties of G as a counterexample, we
define a local redistribution of charges, preserving their sum, such that the
new charge µ′(v) is non-negative for all v ∈ V . This will contradict the fact
that the sum of the new charges is, by (1), equal to −12. The technique
of discharging is often used in solving structural and colouring problems on
plane graphs.

Our discharging rules are as follows.

Rule 1. (a) Each vertex v of degree 7 sends 1
3 to each strong neighbour and

1
6 to each semiweak neighbour.

(b) Each vertex v with degree 8, 9 or ≥12 first gives a “basic” contribu-

tion of µ(v)
d(v) = d(v)−6

d(v) to each neighbouring vertex vi. Then each neighbour

vi with d(vi) > 5 shares the charge just received equally between vi−1 and
vi+1.

(c) Each 10-vertex or 11-vertex v first gives a “basic” 2
5 to each neigh-

bour. Then, whenever d(vi) > 5, vi transfers 1
10 of v’s donation to each

5-vertex in {vi−2, vi−1, vi+1, vi+2}.

Rule 2. If d(v) = 11 then v gives a “supplementary” 1
10 to each twice weak

neighbour.

Rule 3. If v is 5-vertex adjacent to an 11-vertex w, say w = v5, and if
d(v1) = d(v4) = 5, then v gives back to v5 the following:

(a) 1
2 if both v2 and v3 have degree ≥9;

(b) 1
4 if at least one of v2, v3 has degree exactly 8.

We must prove that µ′(v) ≥ 0 for each vertex v. If d(v) /∈ {5, 7, 11}, then, by
Rule 1 (b) and (c), v distributes its own original charge of µ(v) = d(v) − 6
to its neigbours in equal shares, and possibly participates in transferring the
others’ charges, so that µ′(v) ≥ d(v) − 6 − d(v) × d(v)−6

d(v) = 0. We deal with

the remaining values of d(v) in three cases.

Case 1. d(v) = 11. Then µ(v) = d(v) − 6 = 5. If v has a neighbour
vi with d(vi) ≥ 6, then none of vi−2, . . . , vi+2 is twice weak and so none of
them receives a supplementary 1

10 from v by Rule 2. Thus µ′(v) ≥ 5 − 11 ×
2
5 − 6 × 1

10 = 0. So we may assume that all neighbours of v have degree 5.

Each edge vivi+1 lies in two triangles, say vivi+1v and vivi+1wi. If
d(wi) = 8 for some i, then v receives 1

4 by Rule 3(b) from each of vi and
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vi+1, so that µ′(v) ≥ 5 + 2 × 1
4 − 11 × 1

2 = 0. So we may assume that
d(wi) 6= 8, for each i.

If d(wi−1) ≥ 9 and d(wi) ≥ 9 for some i, then vi gives back 1
2 to v by

Rule 3(a), and we are done. Also, it is impossible that d(wi−1) ≤ 7 and
d(wi) ≤ 7 for any i, since by hypothesis there is no 4-star with weight ≤ 30
centered at vi. Therefore, for each i, one of d(wi−1) and d(wi) is at most 7
and the other is at least 9. But this cannot hold for all i modulo 11, since
11 is odd.

Case 2. d(v) = 7. Then µ(v) = d(v) − 6 = 1. By Rule 1(a), no weak
neighbour receives anything from v, and so there are at most four receivers.
If there are exactly four, then at least two are semiweak and so receive 1

6
each, with a total expenditure by v of at most 2× 1

6 +2× 1
3 = 1. Otherwise,

v gives at most 3 × 1
3 = 1.

neighbour: strong semiweak weak

7: 1/3 1/6 0
8: 1/2 3/8 1/4
9: 2/3 1/2 1/3
10: ≥ 3/5 ≥ 1/2 ≥ 2/5
11: ≥ 3/5 ≥ 1/2 1/2

≥ 12 : ≥ 1 ≥ 3/4 ≥ 1/2

Table 1. Donations to 5-vertices by Rules 1 and 2

Case 3. d(v) = 5. Then µ(v) = d(v) − 6 = −1. The amounts of
charge received by v from its neighbours by Rules 1 and 2 are summarized
in Table 1. However, v may give back charge to some 11-vertices by Rule 3.

Suppose Rule 3(a) applies to v, so that v’s neighbours v1, . . . , v5 have
degrees (5,≥9,≥9, 5, 11). Then v is a semiweak neighbour of each of v2 and
v3, so that it receives at least 1

2 from each of them by Table 1, and gives
nothing back to either of them by Rule 3. It also receives at least 1

2 from v5

by Table 1, and gives back exactly 1
2 to v5 by Rule 3(a). We deduce that

µ′(v) ≥ 0.
From now on, we may assume that Rule 3(a) does not apply to v.

Suppose Rule 3(b) applies. Because v is not the centre of a 4-star with weight
≤ 30, v’s neighbours have degrees (5, 8,≥8, 5, 11). Thus v is a semiweak
neighbour of v2 and v3 and so it receives at least 3

8 from each of them by
Table 1, and gives nothing back. It also receives at least 1

2 from v5 by
Table 1, and gives 1

4 back. Thus µ′(v) ≥ 0.
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So we may suppose that Rule 3 does not apply to v at all, and the amount
that v receives from its neighbours is at least that given in Table 1. Be-
cause of the absence of 4-stars with weight ≤ 30, the degree-sequence of v’s
neighbours, in nondecreasing order, must be one of the following.

(5, 5, 5,≥11,≥11): Then each ≥11-vertex gives ≥ 1
2 to v by Table 1.

(5, 5, 6,≥10,≥10): If each of the two ≥10-neighbours gives ≥ 1
2 to v, we

are done.
Suppose there is a 10-vertex, say v1, giving 2

5 to v. Then v must be a
twice weak neighbour of v1 by Rule 1(c). W.l.o.g., suppose that d(v2) =
d(v5) = 5 and d(v3) = 6. If d(v4) ≥ 12 then v4 gives ≥ 3

4 to v by Table 1, so
that µ′(v) ≥ −1 + 2

5 + 3
4 > 0. So we may assume 10 ≤ d(v4) ≤ 11; note that

v is not a twice weak neighbour of v4. Let u be the vertex (other than v)
adjacent to v4 and v5. Since v5 has two 5-neighbours other than u (because
v is a twice weak neighbour of v1), and also has a 10-neighbour v1, it follows
that d(u) > 5. Then Rule 1(c) ensures that v receives 1

10 from v4 via each
of v3 and u, so that µ′(v) ≥ −1 + 2 × 2

5 + 2 × 1
10 = 0.

(5, 5, 7,≥9,≥9): If v is weak for neither of the ≥9-neighbours then each
of them gives ≥ 1

2 , and we are done by Table 1. Otherwise, v is weak for
a ≥9-neighbour, giving ≥ 1

3 , and semiweak for the other two neighbours of
degree 7 and ≥ 9, giving ≥ 1

6 + 1
2 in total.

(5, 5,≥8,≥8,≥8): If v is weak for none of the three ≥ 8-neighbours,
then v receives ≥ 3 × 3

8 > 1 in total. Otherwise, v is weak for one of them
and semiweak for the other two, so that receives ≥ 1

4 + 2 × 3
8 = 1 in total.

(5, 6, 6,≥9,≥9): Each ≥9-neigbour gives ≥ 1
2 .

(5, 6,≥7,≥8,≥8): For each of the three ≥7-neighbours, v is semiweak
or strong; for at least one of them, v is strong. By Table 1, v thus receives
either ≥ 1

6 + 3
8 + 1

2 > 1 or ≥ 3
8 + 3

8 + 1
3 > 1.

(5,≥7,≥7,≥7,≥7): For at least two ≥7-neighbours, v is strong; for the
others, semiweak. Thus, µ′(v) ≥ −1 + 2 × 1

3 + 2 × 1
6 = 0.

(≥6,≥6,≥6,≥8,≥8): µ′(v) ≥ −1 + 2 × 1
2 = 0.

(≥6,≥6,≥7,≥7,≥7): µ′(v) ≥ −1 + 3 × 1
3 = 0.

Thus we have proved µ′(v) ≥ 0 for every v ∈ V and f ∈ F , which contradicts
(1) and completes the proof of Theorem 1.
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