SHORT CYCLES OF LOW WEIGHT IN NORMAL PLANE MAPS WITH MINIMUM DEGREE 5

Oleg V. Borodin*
Novosibirsk State University
Siberian Branch, Russian Academy of Sciences
Novosibirsk, 630090, Russia
AND
Douglas R. Woodall
Department of Mathematics, University of Nottingham
Nottingham, NG7 2RD, England

Abstract

In this note, precise upper bounds are determined for the minimum degree-sum of the vertices of a 4 -cycle and a 5 -cycle in a plane triangulation with minimum degree 5: $w\left(C_{4}\right) \leq 25$ and $w\left(C_{5}\right) \leq 30$. These hold because a normal plane map with minimum degree 5 must contain a 4 -star with $w\left(K_{1,4}\right) \leq 30$. These results answer a question posed by Kotzig in 1979 and recent questions of Jendrol' and Madaras.

Keywords: planar graphs, plane triangulation.
1991 Mathematics Subject Classification: 05C75, 05C10, 05C38.

The weight of a subgraph in a plane map M is the sum of the degrees (in M) of its vertices. By $w(S)$, we denote the minimum weight of a subgraph isomorphic to S in M. By M_{5} or T_{5} we mean a connected plane map with minimum degree 5 and each face having size at least 3 (that is, a normal plane map) or exactly 3 (that is, a triangulation), respectively. As conjectured by Kotzig [4] for each T_{5} and proved in [1] for each M_{5}, $w\left(C_{3}\right) \leq 17$, and this bound is precise. Also, Kotzig [5] announced that $25 \leq$ $w\left(C_{4}\right) \leq 26$ for each T_{5}. Jendrol' and Madaras [3] proved that $w\left(C_{4}\right) \leq 35$,

[^0]$w\left(C_{5}\right) \leq 45$ and $w\left(K_{1,4}\right) \leq 39$ for each T_{5} and $w\left(K_{1,3}\right) \leq 23$, which bound is best possible, and $w\left(K_{1,4}\right) \leq 45$ for each M_{5}.

Our main result is:

Theorem 1. Each normal plane map with minimum degree 5 contains a 4 -star with weight at most 30 with a 5 -vertex as its centre.

This clearly implies:
Corollary 2. Each plane triangulation with minimum degree 5 contains a 4 -cycle with weight at most 25 and a 5-cycle with weight at most 30 .

The bounds in Theorem 1 and Corollary 2 are all precise, as the following examples show. Take any polyhedron in which every vertex is of type 5.6^{2} or 6^{3}, such as the Archimedean solid in which every vertex is incident with a 5 -face and two 6 -faces. Truncate all the vertices to obtain a graph in which every vertex has type 3.10 .12 or 3.12^{2}. Cap each 10 -face and 12 -face by putting a new vertex inside it and joining it to all the boundary vertices. We have obtained a triangulation with minimum degree 5 in which the neighbours of every 5 -vertex v have degrees (in cyclic order round v) $(5,5,10,5,12)$ or $(5,5,12,5,12)$. This graph clearly has $w\left(C_{4}\right)=25$ and $w\left(C_{5}\right)=w\left(K_{1,4}\right)=30$.

It follows that our results above completely solve the problems raised by Kotzig [5] and Jendrol' and Madaras [3]. In the proof below, we use some ideas from our unpublished manuscript [2].

We shall use the following terminology. The number of edges incident with a vertex v or $r(f)$ respectively, and $v_{1}, \ldots, v_{d(v)}$ denote the neighbours of v, in cyclic order round v. If $d\left(v_{i}\right)=5$ then v_{i} is a strong, semiweak or weak neighbour of v according as none, one or both of v_{i-1}, v_{i+1} have degree 5 , and v_{i} is twice weak if $d\left(v_{j}\right)=5$ whenever $|j-i| \leq 2(\operatorname{modulo} d(v))$. A k-vertex is a vertex v with $d(v)=k$, and a $>k$-vertex has $d(v)>k$, etc.

Proof of Theorem 1. It suffices to prove the theorem for triangulations, since adding an extra edge to a normal plane map with minimum degree 5 cannot create a new 4 -star with a 5 -vertex as its centre, nor can it reduce the weight of any existing 4 -star. So suppose that $G=(V, E, F)$ is a triangulation that is a counterexample to Theorem 1. Since G is a triangulation, $2|E|=3|F|$, and so Euler's formula $|V|-|E|+|F|=2$ implies

$$
\begin{equation*}
\sum_{v \in V}(d(v)-6)=-12 \tag{1}
\end{equation*}
$$

Assign a charge $\mu(v)=d(v)-6$ to each vertex $v \in V$, so that only 5 -vertices have negative charge. Using the properties of G as a counterexample, we define a local redistribution of charges, preserving their sum, such that the new charge $\mu^{\prime}(v)$ is non-negative for all $v \in V$. This will contradict the fact that the sum of the new charges is, by (1), equal to -12 . The technique of discharging is often used in solving structural and colouring problems on plane graphs.

Our discharging rules are as follows.
Rule 1. (a) Each vertex v of degree 7 sends $\frac{1}{3}$ to each strong neighbour and $\frac{1}{6}$ to each semiweak neighbour.
(b) Each vertex v with degree 8,9 or ≥ 12 first gives a "basic" contribution of $\frac{\mu(v)}{d(v)}=\frac{d(v)-6}{d(v)}$ to each neighbouring vertex v_{i}. Then each neighbour v_{i} with $d\left(v_{i}\right)>5$ shares the charge just received equally between v_{i-1} and v_{i+1}.
(c) Each 10 -vertex or 11 -vertex v first gives a "basic" $\frac{2}{5}$ to each neighbour. Then, whenever $d\left(v_{i}\right)>5, v_{i}$ transfers $\frac{1}{10}$ of v 's donation to each 5 -vertex in $\left\{v_{i-2}, v_{i-1}, v_{i+1}, v_{i+2}\right\}$.

Rule 2. If $d(v)=11$ then v gives a "supplementary" $\frac{1}{10}$ to each twice weak neighbour.

Rule 3. If v is 5 -vertex adjacent to an 11 -vertex w, say $w=v_{5}$, and if $d\left(v_{1}\right)=d\left(v_{4}\right)=5$, then v gives back to v_{5} the following:
(a) $\frac{1}{2}$ if both v_{2} and v_{3} have degree ≥ 9;
(b) $\frac{1}{4}$ if at least one of v_{2}, v_{3} has degree exactly 8 .

We must prove that $\mu^{\prime}(v) \geq 0$ for each vertex v. If $d(v) \notin\{5,7,11\}$, then, by Rule 1 (b) and (c), v distributes its own original charge of $\mu(v)=d(v)-6$ to its neigbours in equal shares, and possibly participates in transferring the others' charges, so that $\mu^{\prime}(v) \geq d(v)-6-d(v) \times \frac{d(v)-6}{d(v)}=0$. We deal with the remaining values of $d(v)$ in three cases.

Case 1. $d(v)=11$. Then $\mu(v)=d(v)-6=5$. If v has a neighbour v_{i} with $d\left(v_{i}\right) \geq 6$, then none of v_{i-2}, \ldots, v_{i+2} is twice weak and so none of them receives a supplementary $\frac{1}{10}$ from v by Rule 2 . Thus $\mu^{\prime}(v) \geq 5-11 \times$ $\frac{2}{5}-6 \times \frac{1}{10}=0$. So we may assume that all neighbours of v have degree 5 .

Each edge $v_{i} v_{i+1}$ lies in two triangles, say $v_{i} v_{i+1} v$ and $v_{i} v_{i+1} w_{i}$. If $d\left(w_{i}\right)=8$ for some i, then v receives $\frac{1}{4}$ by Rule 3(b) from each of v_{i} and
v_{i+1}, so that $\mu^{\prime}(v) \geq 5+2 \times \frac{1}{4}-11 \times \frac{1}{2}=0$. So we may assume that $d\left(w_{i}\right) \neq 8$, for each i.

If $d\left(w_{i-1}\right) \geq 9$ and $d\left(w_{i}\right) \geq 9$ for some i, then v_{i} gives back $\frac{1}{2}$ to v by Rule $3(\mathrm{a})$, and we are done. Also, it is impossible that $d\left(w_{i-1}\right) \leq 7$ and $d\left(w_{i}\right) \leq 7$ for any i, since by hypothesis there is no 4 -star with weight ≤ 30 centered at v_{i}. Therefore, for each i, one of $d\left(w_{i-1}\right)$ and $d\left(w_{i}\right)$ is at most 7 and the other is at least 9 . But this cannot hold for all i modulo 11 , since 11 is odd.

Case 2. $d(v)=7$. Then $\mu(v)=d(v)-6=1$. By Rule 1(a), no weak neighbour receives anything from v, and so there are at most four receivers. If there are exactly four, then at least two are semiweak and so receive $\frac{1}{6}$ each, with a total expenditure by v of at most $2 \times \frac{1}{6}+2 \times \frac{1}{3}=1$. Otherwise, v gives at most $3 \times \frac{1}{3}=1$.

neighbour:	strong	semiweak	weak
$7:$	$1 / 3$	$1 / 6$	0
$8:$	$1 / 2$	$3 / 8$	$1 / 4$
$9:$	$2 / 3$	$1 / 2$	$1 / 3$
$10:$	$\geq 3 / 5$	$\geq 1 / 2$	$\geq 2 / 5$
$11:$	$\geq 3 / 5$	$\geq 1 / 2$	$1 / 2$
$\geq 12:$	≥ 1	$\geq 3 / 4$	$\geq 1 / 2$

Table 1. Donations to 5 -vertices by Rules 1 and 2
Case 3. $\quad d(v)=5$. Then $\mu(v)=d(v)-6=-1$. The amounts of charge received by v from its neighbours by Rules 1 and 2 are summarized in Table 1. However, v may give back charge to some 11 -vertices by Rule 3.

Suppose Rule 3(a) applies to v, so that v 's neighbours v_{1}, \ldots, v_{5} have degrees $(5, \geq 9, \geq 9,5,11)$. Then v is a semiweak neighbour of each of v_{2} and v_{3}, so that it receives at least $\frac{1}{2}$ from each of them by Table 1 , and gives nothing back to either of them by Rule 3 . It also receives at least $\frac{1}{2}$ from v_{5} by Table 1 , and gives back exactly $\frac{1}{2}$ to v_{5} by Rule $3(\mathrm{a})$. We deduce that $\mu^{\prime}(v) \geq 0$.

From now on, we may assume that Rule 3(a) does not apply to v. Suppose Rule 3(b) applies. Because v is not the centre of a 4 -star with weight ≤ 30, v 's neighbours have degrees $(5,8, \geq 8,5,11)$. Thus v is a semiweak neighbour of v_{2} and v_{3} and so it receives at least $\frac{3}{8}$ from each of them by Table 1, and gives nothing back. It also receives at least $\frac{1}{2}$ from v_{5} by Table 1, and gives $\frac{1}{4}$ back. Thus $\mu^{\prime}(v) \geq 0$.

So we may suppose that Rule 3 does not apply to v at all, and the amount that v receives from its neighbours is at least that given in Table 1. Because of the absence of 4 -stars with weight ≤ 30, the degree-sequence of v 's neighbours, in nondecreasing order, must be one of the following.
($5,5,5, \geq 11, \geq 11$): Then each ≥ 11-vertex gives $\geq \frac{1}{2}$ to v by Table 1 .
$(5,5,6, \geq 10, \geq 10)$: If each of the two ≥ 10-neighbours gives $\geq \frac{1}{2}$ to v, we are done.

Suppose there is a 10 -vertex, say v_{1}, giving $\frac{2}{5}$ to v. Then v must be a twice weak neighbour of v_{1} by Rule 1(c). W.l.o.g., suppose that $d\left(v_{2}\right)=$ $d\left(v_{5}\right)=5$ and $d\left(v_{3}\right)=6$. If $d\left(v_{4}\right) \geq 12$ then v_{4} gives $\geq \frac{3}{4}$ to v by Table 1 , so that $\mu^{\prime}(v) \geq-1+\frac{2}{5}+\frac{3}{4}>0$. So we may assume $10 \leq d\left(v_{4}\right) \leq 11$; note that v is not a twice weak neighbour of v_{4}. Let u be the vertex (other than v) adjacent to v_{4} and v_{5}. Since v_{5} has two 5 -neighbours other than u (because v is a twice weak neighbour of v_{1}), and also has a 10 -neighbour v_{1}, it follows that $d(u)>5$. Then Rule $1(\mathrm{c})$ ensures that v receives $\frac{1}{10}$ from v_{4} via each of v_{3} and u, so that $\mu^{\prime}(v) \geq-1+2 \times \frac{2}{5}+2 \times \frac{1}{10}=0$.
$(5,5,7, \geq 9, \geq 9)$: If v is weak for neither of the ≥ 9-neighbours then each of them gives $\geq \frac{1}{2}$, and we are done by Table 1. Otherwise, v is weak for a ≥ 9-neighbour, giving $\geq \frac{1}{3}$, and semiweak for the other two neighbours of degree 7 and ≥ 9, giving $\geq \frac{1}{6}+\frac{1}{2}$ in total.
($5,5, \geq 8, \geq 8, \geq 8$): If v is weak for none of the three ≥ 8-neighbours, then v receives $\geq 3 \times \frac{3}{8}>1$ in total. Otherwise, v is weak for one of them and semiweak for the other two, so that receives $\geq \frac{1}{4}+2 \times \frac{3}{8}=1$ in total.
($5,6,6, \geq 9, \geq 9$): Each ≥ 9-neigbour gives $\geq \frac{1}{2}$.
($5,6, \geq 7, \geq 8, \geq 8$): For each of the three ≥ 7-neighbours, v is semiweak or strong; for at least one of them, v is strong. By Table $1, v$ thus receives either $\geq \frac{1}{6}+\frac{3}{8}+\frac{1}{2}>1$ or $\geq \frac{3}{8}+\frac{3}{8}+\frac{1}{3}>1$.
($5, \geq 7, \geq 7, \geq 7, \geq 7$): For at least two ≥ 7-neighbours, v is strong; for the others, semiweak. Thus, $\mu^{\prime}(v) \geq-1+2 \times \frac{1}{3}+2 \times \frac{1}{6}=0$.

$$
\begin{aligned}
& (\geq 6, \geq 6, \geq 6, \geq 8, \geq 8): \mu^{\prime}(v) \geq-1+2 \times \frac{1}{2}=0 . \\
& (\geq 6, \geq 6, \geq 7, \geq 7, \geq 7): \mu^{\prime}(v) \geq-1+3 \times \frac{1}{3}=0 .
\end{aligned}
$$

Thus we have proved $\mu^{\prime}(v) \geq 0$ for every $v \in V$ and $f \in F$, which contradicts (1) and completes the proof of Theorem 1.

References

[1] O.V. Borodin, Solution of Kotzig's and Grünbaum's problems on the separability of a cycle in a planar graph, Matem. Zametki 46 (5) (1989) 9-12. (in Russian)
[2] O.V. Borodin and D.R. Woodall, Vertices of degree 5 in plane triangulations (manuscript, 1994).
[3] S. Jendrol' and T. Madaras, On light subgraphs in plane graphs of minimal degree five, Discussiones Math. Graph Theory 16 (1996) 207-217.
[4] A. Kotzig, From the theory of eulerian polyhedra, Mat. Čas. 13 (1963) 20-34. (in Russian)
[5] A. Kotzig, Extremal polyhedral graphs, Ann. New York Acad. Sci. 319 (1979) 569-570.

[^0]: *This work was partially supported by Visiting Fellowship Resesarch Grant GR/K00561 from the Engineering and Physical Sciences Research Council and by grants 96-01-01614 and 97-01-01075 of the Russian Foundation of Fundamental Research.

