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Abstract

We discuss the construction of snarks (that is, cyclically 4-edge
connected cubic graphs of girth at least five which are not 3-edge
colourable) by using what we call colourable snark units and a welding
process.
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1. Introduction

We define a pendant to be a connected graph all of whose vertices have
degree either 3 or 1. By a process we call welding, two such pendants will
often produce a snark. In the reverse direction, excising a pendant from
a snark produces pendants called snark units. We characterise snark units
that can be 3-edge coloured and use these to generate other snarks, and close
by showing that snarks exist with the property that (1) they have a 1-factor
whose corresponding 2-factor has precisely two odd cycles, and (2) for all
such 1-factors, the distance between the two odd cycles can be arbitrarily
large.

We shall consider the problem of 3-edge colouring of a cubic graph G

in terms of a nowhere zero flow in the additive 2-group Γ = Z2 × Z2 (see
Jaeger’s article [3] for further details). We will denote the three nonzero
elements of this group by x, y and z, and say that a cubic graph colourable

when it is 3-edge colourable, and uncolourable otherwise. Unless otherwise
stated, all graphs will be cubic.

An edge cut of G is the set of edges between some proper subset U of
V (G) and its complement U . The edge cut is cyclic if both the induced
subgraphs G[U ] and G[U ] contain cycles. We shall say that G is k-edge
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connected (cyclically k-edge connected) if each (cyclic) edge cut of G has
order at least k. A snark is a cyclically 4-edge connected cubic graph of
girth at least five which is not 3-edge colourable. Generally, we will follow
the terminology of Bondy and Murty’s text [1].

2. Snark Units

Following Isaacs’ paper on snarks [4], we shall call a graph with all vertices
of degree 1 or 3 a pendant, and more precisely, a k-pendant if it has k vertices
of degree one. We will also refer to the edges on the vertices of degree one
as free or pendant edges.

To sever an edge uv of a graph G is to introduce an new vertex w on
this edge and replace it by the two edges uw, wv. Severing all the edges of
a k-edge cut produces two k-pendants G1 and G2. We shall say that G2 is
the result of excising G1 from G and that G1 is the complement of G2. To
weld together two k-pendants with respect to a pairing of their free edges
reverses this construction.

A rather special case is the following two 5-pendants from the Petersen
graph:
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Figure 1

We shall call the first pendant, which is simply a tree, L3, and the second,
is its complement U7.

The edges of the 5-pendant U7 naturally fall into three sets: the pair on
the left, that on the right and the single free edge in the middle. We label
these I = {i1, i2}, O = {o1, o2} and {c}. More generally, given any cubic
graph G, if e1 = uv, e2 = vw ∈ E(G) are incident edges, then e1, e2, the
other two edges at u and w and the third edge at v determines a subgraph
isomorphic to L3. Excision of this pendant yields a 5-pendant H whose free
edges we label i1, i2, c, o1, o2 as above.
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Proposition 1. Let H be a 5-pendant produced by excising an L3 from an

uncolourable cubic graph G. Suppose that

(i) H is connected, and

(ii) H admits a colouring γ : E(H) → Γ,

then setting γ(I) = γ(i1) + γ(i2) and γ(O) = γ(o1) + γ(o2), we have

{ γ(I), γ(O) } = { 0, γ(c) }.

In particular, one of γ(I), γ(O) is zero, and the other agrees with the colour

at c.

Proof. Using the same labels i1, i2, c, o1, o2 on the free edges of L3, we
see that for any colouring σ on L3, if σ(c) = x, then {σ(I), σ(O) } = {y, z}.
Since G is not colourable, any colouring on the L3 is incompatible with the
possible colourings on its complement H. So if a colouring γ on H satisfies
γ(c) = x, then the only possible non-zero value for γ(I) and γ(O) is x = γ(c).
Since H is connected, γ(I) + γ(O) = γ(c) and the result follows.

Of course, γ(I) = 0 simply means that the colours on the two i-edges are
the same. We shall call any connected, colourable 5-pendant together with
a labelling of its free edges i1, i2, c, o1, o2 which has the property that for
any colouring, either γ(I) = 0 or γ(O) = 0, a colourable snark unit, or CSU.
It is not apparent (but true), that there are complements of L3 subgraphs
of uncolourable graphs that remain uncolourable, we will give an example
of this is Section 3 below.

It is readily checked that U7 is colourable. From its symmetry, there is
a colouring in which γ(I) is zero, and one where it is γ(c). We will call a
CSU symmetrical if it shares this property with U7, and give an example in
Section 5 of a non-symmetrical CSU.

Welding an L3 (or indeed any 5-pendant that admits the same colouring
property) onto a CSU by identifying correspondingly labelled edges yields
an uncolourable cubic graph. From U7 this can only be the Petersen graph,
so not only is U7 the unique complement of any L3 in the Petersen graph,
it is also the CSU of least order.

If (G,M) is a cubic graph together with a matching (or 1-factor), the
associated 2-factor is a disjoint union of cycles. Since |V (G)| is even, there
is an even number of cycles of odd length among these. We will say that
G has a Tait number n if the smallest number of cycles of odd length in
any 2-factor of G is 2n, and write τ(G) = n. In particular, τ(G) = 0
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iff G admits a colouring. A minimal matching is one that yields 2τ(G) odd
cycles. Referring to the description of L3 above for notation, we have the
following characterisation.

Proposition 2. The complement H of an L3 in an uncolourable graph G

is a CSU if and only if τ(G) = 1 and G has a matching in which the two

odd cycles of the associated 2-factor are bridged by one of the edges e1, e2 of

the L3.

Proof. Let γ be a colouring on H in which γ(c) = x, and γ(I) = 0. Up to
a renaming of the o-edges, the only possible assignment is:

γ(c) = x; ( γ(i1), γ(i2) ) = (α, α); ( γ(o1), γ(o2) ) = (y, z),

for some colour α.
We claim that we can further assume that α = x: if, say α = y, then con-

sider the alternating y-x path beginning at i1. It terminates at one of c, o1 or
i2. It cannot end at c, since switching colours along such a path would give
colouring γ∗(c) = y; (γ∗(i1), γ∗(i2)) = (x, y) and (γ∗(o1), γ∗(o2)) = (y, z),
which is inadmissible for a CSU. This path also cannot end at o1 for the
same reason, so it terminates at the other input i2. Switching colours gives
the desired result. Clearly, the same argument holds if α = z.

We also conclude that the alternating x-y path (resp. x-z) path from c

ends at o1 (resp. o2). With the assumptions above, we see that in H, there
are precisely two x-y paths that are not cycles of even length: that between
c and o1, and the one between the edges i1 and i2.

Welding the L3 and considering the matching M in H induced by the
edges coloured z, we see that M ∗ = M ∪ {PQ} is a 1-factor in G, as illus-
trated below by the bold edges:
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The cycle on i1, i2 has odd length, as does the cycle on c and o1, and these
are the only odd cycles in the 2-factor given by this matching. Further they
are bridged by matching edge PQ.

In the reverse direction, suppose that τ(G) = 1, and that for a minimal
matching, the two odd cycles are bridged by an edge. This defines an L3 by
the choice of two edges from one of the cycles, and three from the second,
as in the figure above.

3. Linear Constructions

If G is a snark, then the girth condition implies that the distance (in H)
between i-edges and that between the c-edge and the o-edges must be at
least 5. On the other hand, it is also clear that a minimal cyclic edge cut
of the weld of a CSU H and L3 uses at most one (interior) edge from L3,
so this weld is cyclically 4-edge connected provided that the H is cyclically
3-edge connected.

We shall term a CSU with these two properties proper. Evidently, weld-
ing the L3 on a proper CSU produces a snark. By the order of a CSU, we
shall mean the number of its vertices of degree 3. Thus, U7 has order 7.

In view of Proposition 1, we obtain CSU’s of any order k provided there
is a snark of order k + 3 with τ = 1 which becomes colourable on removing
a single edge. From [5] we have that there are no snarks of orders 12, 14 or
16, so the next order of a proper CSU after U7 is 15, which can be obtained
from either of the two snarks of order 18.

In this Section, we show how to produce (proper) CSU’s of any odd
order ≥ 15 starting from U7. The following figure shows a CSU of order
15 created by welding two U7’s, introducing a new vertex on one of the
interfacing edges and attaching a free edge c there:
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The c-edges of the two U7’s become edge e3. Suppose that γ(c) = x. Then
edges { γ(e1), γ(e2) } = {y, z}. From the possible colourings for a U7’s
o- and i- edges, it follows that γ(e4) is either y or z and that γ(e3) = x, so
one of γ(I), γ(O) is zero.

From this CSU, we can produce another of order 17 by subdividing edges
e1, e4 and introducing a new edge between these new vertices. A further
subdivision of e2 and one of the new edges replacing e4 then gives a unit of
order 19.

An order 21 unit is made from three U7’s in sequence, with the first two
welded at the c-edges.

The argument above shows that for any n ≥ 2, we can produce a CSU
of order 7n + (n − 1) = 8n − 1 by using a sequence of n copies of U7 linked
as illustrated below for n = 4.
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Figure 4

The edges marked x can be successively shown to carry this colour, starting
from edge c.

The subdivision process permits a further 4(n − 1) = 4n − 4 vertex
additions. For n ≥ 3 we have 4n−4 ≥ 8, so that we obtain CSU’s of each odd
order ≥ 15. It is clear that all these pendants are cyclically 3-edge-connected
and by the constructions, satisfy the distance condition, hence they are all
proper CSU’s. Welding L3’s on them gives an alternative construction to
Isaacs’ snarks of all even orders ≥ 18 with τ = 1.

4. Cyclic Constructions

Given two CSU’s H1, H2, let the only admissible weldings be
(1) the o-edges of H1 to the i-edges of H2 and

(2) the c-edges of the two.
Starting with n (possibly different) CSU’s H1, . . . ,Hn, let the graph G be
the result of effecting a set of admissible welds between the Hi’s.
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Let G∗ be the graph whose vertices consist of
(1) a set {g1, . . . , gn} in one-to-one correspondence with the units Gi;

(2) one vertex fj for each end vertex of a free edge cj of a unit Gj that is
not welded to any other edge;

(3) one vertex dj for each pair of o- or i- edges of a unit Gj that is not
welded to any other pair from another unit.

The edge set of G∗ is given by: gigj ∈ E(G∗) iff the pendant Gi is welded
to the pendant Gj in G. For all vertices gj , fj and dj , we also demand that
fjgj , djgj ∈ E(G∗). Evidently, G∗ is a k-pendant for some k ≥ 0.

We also equip G∗ with a weight function w : E(G∗) → {1, 2} defined by

w(gigj) = the number of edges welded between Gi, Gj ;

w(fjgj) = 1;

w(djgj) = 2 for each relevant index j.

In contrast to the weight functions in [2], this weight function has an odd
sum at each vertex of degree 3.

If G has a colouring γ, there is an induced flow γ∗ on G∗ given by taking
the sum of the colours on the edges in G that the edge in G∗ arises from:
this flow is zero on edges arising from pairs with the same colour.

If we take n copies of U7 and weld then together in a cycle, so that the
edge o1, o2 of the k-th CSU are welded to the edges i1, i2 of the (k + 1)-
st unit, and the o-edges of the n-th unit are welded to the i-edges of the
first, we obtain an n-pendant Un

7 with free edges c1, c2, . . . , cn. These are all
admissible welds.

Proposition 3. If n ≥ 3 is odd, then Un
7 is uncolourable.

Proof. Taking G = Un
7 , we see that G∗ is an n-pendant consisting of a

free edge at each vertex of an n-cycle. Its weight function takes the value 2
around the cycle, and 1 on the free edges. If G was coloured, then for each
U7, exactly one of its o- / i- pair of edges receives a colour sum 0. Thus
γ∗(e) = 0 for a set of edges in G∗ that forms a matching of the vertices
in the cycle. Since this is only possible if the cycle has even length, G is
uncolourable.

For example, welding an L3 on U5
7 gives an example of a snark where the

excision of this L3 does not produce a CSU.
In the construction above, if we identify the three end vertices of U 3

7

together, we obtain the following uncolourable graph G3 on 22 vertices, for
which G∗

3 = K4 (see Figure 5).
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G3 has girth 5, is cyclically 5-edge connected and hence is a snark.

We can turn this construction around. Starting with any cubic graph G

and a (1,2)-weight function w such that the sum over the edges incident at
any vertex is odd, the set of edges where w(e) = 2 forms a disjoint union of
cycles Σ. Replacing each such cycle with a cycle of CSU’s as above produces
a graph H such that H∗ = G. By Proposition 3, if at least one of the cycles
in Σ has odd length, H is uncolourable.

As with Isaacs’ J class, G3 is the smallest in an infinite family {G2k+1 },
with members produced from the prisms on 2k + 1-cycles together with the
weight function that is 2 only on one of the copies of this cycle. All are cycli-
cally 5-edge connected. A more general method is to take an existing snark
together with any 1-factor. This matching determines the edges assigned
weight 2 from which a snark may be built.

5. Asymmetric CSU’s

The constructions in the last section carry over if we replace the unit U7 by
any symmetric one. It is not hard to characterise symmetric units in terms
of the possible alternating paths between the i- / o- edges. The following is
an example of a unit that is not symmetric: the pair of edges that accepts
a sum flow of zero is distinguished.

The first diagram in the following figure shows G5, the snark on 40
vertices of the family mentioned in Section 3.

The bold subgraph in that diagram shows an L3 whose complement is a
CSU we will call U37: the second diagram is of the associated colouring γ∗ on
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the prism G∗

5, with the corresponding L3 excised. The bold edge indicates
the two input edges i1, i2. The edges labelled 0 are those where the sum
flow on the corresponding U7’s i-/ o- pair of edges is zero. In essence, this is
a zero flow at the ‘double edge’ given by the two inputs. It is easily checked
that this colouring extends to U37.
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To show that U37 is not symmetrical, it suffices to note that setting γ(i1) = y,
γ(i2) = z (while fixing γ(c) = x) would permit an extension of γ to a
colouring of the outer cycle U 5

7 , which is not possible. So only γ(I) = 0 is
possible.

6. Tait Number One

In this Section, we give constructions of snarks with τ = 1 that have the
property that in a minimal matching, the two cycles of odd length are not
bridged by an edge. For n ≥ 2, we denote by Ln the tree with the 2n + 2
vertices in the set {v1, v2, . . . , vn, w1, w2, . . . , wn, z1, zn}. The edge set
consists of viwi, i = 1, . . . , n together with v1z1, vnzn and vivi+1 for
1 ≤ i ≤ n − 1. So Ln is an (n + 2)-pendant: the 5-pendant L3 is then
an example.

Let G be the cubic graph that is the weld of the 6-pendant H on the
left and the L4 beside it in the following figure. The boxes represent two
copies of the ‘directed’ CSU in Section 5. The arc within each box indicates
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the distinguished pair of edges that always carry the same colour in any
colouring of the unit. In essence, there is no longer a distinction between
the unit’s o-edges and the c-edge.
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The welding is along equivalently labelled edges. In view of the property of
the directed unit, the following is readily checked by considering alternating
paths.

Claim 1. The 6-pendant H is colourable, and in every such colouring γ, we

have γ(i1) = γ(i2), γ(o1) = γ(o2) and γ(c1) = γ(c2). Consequently, G is

uncolourable.

In fact, the colours at the o-, i- and c-edges of H can be arbitrarily assigned,
so may be taken to be all equal to x.

Claim 2. τ(G) = 1. In any minimal matching, the two odd cycles are linked

by a path of length three.

Colouring all the pendants on H by x, let M be the matching of the z-
coloured edges (shown above as the bold edges). This can be completed to a
matching M ∗ = M ∪ {f1, f3} of G in which the only odd cycles are the two
x-y paths between i1 and i2 and that between o1 and o2. The path between
c1 and c2 together with edge f2 becomes a cycle of even length. This is
clearly a minimal matching with the requisite property.

By Proposition 2, we need only show that there is no edge whose removal
leaves a colourable graph. We concentrate on the two units numbered 1
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and 2. Removal of any one of f1, f2, f3 produces a subgraph with either or
both of these two units intact, hence uncolourable. The same holds if we
remove an edge within either of the units: the other remains unaffected.

The remaining case is of the other edges in H. With respect to unit 1,
it is readily checked that removal of any of e1, e2 or e3 does not affect unit 2,
unless it is together with one of e′1, e′2, e′3. In any event, the shortest path
between these edges is evidently 3. No other single edge will do. Notice that
the resulting graphs are cyclically 4-edge-connected snarks.

We close this Section by showing that, perhaps not surprisingly, ‘any-
thing goes’. If a cubic graph is uncolourable with Tait number one, then
either it becomes colourable on removal of exactly one edge, as covered in
Proposition 2, or else removal of two edges suffices. In this latter case,
among all matchings, there is one where the distance between the two odd
cycles, measured by the length of a path from a vertex on one to a vertex
on the other, is minimised.

Proposition 4. Snarks with Tait number 1 exist for which the distance

between the two odd cycles is any integer ≥ 3.

Proof. Since the first and last edge of such a minimal length path must
belong to the matching, the distance cannot be 2. The example in figure 7
has distance 3. An example with distance 4 (resp. 5) is produced by excis-
ing the two numbered CSU’s and replacing the resulting subgraph by the
pendants in the figure below, and the L4 by an L5 (resp. L6)

e e e

e e e

e e e

e e e

e e e

u

u

u

c1

c3

c2

e1 e2 e3

e′1 e′2 e′3

e e

e e

e e

e e

e e

e e e

e

e

e

e

e

u

u

u

u

c1

c2

c3

c4

e1 e2 e3

e′1 e′2 e′3

Figure 8



158 B.P. Chisala

These pendants illustrate the difference between even and odd distance
cases. If the bold edges are coloured z, there is a unique way of ensur-
ing that edges e1, e2, e3 (and edges e′1, e′2, e′3) have a sum flow of zero. In
the even cases, e1 and e′1 are both coloured z, and cn is the edge adjacent
to e′1; in the odd case, it is the edge adjacent to e′3 that is labelled cn. The
edges c2, c3, . . . , cn−1 are all coloured z, and assigned arbitrarily.

The labelling of the c-edges is the same as on the corresponding L5 and
L6 pendants, on which edges f1, f4 (resp. f5) are given colour z. The rest of
the edges lie on a single alternating x-y path between c1 and c3 (resp. c4).
The assertion about distance and the fact that these are all snarks should
be clear.
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