
Discussiones Mathematicae 127
Graph Theory 18 (1998 ) 127–142

AN INEQUALITY CHAIN OF DOMINATION

PARAMETERS FOR TREES

E.J. Cockayne

Department of Mathematics, University of Victoria

Victoria, British Columbia, Canada V8W 3P4

e-mail: cockayne@smart.math.uvic.ca

O. Favaron and J. Puech

LRI, Bât. 490, Université de Paris-Sud
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Abstract

We prove that the smallest cardinality of a maximal packing in any
tree is at most the cardinality of an R-annihilated set. As a corollary
to this result we point out that a set of parameters of trees involving
packing, perfect neighbourhood, R-annihilated, irredundant and dom-
inating sets is totally ordered. The class of trees for which all these
parameters are equal is described and we give an example of a tree in
which most of them are distinct.
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1. Introduction

This paper is concerned with the relative values of certain graph param-
eters for trees. These parameters involve several types of vertex subsets
X of a simple graph G, including dominating, irredundant, packing, perfect
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neighbourhood and R-annihilated subsets. Our first task is the definition
of such sets and to observe that each may be characterized in terms of a
certain partition of the vertex set V of G induced by X.

We denote by N(X) (N [X]) the open (closed) neighbourhood of the
set X. As usual N({x}) and N [{x}] will be abbreviated to N(x) and N [x].
For A,B ⊆ V , we say that A dominates B, written A � B, (or B is

dominated by A) if B ⊆ N [A].

The private neighbourhood pn(x,X) of x in X is defined by

pn(x,X) = N [x] − N [X − {x}].

An element u of pn(x,X) is called a private neighbour of x relative to X
and is one of two types. Either u is an isolate of G[X], in which case u = x,
or u ∈ V − X and is adjacent to precisely one vertex of X. The latter type
is called an external private neighbour (epn) of X.

The concept of private neighbourhood enables us to define from X, a
partition P(X) = ZX ∪ YX ∪ EX ∪ FX ∪ CX ∪ RX (disjoint union) of V ,
where:

ZX = {x ∈ X |x is isolated in G[X]} ,

YX = X − ZX ,

EX = {v ∈ V − X | v is an epn of some y ∈ YX} ,

FX = {v ∈ V − X | v is an epn of some z ∈ ZX} ,

CX = {v ∈ V − X | |N(v) ∩ X| ≥ 2} ,

and RX = V − N [X].

When the basic subset X is clear from the context, we will omit the sub-
scripts X.

We now give the definition of four of the above mentioned types of vertex
subsets X and the characterization of each in terms of P(X).

X is dominating if N [X] = V (i.e., if R = ∅); X is irredundant if for all
x ∈ X, pn(x,X) 6= ∅ (i.e. if E ∩N(y) 6= ∅ for each y ∈ Y ); X is a packing if
for all distinct x1, x2 ∈ X, N [x1] ∩ N [x2] = ∅ (i.e., C ∪ Y = ∅), and X is a
perfect neighbourhood set (abbr. PN-set) if φ(X) =

⋃

x∈X

pn(x,X) � V (i.e.,

if Z ∪E ∪F � V ). A vertex v is called an X-perfect vertex if v ∈ Z ∪E∪F .

In order to motivate the definition of the next principal property, we
first state a condition given in [3] for an irredundant set to be maximal. We
need one additional concept about private neighbourhoods. For x ∈ X and
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u ∈ V −X, u annihilates x (or x is annihilated by u) if ∅ 6= pn(x,X) ⊆ N [u].
Observe that if u annihilates x, then pn (x,X ∪ {u}) = ∅, i.e., (informally)
addition of u to X destroys (or annihilates) the private neighbourhood of x.
Let

AX = {u ∈ V − X |u annihilates some x ∈ X} .

We write A for AX , if the basic subset X is clear. For U ⊆ V − X, define
X to be U -annihilated if U ⊆ A. We can now state a condition for an
irredundant set X to be maximal in terms of the partition P(X).

Theorem 1. [3] The set X is maximal irredundant if and only if X is

irredundant and N [R]-annihilated.

We observe that the class of N [R]-annihilated sets (such sets have also been
called external redundant sets ([3, 4])) is contained in the larger class of R-
annihilated sets (abbreviated Ra-sets), which is a class of sets of principal
interest in this work. We will also consider sets which are both R-annihilated
and irredundant, that is, Rai-sets.

Notice that for each z ∈ Z and r ∈ R, z ∈ pn(z,X) − N [r] and so z is
not annihilated by r. Thus any vertex of X which is annihilated by r ∈ R,
is necessarily in Y .

The parameters considered in this paper are γ(G), i(G), θ(G), θi(G),
ra(G), rai(G), er(G) and ir(G), which are the smallest cardinalities of dom-
inating sets, independent dominating sets, PN-sets, independent PN-sets,
Ra-sets, Rai-sets, external redundant and maximal irredundant sets, respec-
tively; ρL(G) (ρ(G)) which is the smallest (largest) cardinality of a maximal
packing and γ2(G) which is the smallest cardinality of X such that each
vertex of V is within distance two of X, i.e., such that X 2-dominates G.

We abbreviate γ(G) to γ etc. when the graph G involved is clear. Fur-
ther, for example, a dominating set (maximal irredundant set) of minimum
cardinality γ(G) (ir(G)) will be called a γ-set (an ir-set).

The following inequalities are immediately implied by the definitions,
Theorem 1 and the well-known inequalities ir ≤ γ ≤ i.

Proposition 2. For any graph G,

γ2 ≤











ra ≤

{

rai
er

}

≤ ir

θ ≤ θi ≤ ρL ≤ ρ











≤ γ ≤ i.
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In Section 2 we prove our principal result, namely that for any tree T ,
ρL(T ) ≤ ra(T ) and hence establish a longer total order for trees than those
given in Proposition 2 for general graphs. The trees for which all parameters
in the total order are equal, are presented in Section 3 and finally an example
with most of the parameters unequal, is given in Section 4.

This research evolved from attempts to prove the conjecture of Fricke,
Haynes, Hedetniemi and Henning [8] that θ ≤ ir for arbitrary graphs. This
was shown to be false by Favaron and Puech [7]. However, Cockayne, Hedet-
niemi, Hedetniemi and Mynhardt [5] and Cockayne and Mynhardt [6] estab-
lished the inequality for trees and claw-free graphs, respectively. Favaron
and Puech [7, 12] observed that the proof for trees actually establishes the
stronger result θi ≤ rai (see Proposition 2) and found other classes of graphs
(including claw-free graphs and chordal graphs) for which this latter inequal-
ity holds.

In [2] the present authors observed that some other known results con-
cerning the parameter ir may be strengthened to theorems concerning R-
annihilation. In the same paper other classes of graphs (defined by degree
conditions) for which θi ≤ rai, were found. It was further proved that
for some of these classes, the even stronger inequality (see Proposition 2)
ρL ≤ rai holds. This was the motivation for the main theorem in the present
paper.

An area of research that has received considerable attention is the study
of classes of graphs for which some of the above-mentioned parameters are
equal (or not equal). For any two graph theoretical parameters λ and µ, we
define G to be a (λ, µ)-graph if λ(G) = µ(G) and a (λ, µ)-tree if, in addition,
G is a tree. In general, if λ and µ are domination parameters, the class
of (λ, µ)-graphs is very difficult to characterise. For trees, however, some
success has been achieved. For example, (γ, i)-trees were characterised by
the present authors in [1]. More relevant to the present paper, Meir and
Moon [11] showed that ρ = γ for all trees, Hartnell [9] characterised (ρL, ρ)-
trees while Topp and Volkmann [13] characterised (γ2, ρ)-trees. (They ac-
tually proved a more general result but we only mention the relevant part
here.) In Section 3 we show that the two classes of trees described by Hart-
nell and Topp and Volkmann are the same and that it is in fact precisely
the class of (γ2, i)-trees. We also give a different description of these trees.

References to further work on domination, irredundance and packing
may be found in the comprehensive bibliography of the book by Haynes,
Hedetniemi and Slater [10].
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2. The Main Result

In order to prove the principal theorem, further notation and structures are
now defined. Let X be an Ra-set of any graph G. For x ∈ X, Bx denotes
the set of epns of x and B =

⋃

x∈X

Bx (= E ∪ F ).

We now define a partition of X ∪ B ∪ R into exactly |X| non-empty
subsets. With each x ∈ X we associate a subset Rx of R sequentially.
Suppose X = {x1, . . . , xp}. Let

Rx1
= {r ∈ R | r annihilates x1}

and for j = 2, . . . , p, let

Rxj
= {r ∈ R −

j−1
⋃

k=1

Rxk
| r annihilates xj}.

Observe that the Rxj
’s are disjoint and that the R-annihilation property

implies that Rx = ∅ for x ∈ Z and
⋃

x∈X

Rx = R. It now follows that

X ∪ B ∪ R =
⋃

x∈X

({x} ∪ Bx ∪ Rx) (disjoint union),

which defines the required partition.
Next, for x ∈ X let Dx = {x}∪Bx ∪Rx, for each component Q of G[X]

let DQ =
⋃

x∈Q

Dx and observe that Q 6= Q′ implies that DQ∩DQ′ = ∅. From

this point onwards G is a tree T . Contract each set DQ to a single vertex

dQ. This forms a tree f(T ) with vertex set C ∪





⋃

components of G[X]

{dQ}



.

Each leaf of f(T ) is a vertex dQ, since each c ∈ C is adjacent in T to at least
two sets DQ (by the tree property).

Having defined the above structures, we now prove the following impor-
tant preliminary result.

Theorem 3. For each Ra-set X of a tree T , there exists a maximal packing

P of T such that P ∩ CX = ∅.

Proof. We use induction on n, the order of T , and observe that the state-
ment holds for any tree T and Ra-set X for which CX = ∅, which includes
all Ra-sets of K1 and K2.
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Now suppose that the conclusion holds for all trees of order less than n and
let X be an Ra-set of an n-vertex tree T with C = CX 6= ∅. The contracted
tree f(T ) has a leaf l such that at most one vertex at distance two from l is
not a leaf (e.g., let l be an endvertex of a longest path of f(T )). Let Q be
the component of T such that dQ = l. In T the set DQ is linked to V −DQ

by exactly one edge ut with u ∈ DQ and t = V − DQ. There are now two
cases to consider.

Case 1. t /∈ C.

Consider T ′ = T [V ′] where V ′ = V −DQ. The set X∩V ′ is an R-annihilated
set of the tree T ′ and the set C ′ ⊆ V ′ of vertices adjacent in T ′ to at least two
vertices of X ∩V ′, is equal to C. By the induction hypothesis, there exists a
maximal packing P ′ of T ′ with P ′∩C ′ = P ′∩C = ∅. Let w be a vertex of P ′

whose distance d(w, t) is minimum and observe that the maximality of P ′

implies that 0 ≤ d(w, t) ≤ 2. The required packing P is now formed in one
of the following ways. Let N2[w] denote the set of all vertices at distance at
most two from w.

(i) If DQ − N2[w] = ∅, then P = P ′.

Otherwise:

(ii) If d(w, t) = 2, then let P ′′ be a maximal packing of T [DQ] which
contains u and set P = P ′ ∪ P ′′.

(iii) If d(w, t) = 1, then let P ′′ be a maximal packing of T [DQ] which does
not contain u (e.g., which contains a neighbour of u in DQ) and set
P = P ′ ∪ P ′′.

(iv) If d(w, t) = 0 (i.e., w = t), then let P ′′ be a maximal packing of
T [DQ − N2[w]] and set P = P ′ ∪ P ′′.

In each of these four situations, P is a maximal packing of T with P ∩C = ∅.

Case 2. t ∈ C.

Let k + 1(≥ 2) be the degree of t in f(T ) and let dQj
, j = 1, . . . , k be leaves

of f(T ) adjacent to t, where dQj
is the contraction of DQj

in T . The k
subscripts j are chosen so that |DQj

| > 1 for 1 ≤ j ≤ s and |DQj
| = 1 for

s + 1 ≤ j ≤ k, where s is possibly equal to 0 or to k. For 1 ≤ j ≤ k, let uj

be the (unique) neighbour of t in Qj and if s > 0, then for 1 ≤ j ≤ s, let vj

be a vertex of DQj
at distance two from t.

The set V ′ = V −

(

k
⋃

j=1
DQj

∪ {t}

)

induces a subtree T ′ of T . The set

X ′ = X ∩ V ′ is an Ra-set of T ′ and the set C ′ ⊆ V ′ of vertices adjacent in



An Inequality Chain of Domination Parameters for Trees 133

T ′ to at least two vertices X ∩ V ′, is equal to C − {t}. By the induction
hypothesis, T ′ has a maximal packing P ′ such that P ′ ∩ C ′ = P ′ ∩ C = ∅.

Let w ∈ P ′ such that d(w, t) is minimum. By the maximality of P ′,
1 ≤ d(w, t) ≤ 3. There are now two subcases to consider.

Subcase (i). 2 ≤ d(w, t) ≤ 3.

Let P1 be a maximal packing of DQ1
containing u1 and when s ≥ 2, for 2 ≤

j ≤ s let Pj be a maximal packing of DQj
containing vj . Then P ′′ =

s
⋃

j=1
Pj

is a maximal packing of T

[

k
⋃

j=1
DQj

∪ {t}

]

which does not contain t. Set

P = P ′ ∪ P ′′.

Subcase (ii). d(w, t) = 1.

If s = 0, then let P = P ′. If s > 0, then let Pj be a maximal packing

of T
[

DQj

]

containing vj for 1 ≤ j ≤ s. Then P ′′ =
s
⋃

j=1
Pj is a maximal

packing of T

[

k
⋃

j=1
DQj

∪ {t}

]

not dominating t. Set P = P ′ ∪ P ′′.

In each situation in the subcases, the constructed set P is a maximal
packing of T such that P ∩ C = ∅. The induction proof is complete.

Theorem 4. For any tree, ρL ≤ ra.

Proof. Let X be an ra-set of a tree T and P a maximal packing of T
whose existence is guaranteed by Theorem 3, i.e., such that P ∩C = ∅. The
R-annihilation property implies that for each x ∈ X with Rx 6= ∅, every
vertex of Rx dominates Bx. We deduce that for each x ∈ X, T [Dx] has
diameter at most two and so |P ∩ Dx| ≤ 1. Therefore

ρL ≤ |P | = |P ∩ C| +

∣

∣

∣

∣

∣

P ∩

(

⋃

x∈X

Dx

)∣

∣

∣

∣

∣

≤ |X| = ra.

Corollary 5. For any tree,

γ2 ≤ θ ≤ θi ≤ ρL ≤ ra ≤

{

rai
er

}

≤ ir ≤ γ = ρ ≤ i.

Proof. Immediate from Proposition 2, Theorem 4 and the result of Meir
and Moon [11] that ρ = γ for trees.
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3. The Class of (γ2, i)-Trees

A vertex of a tree T is said to be remote if it is adjacent to a leaf, and to
be a branch vertex if it has degree at least three. The set of branch vertices
of T is denoted by B(T ) and the set of leaves by L(T ). A path P in T is
said to be a v − L path if P is a path from v to a leaf of T . With every
branch vertex v of T of degree d and N(v) = {x1, x2, . . . , xd} we associate d
integers l1, l2, . . . ld, where lj is the length of a shortest v−L path containing
xj . Without loss of generality we assume that l1 ≤ l2 ≤ . . . ≤ ld. We define
the following types of branch vertices:

type 1: l1 = 1 and lj ∈ {1, 4} for each j = 2, . . . , d,

type 2: l1 = 2 and lj = 3 for each j = 2, . . . , d.

We characterise (γ2, i)-trees in terms of branch vertices of types 1 and 2.
We begin with the following characterisation of (ρL, ρ)-trees by Hartnell [9].

Theorem 6 [9]. A tree with at least three vertices is a (ρL, ρ)-tree if and

only if no two remote vertices are adjacent and every non-remote vertex is

adjacent to exactly one remote vertex.

A special case of a more general result by Topp and Volkmann [13] provides
a characterisation of (γ2, ρ)-trees:

Theorem 7 [13]. A tree T satisfies γ2(T ) = ρ(T ) = n if and only if either

(1) T has diameter at most two (in which case γ2(T ) = ρ(T ) = 1)

or

(2) there exists a decomposition (partition of the vertex set) of T into n
subgraphs T1, . . . , Tn in such a way that:

(a) Tj is a tree of diameter two (j = 1, . . . , n), and

(b) if T0 is the subgraph of T induced by the edges which do not belong

to T1, . . . , Tn, then for each j ∈ {1, . . . , n} there exists uj ∈ V (Tj)−
V (T0) such that dT (uj , V (T0)) = 2.

Since any (γ2, ρ)-tree is a (ρL, ρ)-tree, if T ′

2 (T3, respectively) is the class of
trees described in Theorem 6 (Theorem 7), then T3 − {P1, P2} ⊆ T ′

2 . We
show that T2 = T ′

2 ∪{P1, P2} and T3 are equal to the following class of trees,
for which membership is decided only by properties of branch vertices. Let
T ∈ T1 if and only if T ∈ {P1, P2, P3, P6} or B(T ) 6= ∅ and each branch
vertex of T is of type 1 or type 2. (See Figure 1, in which uj is of type 1
and vj of type 2 for j = 1, 2, 3.)
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Figure 1. A tree in T1

Theorem 8. Let T be a tree. The following conditions are equivalent:

(a) T ∈ T1.

(b) T is a (ρL, ρ)-tree.

(c) T is a (γ2, ρ)-tree.

(d) T is a (γ2, i)-tree.

Proof. Since the theorem obviously holds for P1 and P2 we only consider
trees with at least three vertices.

(a) =⇒ (b). Let T ∈ T1. If T is a path (i.e., T ∈ {P3, P6}) the result is
easy to check, so suppose B(T ) 6= ∅ and let u1, u2 be two remote vertices
of T . Suppose contrary to the statement of Theorem 6 that u1 and u2 are
adjacent, with vj (j = 1, 2) a leaf adjacent to uj . If {u1, u2} ∩ B(T ) = ∅,
then T ∼= P4, a contradiction. Hence we may assume that u1 ∈ B(T ).
But d(u1, v1) = 1 and d(u1, v2) = 2 so that l1(u1) = 1 and lj(u1) = 2 for
some j and therefore u1 is not a type 1 or a type 2 branch vertex. Thus T
contains no adjacent remote vertices. Next, let u be a non-remote vertex.
If u is a leaf then obviously u is adjacent to exactly one remote vertex, so
assume that deg u ≥ 2. If u ∈ B(T ), then u is of type 2 (since u is not
remote) and thus u is adjacent to exactly one remote vertex as required.
Hence suppose deg u = 2. If u is adjacent to two remote vertices u1 and
u2, and {u1, u2} ∩ B(T ) = ∅, then T ∼= P5, a contradiction. On the other
hand, if (say) u1 ∈ B(T ), then l1(u1) = 1 and (if v2 is a leaf adjacent to u2)
d(u1, v2) = 3, i.e., lj(u1) = 3 for some j with 2 ≤ j ≤ deg u1, a contradiction.
Hence u is adjacent to at most one remote vertex. If u is not adjacent to
any remote vertex, let N(u) = {x1, x2} and let u1 (say) be a branch vertex
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at minimum distance from u such that x1 lies on the u−u1 path in T , while
u2 is a remote vertex at minimum distance from u with x2 on the u − u2

path. Note that d(u, u2) ≥ 2 and either u1 = x1 with u1 of type 2 (since
u1 is not a remote vertex by hypothesis), or d(u, u1) ≥ 2. In the former
case the shortest u1 − L path in T through u contains u2 and has length at
least four, contradicting u1 being of type 2. In the latter case, if w is the
neighbour of u1 on the u1 − u path, then the shortest u1 − L path through
w contains both u and u2 and hence has length at least five, which is also
impossible. Therefore u is adjacent to exactly one remote vertex and we
have proved that T1 ⊆ T2.

(b) =⇒ (a). Let T ∈ T ′

2 and note that if T is a path, then T ∼= P3 or P6 and
the result holds. We may thus assume that B(T ) 6= ∅. Let u be any vertex
in B(T ) and suppose firstly that u is remote. Let N(u) = {x1, . . . , xd} with
d = deg u ≥ 3. Without loss of generality we may assume that x1, . . . , xt

are leaves and xt+1, . . . , xd are non-leaves, for some 1 ≤ t ≤ d. If t = d,
then u is of type 1 and we are done, so suppose t < d. Then for any s
with t < s ≤ d, deg xs ≥ 2 and by hypothesis, xs is not remote. For any
w ∈ N(xs) − {u}, w is not remote (since the neighbour u of xs is remote)
and there exists v ∈ N(w)−{xs} such that v is remote. But then the length
of the shortest u−L path through xs is equal to four and it follows that u is
of type 1. Now suppose that u is not remote. Then u is adjacent to exactly
one remote vertex, say x1, so that l1(u) = 2. For any j = {2, . . . , d}, xj is
not remote and N(xj) − {u} contains a remote vertex w. Hence the length
of a shortest u − L path through xj is equal to three and so u is of type 2.
We have thus shown that T1 = T2.

(b) =⇒ (c). Consider any T ∈ T ′

2 and denote the remote vertices of T by
M . Then

⋃

m∈M

N [m] is a partition of V (T ) since no two remote vertices

of T are adjacent and each non-remote vertex is adjacent to exactly one
remote vertex. Let Tm be the subtree of T induced by N [m]. Clearly,
diam(Tm) = 2. Further, any edge joining a vertex of Tm to a vertex of Ts,
m 6= s, joins a non-remote vertex of T to another non-remote vertex. Let
T0 be the subgraph of T induced by these edges and let v be a leaf of T
adjacent to m. Then clearly dT (v, V (T0)) = 2. We have thus shown that
conditions 2(a) and (b) of Theorem 7 are satisfied. Finally, P1 and P2 satisfy
condition 1 of Theorem 7.

(c) =⇒ (b). This is obvious and it follows that T2 = T3.

(c) =⇒ (d). Since ρ = γ for all trees (Meir and Moon [11]) we only need
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to show that i = γ for any tree T ∈ T1 = T3. Let {Tm |m ∈ M} be the
decomposition of T as defined in the previous paragraph; by Theorem 7,
ρ(T ) = |M |. But M is independent and dominating, hence i(T ) ≤ |M | and
the desired result follows.

(d) =⇒ (c). Obvious.

Corollary 9. Let λ be any of the parameters γ2, θ, θi, ρL and let µ be any

of the parameters ρ, γ, i. Then T is a (λ, µ)-tree if and only if T ∈ T1 =
T2 = T3.

Let β denote the independence number, i.e., the cardinality of a maximum
independent set, of a graph. (The notation β0 or α is also sometimes used.)
We conclude this section by showing that the class of (γ2, β)-trees is not
particularly interesting. We obtain this as a corollary to the following result
which holds for general graphs.

Proposition 10. Let λ be any of the parameters γ2, θ, θi and ρL. Then G
is a connected (λ, β)-graph if and only if G is complete.

Proof. If G is complete, then λ(G) = β(G) = 1. Conversely, suppose
ρL(G) = β(G) but G is not complete. Let X be any ρL-set of G. We claim
that

⋃

x∈X

N [x] is a partition of V (G). Indeed, by the packing property,

N [x1] ∩ N [x2] = ∅ for distinct x1, x2 ∈ X; moreover, if y ∈ V (G) − N [X],
then since X∪{y} is independent we have β(G) ≥ ρL(G)+1, a contradiction.
Now suppose that there exist two non-adjacent neighbours u and v of some
vertex x ∈ X. Since (X − {x}) ∪ {u, v} is independent, we have β(G) ≥
ρL(G) + 1, a contradiction. Therefore G[N [x]] is complete for each x ∈ X.
Since G is not complete by assumption, it follows that |X| ≥ 2. Moreover,
since G is connected, there exists a neighbour w of some x ∈ X such that
X ′ = {x′ ∈ X : N(w) ∩ N [x′] 6= ∅} satisfies |X ′| ≥ 2. (Note that x ∈ X ′.)
But then (X − X ′) ∪ {w} is a maximal packing of cardinality less than ρL,
a contradiction. The result now follows from Proposition 2.

Corollary 11. Let λ be any of the parameters γ2, θ, θi and ρL. Then T is

a (λ, β)-tree if and only if T ∈ {K1,K2}.

4. A Tree with Distinct Parameter Values

Consider the tree T in Figure 2. Let A = {aj : 1 ≤ j ≤ 13},B = {bj : 1 ≤
j ≤ 12},C = {cj : 1 ≤ j ≤ 23}, D = {dj :1 ≤ j ≤ 10}, E = {ej :1 ≤ j ≤ 10},
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F = {b1, w} ∪ D ∪ E and B∗ = B − {b1}. We illustrate that the two
total orders given in Corollary 5 can be strict by showing that γ2(T ) = 16,
θ(T ) = 17, θi(T ) = 18, ρL(T ) = 19, ra(T ) = 23, rai(T ) = er(T ) = 24,
ir(T ) = 25, γ(T ) = 26 and i(T ) = 27. (It is also possible to obtain trees
T1 and T2 in which all these parameters are distinct and er(T1) < rai(T1),
while rai(T2) < er(T2). This shows that er and rai are incomparable even
for trees. However, we do not exhibit examples of such trees here.)
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Figure 2. A tree with distinct parameter values

Recall that any maximal packing of a graph G is an independent PN-set,
while any PN-set 2-dominates G. Also, any maximal irredundant set is
external redundant and any external redundant set of G is R-annihilated.
(All these relationships are direct consequences of the definitions.)

Let X be any 2-dominating set of T . In order to 2-dominate the leaves
of T [A] and T [C], |A ∩ X| ≥ 4 and |C ∩ X| ≥ 6. To 2-dominate b6, b10

and b12, |B
∗ ∩ X| ≥ 2 and if |B∗ ∩ X| = 2, then B∗ ∩ X = {b4, b8}. Since
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the leaves of T [F ] are 2-dominated, |F ∩ X| ≥ 4, and if |F ∩ X| = 4, then
F ∩ X = {d1, d6, e1, e6}. It follows that |X| ≥ 4 + 6 + 2 + 4 = 16. Let

X0 = {a2, a5, a9, a12, c2, c5, c9, c14, c19, c22}

and
X1 = {b4, b8, d1, d6, e1, e6}.

Then X2 = X0 ∪ X1 is a 2-dominating set of T and hence γ2(T ) = 16.
Suppose furthermore that X is a PN-set. If |X ∩ (B∗∪F )| = 6, then, as

shown above, X ∩ (B∗∪F ) = X1. But then w is not X-perfect and b1 is not
dominated by an X-perfect vertex. Thus |X ∩ (B∗ ∪ F )| ≥ 7 and |X| ≥ 17.
Since X2 ∪ {b1} is a PN-set, it follows that θ(T ) = 17.

Moreover, if X is an independent PN-set, then in order to 2-dominate
the leaves of T [F ], we need at least six vertices in F ∩X, and if |F ∩X| = 6,
then no vertex in B∗ is 2-dominated by any vertex of F ∩X. It follows that
|X| ≥ 4+6+2+6 = 18. On the other hand, X0∪{b4, b8, e1, e8, e10, d3, d5, d6}
is an independent PN-set of T and hence θi(T ) = 18.

Suppose that in addition, X is a maximal packing of T . In particu-
lar, since X is independent, |F ∩ X| ≥ 6 and if |F ∩ X| = 6, then by
the above analysis, b2, b6, b10 and b12 are 2-dominated by X ∩ B∗. There-
fore |B∗ ∩ X| ≥ 2 and if |B∗ ∩ X| = 2, then B∗ ∩ X = {b4, b8}. But
then b7 ∈ N [b4] ∩ N [b8], a contradiction. Therefore |X| ≥ 19. Since
X = X0 ∪ {b4, b10, b12, d1, d8, d10, e3, e5, e6} is a maximal packing, it follows
that ρL(T ) = 19.

Let Y be any R-annihilated set of T . Define

Ya = {a1, a4, a8, a11},

Yb = {b3, b4, b8, b9},

Yc = {c1, c4, c8, c12, c13, c18, c21},

and Yf = {d2, d4, d7, d9, e2, e4, e7, e9}.

For each y ∈ Y , if |pn(y, Y )| ≥ 2, then (since T is a tree) no vertex in RY

annihilates y. Hence if d1 ∈ Y , then {d2, d3, d4, d5}∩Y 6= ∅. If d1 /∈ Y , then
clearly {d2, d3} ∩ Y 6= ∅ and {d4, d5} ∩ Y 6= ∅. A similar argument holds
with respect to d6 and it follows that |Y ∩ D| ≥ 4. Similarly, |Y ∩ E| ≥ 4
and |Y ∩ B| ≥ 4. Moreover, |Y ∩ B| = 4 if and only if Y ∩ B = Yb

or (Yb − {b9}) ∪ {b11}, and |Y ∩ A| ≥ 4 with |Y ∩ A| = 4 if and only if
Y ∩ A = Ya. Let Cj = {cj , cj+1, cj+2} for j ∈ {1, 4, 18, 21} and Cj =
{cj , cj+1, cj+2, cj+3} for j ∈ {8, 13}. Since Y is 2-dominating, Y ∩Cj 6= ∅ for
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each j ∈ {1, 4, 8, 13, 18, 21} and hence |Y ∩C| ≥ 6. However, if |Y ∩C| = 6,
then ck and cl with {ck} = Y ∩ C8 and {cl} = Y ∩ C13 are isolated in Y . If
k = 8, then c10 does not annihilate any y ∈ Y , and obviously k /∈ {10, 11}.
Hence k = 9. Similarly, l = 14. But then c12 does not annihilate any y ∈ Y .
Thus |Y ∩C| ≥ 7 and as in the case of C8 and C13, it can be shown that no
vertex of Y ∩ Cj (j ∈ {1, 4, 18, 21}) is isolated in Y . Therefore |Y ∩ C| = 7
if and only if Y ∩ C = Yc. Therefore |Y | ≥ 23. Since

Y0 = Ya ∪ Yb ∪ Yc ∪ Yf

is an R-annihilated set, it follows that ra(T ) = 23.
Let Y moreover be irredundant. Then |Y ∩C| ≥ 8, for otherwise Y ∩C =

Yc and c12 is redundant in Y . Thus |Y | ≥ 24. However,

Y1 = (Y0 − {c8, c12}) ∪ {c5, c9, c14}

is an R-annihilated irredundant set, so that rai(T ) = 24.
Furthermore, if Y is maximal irredundant, then as above, |Y ∩ C| ≥ 8.

If |Y | ≤ 24, then |Y ∩ B| = 4 and so Y ∩ B = Yb or (Yb − {b9}) ∪ {b11}.
But then Y ∪{w} is irredundant since b1 ∈ pn(w, Y ∪{w}), a contradiction.
Hence |Y ∩ B| ≥ 5 and thus |Y | ≥ 25. On the other hand,

Y2 = Y1 ∪ {w}

is a maximal irredundant set and so ir(T ) = 25.
Now suppose that Y is an external redundant (i.e., N [R]-annihilated)

set but not necessarily irredundant. Then |Y | ≥ ra(T ) = 23. If |Y | = 23,
then |Y ∩ B| = 4 with Y ∩ B = Yb or (Yb − {b9}) ∪ {b11}, |Y ∩ A| = 4 with
Y ∩ A = Ya and |Y ∩ C| = 7 with Y ∩ C = Yc. Moreover, |Y ∩ F | = 8 and
b1 ∈ RY . But then w ∈ N [R] does not annihilate any y ∈ Y , a contradiction
from which it follows that |Y | ≥ 24. Since Y0 ∪ {w} is external redundant,
we have that er(T ) = 24.

Let I be any dominating set of T . Clearly, |I ∩ A| ≥ 5, |I ∩ B| ≥ 5,
|I ∩ D| ≥ 4, |I ∩ E| ≥ 4 and |I ∩ C| ≥ 8. Moreover, if |I ∩ C| = 8, then
{c9, c14} ⊆ I and {c8, c13} ∩ I 6= ∅. Thus I is not independent and |I| ≥ 26.
Since

I0 = X0 ∪ Yf ∪ {a7, b1, b4, b6, b9, b12, c8, c17}

dominates T , it follows that γ(T ) = 26.
As explained above, if I is independent, then |I| > 26. On the other

hand,
I1 = (I0 − {c8}) ∪ {c7, c12}
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is an independent dominating set and hence i(T ) = 27. This completes the
discussion of the tree T .
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