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Abstract

Let τ(G) denote the number of vertices in a longest path of the
graph G and let k1 and k2 be positive integers such that τ(G) = k1+k2.
The question at hand is whether the vertex set V (G) can be partitioned
into two subsets V1 and V2 such that τ(G[V1]) ≤ k1 and τ(G[V2]) ≤ k2.
We show that several classes of graphs have this partition property.
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1. Introduction

Let G be a graph. We denote the number of vertices of G by v(G) and the
number of vertices in a longest path (which need not be an induced path)
in G by τ(G). If S is any subset of the vertex set V (G), we denote the
subgraph of G induced by S by G[S]. We denote the distance between two
vertices v and w by d(v, w), and we define the distance between a vertex x
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of G and a subset S of V (G) by d(x, S) = min{d(x, v)|v ∈ S}. The open

(closed) neighbourhood of a vertex v is defined, as usual, as the set of vertices
N(v) = {u ∈ V (G)|uv ∈ E(G)} (N [v] = N(v) ∪ {v}, respectively).

Given any pair of positive integers (k1, k2), we say that G is (k1, k2)-
partitionable if there exisits a partition {V1, V2} of V (G) into two subsets V1

and V2 such that τ(G[V1]) ≤ k1 and τ(G[V2]) ≤ k2. If G can be (k1, k2)-
partitioned for every pair of positive integers (k1, k2) satisfying k1 + k2 =
τ(G), we say that G is τ -partitionable.

Similar partition concepts can be defined for other parameters. For
example, we say a graph G is ∆-partitionable (where ∆(G) denotes the
maximum degree of G) if, for any pair of positive integers (k1, k2) satisfying
k1 + k2 ≥ ∆(G) − 1, there exists a partition {V1, V2} of V (G) such that
∆(G[V1]) ≤ k1 and ∆G([V2]) ≤ k2. Lovász proved in [10] that every graph
G is ∆-partitionable. Stiebitz proved in [12] a dual type of partition result
with respect to δ (the minimum degree).

The main aim of this paper is to prove results supporting the following
conjecture:

Conjecture 1. Every graph is τ -partitionable.

This problem is stated as Problem 1 in [1]. Its similarity to Lovász’s theorem
is underlined by this formulation since both are stated in terms of reducuble
bounds for some additive hereditary properties—see [1] for details.

This problem is also related to an open problem on kernels described
in [11]. Conjecture 1 was discussed by Lovász and Mihók in 1981 in Szeged
and treated in the theses [7] and [13]. A short description of these problems
and their relationship to our problem can be found in [3]. The directed
version of Conjecture 1 has been presented by Laborde et al in [9].

The k-chromatic number χk(G) of a graph G is defined in [4] as the
smallest number of sets in a partition {V1, V2, . . . , Vn} of V (G) such that
τ(G[Vi]) ≤ k for each i. This is clearly related to our problem. In fact, the
upper bound χk(G) ≤ b(τ(G) − 1 − k)/2c + 2 given in Theorem 2 of [4] can
be improved to χk(G) ≤ dτ(G)/ke if Conjecture 1 is true.

In Section 3 we shall consider graphs that are (k1, k2)-partitionable for
specific integers k1 and k2, and in Section 4 we shall show that various classes
of graphs are τ -partitionable.

Note that a graph is τ -partitionable if each of its (connected) compo-
nents is τ -partitionable; therefore we shall only consider connected graphs
in the sequel.
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2. Preliminary Results

A graph G is called k-τ -saturated if τ(G) ≤ k and τ(G + e) > k for every
e ∈ E(G). (Such graphs are called Wk+1-maximal in [2] but here we follow
the terminology of [8].) Note that, for a graph G with τ(G) = k, one can add
edges to obtain a graph H such that H is k-τ -saturated. Our motivation
for studying such graphs lies of course in the following equivalence: Every

graph G with τ(G) = k is τ -partitionable if and only if every k-τ -saturated

graph is τ -partitionable. Therefore we need to consider Conjecture 1 only
for k-τ -saturated graphs.

The join of two graphs G1 and G2, denoted by G1 + G2, is the graph
obtained from the (disjoint) union of G1 and G2 by adding all possible edges
joining a vertex from G1 and a vertex from G2. If it is possible to write a
graph G as G = G1 + G2, then G is called decomposable; otherwise it is
called indecomposable.

The following useful result concerning decomposable k-τ -saturated
graphs appears (as Theorem 6) in [2].

Lemma 2.1. If G is a k-τ -saturated graph which is not complete and G =
G1+G2 with 1 ≤ v(G1) ≤ v(G2), then G1 is a complete graph with v(G1) ≤

k
2

and τ(G2) ≤ k + 1 − 2v(G1).

Corollary 2.2. A k-τ -saturated graph G is decomposable if and only if

∆(G) = v(G) − 1.

We shall also need the following relationship between τ(G) and β(G), the
vertex independence number of G.

Lemma 2.3. If G is any graph, then

τ(G) ≤ 2[v(G) − β(G)] + 1.

Proof. Let S be an independent set of vertices in G such that

|S| = β(G).

Then
|V (G − S)| = v(G) − β(G).

If P is any path in G, then

|V (P ) ∩ S| ≤ |V (P ) ∩ (V − S)| + 1.
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Therefore

τ(G) ≤ |V (P ) ∩ S| + |V (P ) ∩ (V − S)|

≤ 2v(G − S) + 1

≤ 2(v(G) − β(G)) + 1.

In Section 4 we shall prove that graphs whose blocks satisfy certain condi-
tions are τ -partitionable. In order to do so, we shall need the following two
lemmas.

Lemma 2.4. Let G be a graph such that every cyclic block of G is Hamilto-

nian and let (k1, k2) be a pair of positive integers satisfying k1 + k2 = τ(G).
If G has a block A such that v(A) > k1, then v(B) ≤ k2 for every other

block B of G.

Proof . If B is any block of G other than A, then there is a path in G
containing all the vertices of A and all the vertices of B.

Our next result rephrases Problem 2.30 of [5]. In it, two blocks of a graph
are called incident if they have a common vertex.

Lemma 2.5. The blocks of every graph can be partitioned into two sets in

such a way that no two incident blocks are in the same partition class.

Proof . Let A be any block. Put A in one class, all blocks incident with A
in the other class and continue in the obvious way.

3. Graphs that are (k1, k2)-Partitionable for Specific k1 and k2

Proposition 3.1. Let G be any graph with τ(G) = k ≥ 1. Then G can be

(k − 1, 1)-partitioned.

Proof . Let V2 be a maximal independent set of vertices of G and let
V1 = V (G) − V2. Then, clearly, τ(G[V1]) ≤ k − 1 and τ(G[V2]) ≤ 1.

Theorem 3.2. Let G be a graph with τ(G) = k. If

k2 ≤ k1 ≤ k ≤ d
k1 + 1

2
e + k2,

then G has a (k1, k2)-partition.
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Proof . Let W0 be any subset of V (G) with τ(G[W0]) = k1. Let

Wi = {v ∈ V (G)|d(v,W0) = i}.

If τ(G[Wi]) ≥ k2 + 1 for some i ≥ 1, then

τ(G) ≥ d
k1 + 1

2
e + k2 + 1 > k = τ(G).

Therefore
τ(G[Wi]) ≤ k2 for each i ≥ 1.

Now put
V1 =

⋃

i even
Wi and V2 =

⋃

i odd

Wi.

Then
τ(G[V1]) ≤ k1 and τ([G[V2]) ≤ k2.

Corollary 3.3. Let G be a graph and suppose that

ki ≥
2(τ(G) − 1)

3
for i = 1, 2.

Then G is (k1, k2)-partitionable.

Theorem 3.4. Let G be a graph and suppose that τ(G) = k1+k2. If k2 ≤ 4,
then G is (k1, k2)-partitionable.

Proof . We use an algorithm to construct V1 and V2 if k2 = 4. The
algorithm begins with V1 = V (G) and V2 = ∅.

1. Let

X = {v ∈ V1 | v is an end-vertex of a path in V1 with k1 + 1 vertices}.

If X = ∅ we are done. If X 6= ∅, we proceed to Step 2.

2. If no vertex of X is adjacent to any vertex of V2 (as is the case in the
beginning), then move any vertex of X to V2 and return to Step 1.

3. If some vertex v of X is adjacent to a vertex of V2, then move v to V2.
Now there are two possibilities:

3.1. If v is adjacent to only one vertex of V2, return to Step 1. (Note that
there is still no path on five vertices in V2, since v cannot be an end-vertex
of such a path in V2.)
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3.2. If v is adjacent to more than one vertex of V2, then there is now a cycle C
in V2. (No vertex of X is adjacent to vertices of two different components of
V2, since a “new” component of V2 is only begun when there are no vertices
in X that are adjacent to vertices of V2.) This cycle will be either a C3

or a C4. Let K be the component of V2 containing C. Now return all the
vertices of K − C to V1 and then return to Step 1. Note that, if at some
stage a 4-cycle appears in V2, then, from that stage onward, no vertex that
is adjacent to any vertex of that 4-cycle will ever be in X.

Suppose that at some stage a 3-cycle abc appears in V2 and, at some
later stage, a vertex x that is adjacent to a vertex of this 3-cycle is moved
from X to V2. Then:

If x is adjacent to only one vertex of this 3-cycle, say to a, then no
vertex adjacent to b or c will be in X hereafter, since each of b and c is now
an end-vertex of a P4 in V2.

If, on the other hand, x is adjacent to more than one vertex of the
3-cycle, then there is now a 4-cycle in V2, and thereafter no vertex adjacent
to a, b or c will be in X.

At some stage X will become empty so that τ(G[V1]) ≤ k1 while
τ(G[V2]) remains at most 4.

Similar algorithms can be described to handle the cases k2 = 2 and 3;
for k2 = 1 the result is already proven in Proposition 3.1.

The result of this theorem can be extended to include more cases but our
approach becomes too elaborate then. The cases in which k2 ≤ 5 have been
treated in [7] and [13] too (in terms of the existence of kernels); also with
elaborate proofs.

Theorem 3.5. Let G be a graph with k1 + k2 = τ(G). If

2[v(G) − β(G)] + 1 − k1 ≤ τ(G),

then G is (k1, k2)-partitionable.

Proof . Let S be an independent set of vertices in G with

|S| = β(G).

If v(G) − β(G) ≤ k1, let

V1 = V (G) − S and V2 = S.
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If v(G) − β(G) > k1, let V1 be any subset of V (G) − S with |V1| = k1 and
let V2 = V (G) − V1.
Then

τ(G[V1]) ≤ k1

and, by Lemma 2.3,

τ(G[V2]) ≤ 2[|V2| − β(G[V2])] + 1

= 2[v(G) − k1 − β(G)] + 1 (since β(G[V2]) = β(G))

= 2v(G) − k1 − 2β(G) + 1 − k1 ≤ τ(G) − k1

= k2.

Theorem 3.6. If G is a graph with ∆(G) ≤ 3, then G is (2, 2)-partitionable.

Proof . By Lovász’ Theorem (see [10]) G is ∆-partitionable. Hence
there exists a partition {V1, V2} of V (G) such that ∆(G[V1]) ≤ 1 and
∆G([V2]) ≤ 1. This partition satisfies our requirements since τ(G[V1]) ≤ 2
and τG([V2]) ≤ 2.

Our next result also gives a class of (k1, k2)-partitionable graphs; this time
it assumes the existence of a suitable cycle.

Theorem 3.7. Let G be a graph with τ(G) = k1 + k2 and with k1 ≥ k2. If

G contains a cycle of length k1, then G is (k1, k2)-partitionable.

Proof . Let C be a cycle of length k1 in G. Put

W0 = V (C) and Wi = {v ∈ V (G) − V (C))|d(v,W0) = i}.

Now consider any vertex vi ∈ Wi. Then there is a path vivi−1 . . . v1v0 in G
with vj ∈ Wj for j = 0, 1, . . . , i. Therefore τ(G[Wi]) ≤ k2 for all i ≥ 1. Now
put

V1 =
⋃

i even
Wi and V2 =

⋃

i odd

Wi.

Then τ(G[Vi]) ≤ ki for i = 1, 2.

Theorem 3.8. Let G be a graph with τ(G) = k1 + k2 and with k1 ≥ k2. If

G has a vertex v such that τ(G−N [v]) ≤ k2, then G has a (k1, k2)-partition.

Proof . If τ(N(v)) ≤ k1, then (N(v), G − N(v)) is a (k1, k2)-partition of
G. If τ(N(v)) > k1, then v together with any path of order k1 − 1 in N(v)
form a cycle of length k1 in G. Hence it follows from Theorem 3.7 that G
has a (k1, k2)-partition in this case.
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Corollary 3.9. Let G be a graph with τ(G) = k1 + k2 and with k1 ≥ k2. If

∆(G) ≥ v(G) − k2 − 1, then G has a (k1, k2)-partition.

Proof . Let G be a vertex of G of degree at least v(G) − k2 − 1. Then
|G − N [v]| ≤ k2, and the result follows from Theorem 3.8.

Let c(G) denote the length of a longest cycle in G. Since Conjecture 1 is
true for all trees (indeed, it is trivially true for all bipartite graphs), we need
only consider graphs that contain cycles. Following the idea of the proofs of
Theorem 3.2 and Theorem 3.7 we can now prove

Theorem 3.10. Let G be a graph containing a cycle and suppose that t is

any integer such that c(G) ≤ t. Then G is (t − 1, t − 1)-partitionable.

Proof . Let v be any vertex of G and put

W0 = {v} and Wi = {x ∈ V (G)|d(x, v) = i}.

If some Wj contains a path P of order t, then there are internally disjoint
paths from some vertex in some Wi, i < j to the endvertices of P , that is,
c(G) > t. Therefore τ(G[Wj ]) ≤ t − 1 for all j ≥ 1. Now put

V1 =
⋃

i even
Wi and V2 =

⋃

i odd

Wi

to complete the proof.

It seems plausible to approach Conjecture 1 by proving it for blocks and
proving that, if all blocks of G are τ -partitionable then so is G. We only
have a partial result supporting this approach; it shows how some graphs
can be (k1, k2)-partitioned using the partitions of its blocks. If G is a graph
and B is a subgraph of G, we denote the sets of vertices V (B) ∩ N(x) and
V (B) ∩ N [x] by NB(x) and NB [x], respectively.

Theorem 3.11. Let G be a graph with τ(G) ≤ k1 + k2 and with k1 ≥ k2.

Suppose that every block of G has a (k1, k2)-partition and that for every block

B of G and every cutvertex x of G which is in B we have that τ(B[NB(x)]) ≤
k2 and that τ(B − NB [x]) ≤ k2. Then G has a (k1, k2)-partition.

Proof . The result follows by induction on the number of blocks of G; it is
clearly true if G consists of only one block.

Hence suppose it is true for all graphs with at most r− 1 blocks and let
G be a graph with r ≥ 2 blocks. Let B be an endblock of G and let x be
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the cutvertex of G which is in B. Then, by the induction hypothesis, the
graph induced by V (G) − V (B − x) has a (k1, k2)-partition, say {V ′

1 , V ′

2}.
If x ∈ V ′

1 , we can define the desired partition of V (G) by V1 = V ′

1 ∪
V (B − NB [x]) and V2 = V ′

2 ∪ NB(x). On the other hand, if x ∈ V ′

2 , the
partition of V (G) defined by V1 = V ′

1 ∪NB(x) and V2 = V ′

2 ∪ V (B −NB [x])
has the required properties.

4. Graphs that are τ-Partitionable

Several classes of graphs are easily seen to be τ -partitionable: for example
complete graphs, bipartite graphs (since they are (1, 1)-partitionable) and
any graph which has a Hamiltonian path. In this latter case we note that
v(G) = τ(G). We also have

Proposition 4.1. If G is a graph with v(G) ≤ τ(G) + 1, then G is τ -

partitionable.

Proof . Let τ(G) = k = k1 + k2 with k1 ≥ k2. If v(G) = k, then G is
obviously (k1, k2)-partitionable. We therefore assume that v(G) = k + 1.
Then G does not have a Hamiltonian cycle. Therefore, by the well-known
sufficient condition of Dirac for a graph to have a Hamiltonian cycle (see
[6]), δ(G) < k+1

2
. Hence k1 ≥ k

2
≥ δ(G). Now let v be a vertex of G

with deg v = d ≤ k1, let V1 consist of the d neighbours of v together with
any k1 − d other vertices of G and let V2 = G − V1. Then V2 consists of
v together with k2 non-neighbours of v and hence τ(G[V2]) ≤ k2. Also,
τ(G[(V1]) ≤ |V1| = k1.

In the next two theorems we use the remarks following Theorem 3.4; the
first one follows directly from them.

Theorem 4.2. If G is a graph with τ(G) ≤ 11, then G is τ -partitionable.

Corollary 4.3. If G is a graph of order at most 13, then G is τ -

partitionable.

Proof . If τ(G) ≤ 11, the result follows from Theorem 4.2. If τ(G) = 12 or
13, the result follows from Proposition 4.1.

Theorem 4.4. If G is a graph containing a cycle and c(G) ≤ 7, then G is

τ -partitionable.
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Proof . Let τ(G) = k1 + k2 with k1 ≥ k2. If k2 ≤ 5, then G is (k1, k2)-
partitionable by the remarks following Theorem 3.4. Otherwise k1 ≥ k2 ≥ 6
so that G is (k1, k2)-partitionable by Theorem 3.10.

Theorem 4.5. Suppose G is a graph such that every cyclic block of G is

Hamiltonian. Then G is τ -partitionable.

Proof . Let

τ(G) = k = k1 + k2 and suppose that k1 ≥ k2.

Case (i). v(B) ≤ k2 for every block B of G.
By Lemma 2.5 we can partition the blocks of G in such a way that no two
incident blocks are in the same class.

Case (ii). There is a block A of G such that v(A) > k1.
Then v(B) ≤ k2 for every other block B of G by Lemma 2.4. Put k1 of the
vertices of A in V1 and the other vertices of A in V2. Then we put all the
remaining vertices of each block incident with a vertex which is in V1 (V2)
in V2 (V1 respectively). Continue in the obvious way.

Case (iii). There is a block A such that v(A) ≥ k2 and v(B) ≤ k1 for
every block B of G.
Put k2 vertices of A in V2, and the remaining vertices of A in V1. Then put
all the remaining vertices of each block of G incident with a vertex of A∩V2

in V1. Now put the remaining vertices of each block B that is incident with
a vertex of A ∩ V1 as follows:

Let {a} = V (B) ∩ (A ∩ V1). If v(B) ≤ k2 + 1, put all the vertices of
B − a in V2. If v(B) > k2 + 1, put k2 of the vertices of B − a in V2, and the
rest in V1.

Carry on distributing in this way: If two blocks share a cut vertex in
V2, one of the blocks will be completely in V1, while if two blocks share a
cut vertex in V1, neither of the two blocks will have more than k2 vertices
in V2. Now

τ(G[V2]) ≤ k2

since each path in G[V2] lies in a single block of G and we did not put more
than k2 vertices of any block in V2.

Also, τ(G[V1]) ≤ k1 for if P is a path in G[V1] and v(P ) > k1, then P
has vertices in at least two different blocks of G. Let

H = ∪{V (B) | V (B) ∩ V (P ) 6= ∅}.
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Then at least one endblock B of H has at least k2 vertices in V2. Let Q
be a path containing all the vertices of B, and all the vertices of P . Then
v(Q) > k1 + k2.

Since B has at least k2 vertices in V2 and τ(G) = k1 +k2, it follows that
P has at most k1 vertices in V1.

A graph G is called a block graph if every block of G is complete. As a
special case of Theorem 4.5, we have

Corollary 4.6. If G is a block graph, then G is τ -partitionable.

Corollary 4.7. If G is a graph without even cycles, then G is τ -

partitionable.

Proof . If G has no even cycles, then every cyclic block of G is an odd
cycle. Hence G is τ -partitionable by Theorem 4.5.

The next two results show that if the maximum degree of a graph is either
small or large compared to its order, the graph is τ -partitionable.

Theorem 4.8. If G is a graph with ∆(G) ≤ 3, then G is τ -partitionable.

Proof . Let (k1, k2) be any pair of positive integers satisfying k1+k2 = τ(G)
and k1 ≥ k2. If k2 ≤ 4, then the required partition can be obtained from
Theorem 3.4. Otherwise, it can be obtained from Theorem 3.6.

Theorem 4.9. If G is a graph with ∆(G) ≥ v(G) − 7, then G is τ -

partitionable.

Proof . Let (k1, k2) be any pair of postive integers satisfying k1+k2 = τ(G).
If k2 ≤ 5, it follows from the remarks following Theorem 3.4 that G has a
(k1, k2)-partition. If k2 ≥ 6, it follows from Corollary 3.9 that G has a
(k1, k2)-partition.

Finally we can now prove

Theorem 4.10. Every decomposable graph is τ -partitionable.

Proof . Let G be a decomposable graph with τ(G) = k. Then G is a
subgraph of some k-τ -saturated graph G∗ which is also decomposable. By
Corollary 2.2, ∆(G∗) = v(G∗) − 1. Therefore, by Theorem 4.9, G∗ is τ -
partitionable, and hence G is τ -partitionable.
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One last remark about the problem in general: If G is a graph such that for
every pair of positive integers k1 and k2 for which τ(G) = k1 +k2 the vertex
set V (G) can be partitioned into two subsets V1 and V2 such that τ(G[Vi])
is equal to ki for i = 1, 2, then G is clearly τ -partitionable. We do not know
if the converse of this implication is also true.
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