A PATH(OLOGICAL) PARTITION PROBLEM

Izak Broere*
Michael Dorfling*
Rand Afrikaans University
Auckland Park, 2006 South Africa
Jean E. Dunbar*
Converse College
Spartanburg, SC 29302 USA
AND
Marietuie Frick*
University of South Africa
Pretoria, 0001 South Africa

Abstract

Let $\tau(G)$ denote the number of vertices in a longest path of the graph G and let k_{1} and k_{2} be positive integers such that $\tau(G)=k_{1}+k_{2}$. The question at hand is whether the vertex set $V(G)$ can be partitioned into two subsets V_{1} and V_{2} such that $\tau\left(G\left[V_{1}\right]\right) \leq k_{1}$ and $\tau\left(G\left[V_{2}\right]\right) \leq k_{2}$. We show that several classes of graphs have this partition property.

Keywords: vertex partition, τ-partitionable, decomposable graph.
1991 Mathematics Subject Classification: 05C38.

1. Introduction

Let G be a graph. We denote the number of vertices of G by $v(G)$ and the number of vertices in a longest path (which need not be an induced path) in G by $\tau(G)$. If S is any subset of the vertex set $V(G)$, we denote the subgraph of G induced by S by $G[S]$. We denote the distance between two vertices v and w by $d(v, w)$, and we define the distance between a vertex x

[^0]of G and a subset S of $V(G)$ by $d(x, S)=\min \{d(x, v) \mid v \in S\}$. The open (closed) neighbourhood of a vertex v is defined, as usual, as the set of vertices $N(v)=\{u \in V(G) \mid u v \in E(G)\}(N[v]=N(v) \cup\{v\}$, respectively $)$.

Given any pair of positive integers $\left(k_{1}, k_{2}\right)$, we say that G is $\left(k_{1}, k_{2}\right)$ partitionable if there exisits a partition $\left\{V_{1}, V_{2}\right\}$ of $V(G)$ into two subsets V_{1} and V_{2} such that $\tau\left(G\left[V_{1}\right]\right) \leq k_{1}$ and $\tau\left(G\left[V_{2}\right]\right) \leq k_{2}$. If G can be $\left(k_{1}, k_{2}\right)$ partitioned for every pair of positive integers $\left(k_{1}, k_{2}\right)$ satisfying $k_{1}+k_{2}=$ $\tau(G)$, we say that G is τ-partitionable.

Similar partition concepts can be defined for other parameters. For example, we say a graph G is Δ-partitionable (where $\Delta(G)$ denotes the maximum degree of G) if, for any pair of positive integers $\left(k_{1}, k_{2}\right)$ satisfying $k_{1}+k_{2} \geq \Delta(G)-1$, there exists a partition $\left\{V_{1}, V_{2}\right\}$ of $V(G)$ such that $\Delta\left(G\left[V_{1}\right]\right) \leq k_{1}$ and $\Delta G\left(\left[V_{2}\right]\right) \leq k_{2}$. Lovász proved in [10] that every graph G is Δ-partitionable. Stiebitz proved in [12] a dual type of partition result with respect to δ (the minimum degree).

The main aim of this paper is to prove results supporting the following conjecture:

Conjecture 1. Every graph is τ-partitionable.
This problem is stated as Problem 1 in [1]. Its similarity to Lovász's theorem is underlined by this formulation since both are stated in terms of reducuble bounds for some additive hereditary properties - see [1] for details.

This problem is also related to an open problem on kernels described in [11]. Conjecture 1 was discussed by Lovász and Mihók in 1981 in Szeged and treated in the theses [7] and [13]. A short description of these problems and their relationship to our problem can be found in [3]. The directed version of Conjecture 1 has been presented by Laborde et al in [9].

The k-chromatic number $\chi_{k}(G)$ of a graph G is defined in [4] as the smallest number of sets in a partition $\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$ of $V(G)$ such that $\tau\left(G\left[V_{i}\right]\right) \leq k$ for each i. This is clearly related to our problem. In fact, the upper bound $\chi_{k}(G) \leq\lfloor(\tau(G)-1-k) / 2\rfloor+2$ given in Theorem 2 of [4] can be improved to $\chi_{k}(G) \leq\lceil\tau(G) / k\rceil$ if Conjecture 1 is true.

In Section 3 we shall consider graphs that are $\left(k_{1}, k_{2}\right)$-partitionable for specific integers k_{1} and k_{2}, and in Section 4 we shall show that various classes of graphs are τ-partitionable.

Note that a graph is τ-partitionable if each of its (connected) components is τ-partitionable; therefore we shall only consider connected graphs in the sequel.

2. Preliminary Results

A graph G is called k - τ-saturated if $\tau(G) \leq k$ and $\tau(G+e)>k$ for every $e \in E(\bar{G})$. (Such graphs are called \mathcal{W}_{k+1}-maximal in [2] but here we follow the terminology of [8].) Note that, for a graph G with $\tau(G)=k$, one can add edges to obtain a graph H such that H is k - τ-saturated. Our motivation for studying such graphs lies of course in the following equivalence: Every graph G with $\tau(G)=k$ is τ-partitionable if and only if every k - τ-saturated graph is τ-partitionable. Therefore we need to consider Conjecture 1 only for k - τ-saturated graphs.

The join of two graphs G_{1} and G_{2}, denoted by $G_{1}+G_{2}$, is the graph obtained from the (disjoint) union of G_{1} and G_{2} by adding all possible edges joining a vertex from G_{1} and a vertex from G_{2}. If it is possible to write a graph G as $G=G_{1}+G_{2}$, then G is called decomposable; otherwise it is called indecomposable.

The following useful result concerning decomposable k - τ-saturated graphs appears (as Theorem 6) in [2].

Lemma 2.1. If G is a k - τ-saturated graph which is not complete and $G=$ $G_{1}+G_{2}$ with $1 \leq v\left(G_{1}\right) \leq v\left(G_{2}\right)$, then G_{1} is a complete graph with $v\left(G_{1}\right) \leq \frac{k}{2}$ and $\tau\left(G_{2}\right) \leq k+1-2 v\left(G_{1}\right)$.

Corollary 2.2. A k - τ-saturated graph G is decomposable if and only if $\Delta(G)=v(G)-1$.

We shall also need the following relationship between $\tau(G)$ and $\beta(G)$, the vertex independence number of G.

Lemma 2.3. If G is any graph, then

$$
\tau(G) \leq 2[v(G)-\beta(G)]+1
$$

Proof. Let S be an independent set of vertices in G such that

$$
|S|=\beta(G) .
$$

Then

$$
|V(G-S)|=v(G)-\beta(G) .
$$

If P is any path in G, then

$$
|V(P) \cap S| \leq|V(P) \cap(V-S)|+1 .
$$

Therefore

$$
\begin{aligned}
\tau(G) & \leq|V(P) \cap S|+|V(P) \cap(V-S)| \\
& \leq 2 v(G-S)+1 \\
& \leq 2(v(G)-\beta(G))+1 .
\end{aligned}
$$

In Section 4 we shall prove that graphs whose blocks satisfy certain conditions are τ-partitionable. In order to do so, we shall need the following two lemmas.

Lemma 2.4. Let G be a graph such that every cyclic block of G is Hamiltonian and let $\left(k_{1}, k_{2}\right)$ be a pair of positive integers satisfying $k_{1}+k_{2}=\tau(G)$. If G has a block A such that $v(A)>k_{1}$, then $v(B) \leq k_{2}$ for every other block B of G.

Proof. If B is any block of G other than A, then there is a path in G containing all the vertices of A and all the vertices of B.

Our next result rephrases Problem 2.30 of [5]. In it, two blocks of a graph are called incident if they have a common vertex.

Lemma 2.5. The blocks of every graph can be partitioned into two sets in such a way that no two incident blocks are in the same partition class.

Proof. Let A be any block. Put A in one class, all blocks incident with A in the other class and continue in the obvious way.
3. Graphs that are (k_{1}, k_{2})-Partitionable for Specific k_{1} and k_{2}

Proposition 3.1. Let G be any graph with $\tau(G)=k \geq 1$. Then G can be ($k-1,1$)-partitioned.

Proof. Let V_{2} be a maximal independent set of vertices of G and let $V_{1}=V(G)-V_{2}$. Then, clearly, $\tau\left(G\left[V_{1}\right]\right) \leq k-1$ and $\tau\left(G\left[V_{2}\right]\right) \leq 1$.

Theorem 3.2. Let G be a graph with $\tau(G)=k$. If

$$
k_{2} \leq k_{1} \leq k \leq\left\lceil\frac{k_{1}+1}{2}\right\rceil+k_{2},
$$

then G has a $\left(k_{1}, k_{2}\right)$-partition.

Proof. Let W_{0} be any subset of $V(G)$ with $\tau\left(G\left[W_{0}\right]\right)=k_{1}$. Let

$$
W_{i}=\left\{v \in V(G) \mid d\left(v, W_{0}\right)=i\right\}
$$

If $\tau\left(G\left[W_{i}\right]\right) \geq k_{2}+1$ for some $i \geq 1$, then

$$
\tau(G) \geq\left\lceil\frac{k_{1}+1}{2}\right\rceil+k_{2}+1>k=\tau(G)
$$

Therefore

$$
\tau\left(G\left[W_{i}\right]\right) \leq k_{2} \text { for each } i \geq 1
$$

Now put

$$
V_{1}=\bigcup_{i \text { even }} W_{i} \text { and } V_{2}=\bigcup_{i \text { odd }} W_{i} .
$$

Then

$$
\tau\left(G\left[V_{1}\right]\right) \leq k_{1} \text { and } \tau\left(\left[G\left[V_{2}\right]\right) \leq k_{2} .\right.
$$

Corollary 3.3. Let G be a graph and suppose that

$$
k_{i} \geq \frac{2(\tau(G)-1)}{3} \text { for } i=1,2
$$

Then G is $\left(k_{1}, k_{2}\right)$-partitionable.
Theorem 3.4. Let G be a graph and suppose that $\tau(G)=k_{1}+k_{2}$. If $k_{2} \leq 4$, then G is $\left(k_{1}, k_{2}\right)$-partitionable.

Proof. We use an algorithm to construct V_{1} and V_{2} if $k_{2}=4$. The algorithm begins with $V_{1}=V(G)$ and $V_{2}=\emptyset$.

1. Let
$X=\left\{v \in V_{1} \mid v\right.$ is an end-vertex of a path in V_{1} with $k_{1}+1$ vertices $\}$.
If $X=\emptyset$ we are done. If $X \neq \emptyset$, we proceed to Step 2 .
2. If no vertex of X is adjacent to any vertex of V_{2} (as is the case in the beginning), then move any vertex of X to V_{2} and return to Step 1.
3. If some vertex v of X is adjacent to a vertex of V_{2}, then move v to V_{2}. Now there are two possibilities:
3.1. If v is adjacent to only one vertex of V_{2}, return to Step 1. (Note that there is still no path on five vertices in V_{2}, since v cannot be an end-vertex of such a path in V_{2}.)
3.2. If v is adjacent to more than one vertex of V_{2}, then there is now a cycle C in V_{2}. (No vertex of X is adjacent to vertices of two different components of V_{2}, since a "new" component of V_{2} is only begun when there are no vertices in X that are adjacent to vertices of V_{2}.) This cycle will be either a C_{3} or a C_{4}. Let K be the component of V_{2} containing C. Now return all the vertices of $K-C$ to V_{1} and then return to Step 1. Note that, if at some stage a 4 -cycle appears in V_{2}, then, from that stage onward, no vertex that is adjacent to any vertex of that 4 -cycle will ever be in X.

Suppose that at some stage a 3 -cycle $a b c$ appears in V_{2} and, at some later stage, a vertex x that is adjacent to a vertex of this 3 -cycle is moved from X to V_{2}. Then:

If x is adjacent to only one vertex of this 3 -cycle, say to a, then no vertex adjacent to b or c will be in X hereafter, since each of b and c is now an end-vertex of a P_{4} in V_{2}.

If, on the other hand, x is adjacent to more than one vertex of the 3 -cycle, then there is now a 4 -cycle in V_{2}, and thereafter no vertex adjacent to a, b or c will be in X.

At some stage X will become empty so that $\tau\left(G\left[V_{1}\right]\right) \leq k_{1}$ while $\tau\left(G\left[V_{2}\right]\right)$ remains at most 4 .

Similar algorithms can be described to handle the cases $k_{2}=2$ and 3; for $k_{2}=1$ the result is already proven in Proposition 3.1.
The result of this theorem can be extended to include more cases but our approach becomes too elaborate then. The cases in which $k_{2} \leq 5$ have been treated in [7] and [13] too (in terms of the existence of kernels); also with elaborate proofs.

Theorem 3.5. Let G be a graph with $k_{1}+k_{2}=\tau(G)$. If

$$
2[v(G)-\beta(G)]+1-k_{1} \leq \tau(G),
$$

then G is $\left(k_{1}, k_{2}\right)$-partitionable.
Proof. Let S be an independent set of vertices in G with

$$
|S|=\beta(G) .
$$

If $v(G)-\beta(G) \leq k_{1}$, let

$$
V_{1}=V(G)-S \text { and } V_{2}=S
$$

If $v(G)-\beta(G)>k_{1}$, let V_{1} be any subset of $V(G)-S$ with $\left|V_{1}\right|=k_{1}$ and let $V_{2}=V(G)-V_{1}$.
Then

$$
\tau\left(G\left[V_{1}\right]\right) \leq k_{1}
$$

and, by Lemma 2.3,

$$
\begin{aligned}
\tau\left(G\left[V_{2}\right]\right) & \leq 2\left[\left|V_{2}\right|-\beta\left(G\left[V_{2}\right]\right)\right]+1 \\
& =2\left[v(G)-k_{1}-\beta(G)\right]+1\left(\text { since } \beta\left(G\left[V_{2}\right]\right)=\beta(G)\right) \\
& =2 v(G)-k_{1}-2 \beta(G)+1-k_{1} \leq \tau(G)-k_{1} \\
& =k_{2} .
\end{aligned}
$$

Theorem 3.6. If G is a graph with $\Delta(G) \leq 3$, then G is $(2,2)$-partitionable.
Proof. By Lovász' Theorem (see [10]) G is Δ-partitionable. Hence there exists a partition $\left\{V_{1}, V_{2}\right\}$ of $V(G)$ such that $\Delta\left(G\left[V_{1}\right]\right) \leq 1$ and $\Delta G\left(\left[V_{2}\right]\right) \leq 1$. This partition satisfies our requirements since $\tau\left(G\left[V_{1}\right]\right) \leq 2$ and $\tau G\left(\left[V_{2}\right]\right) \leq 2$.

Our next result also gives a class of $\left(k_{1}, k_{2}\right)$-partitionable graphs; this time it assumes the existence of a suitable cycle.

Theorem 3.7. Let G be a graph with $\tau(G)=k_{1}+k_{2}$ and with $k_{1} \geq k_{2}$. If G contains a cycle of length k_{1}, then G is $\left(k_{1}, k_{2}\right)$-partitionable.

Proof. Let C be a cycle of length k_{1} in G. Put

$$
\left.W_{0}=V(C) \text { and } W_{i}=\{v \in V(G)-V(C)) \mid d\left(v, W_{0}\right)=i\right\} .
$$

Now consider any vertex $v_{i} \in W_{i}$. Then there is a path $v_{i} v_{i-1} \ldots v_{1} v_{0}$ in G with $v_{j} \in W_{j}$ for $j=0,1, \ldots, i$. Therefore $\tau\left(G\left[W_{i}\right]\right) \leq k_{2}$ for all $i \geq 1$. Now put

$$
V_{1}=\bigcup_{i \text { even }} W_{i} \text { and } V_{2}=\bigcup_{i \text { odd }} W_{i} .
$$

Then $\tau\left(G\left[V_{i}\right]\right) \leq k_{i}$ for $i=1,2$.
Theorem 3.8. Let G be a graph with $\tau(G)=k_{1}+k_{2}$ and with $k_{1} \geq k_{2}$. If G has a vertex v such that $\tau(G-N[v]) \leq k_{2}$, then G has a $\left(k_{1}, k_{2}\right)$-partition.

Proof. If $\tau(N(v)) \leq k_{1}$, then $(N(v), G-N(v))$ is a $\left(k_{1}, k_{2}\right)$-partition of G. If $\tau(N(v))>k_{1}$, then v together with any path of order $k_{1}-1$ in $N(v)$ form a cycle of length k_{1} in G. Hence it follows from Theorem 3.7 that G has a (k_{1}, k_{2})-partition in this case.

Corollary 3.9. Let G be a graph with $\tau(G)=k_{1}+k_{2}$ and with $k_{1} \geq k_{2}$. If $\Delta(G) \geq v(G)-k_{2}-1$, then G has a $\left(k_{1}, k_{2}\right)$-partition.
Proof. Let G be a vertex of G of degree at least $v(G)-k_{2}-1$. Then $|G-N[v]| \leq k_{2}$, and the result follows from Theorem 3.8.
Let $c(G)$ denote the length of a longest cycle in G. Since Conjecture 1 is true for all trees (indeed, it is trivially true for all bipartite graphs), we need only consider graphs that contain cycles. Following the idea of the proofs of Theorem 3.2 and Theorem 3.7 we can now prove

Theorem 3.10. Let G be a graph containing a cycle and suppose that t is any integer such that $c(G) \leq t$. Then G is $(t-1, t-1)$-partitionable.

Proof. Let v be any vertex of G and put

$$
W_{0}=\{v\} \text { and } W_{i}=\{x \in V(G) \mid d(x, v)=i\} .
$$

If some W_{j} contains a path P of order t, then there are internally disjoint paths from some vertex in some $W_{i}, i<j$ to the endvertices of P, that is, $c(G)>t$. Therefore $\tau\left(G\left[W_{j}\right]\right) \leq t-1$ for all $j \geq 1$. Now put

$$
V_{1}=\bigcup_{i \text { even }} W_{i} \text { and } V_{2}=\bigcup_{i \text { odd }} W_{i}
$$

to complete the proof.
It seems plausible to approach Conjecture 1 by proving it for blocks and proving that, if all blocks of G are τ-partitionable then so is G. We only have a partial result supporting this approach; it shows how some graphs can be (k_{1}, k_{2})-partitioned using the partitions of its blocks. If G is a graph and B is a subgraph of G, we denote the sets of vertices $V(B) \cap N(x)$ and $V(B) \cap N[x]$ by $N_{B}(x)$ and $N_{B}[x]$, respectively.

Theorem 3.11. Let G be a graph with $\tau(G) \leq k_{1}+k_{2}$ and with $k_{1} \geq k_{2}$. Suppose that every block of G has a $\left(k_{1}, k_{2}\right)$-partition and that for every block B of G and every cutvertex x of G which is in B we have that $\tau\left(B\left[N_{B}(x)\right]\right) \leq$ k_{2} and that $\tau\left(B-N_{B}[x]\right) \leq k_{2}$. Then G has a $\left(k_{1}, k_{2}\right)$-partition.

Proof. The result follows by induction on the number of blocks of G; it is clearly true if G consists of only one block.

Hence suppose it is true for all graphs with at most $r-1$ blocks and let G be a graph with $r \geq 2$ blocks. Let B be an endblock of G and let x be
the cutvertex of G which is in B. Then, by the induction hypothesis, the graph induced by $V(G)-V(B-x)$ has a $\left(k_{1}, k_{2}\right)$-partition, say $\left\{V_{1}^{\prime}, V_{2}^{\prime}\right\}$.

If $x \in V_{1}^{\prime}$, we can define the desired partition of $V(G)$ by $V_{1}=V_{1}^{\prime} \cup$ $V\left(B-N_{B}[x]\right)$ and $V_{2}=V_{2}^{\prime} \cup N_{B}(x)$. On the other hand, if $x \in V_{2}^{\prime}$, the partition of $V(G)$ defined by $V_{1}=V_{1}^{\prime} \cup N_{B}(x)$ and $V_{2}=V_{2}^{\prime} \cup V\left(B-N_{B}[x]\right)$ has the required properties.

4. Graphs that are τ-Partitionable

Several classes of graphs are easily seen to be τ-partitionable: for example complete graphs, bipartite graphs (since they are (1,1)-partitionable) and any graph which has a Hamiltonian path. In this latter case we note that $v(G)=\tau(G)$. We also have

Proposition 4.1. If G is a graph with $v(G) \leq \tau(G)+1$, then G is τ partitionable.

Proof. Let $\tau(G)=k=k_{1}+k_{2}$ with $k_{1} \geq k_{2}$. If $v(G)=k$, then G is obviously $\left(k_{1}, k_{2}\right)$-partitionable. We therefore assume that $v(G)=k+1$. Then G does not have a Hamiltonian cycle. Therefore, by the well-known sufficient condition of Dirac for a graph to have a Hamiltonian cycle (see $[6]), \delta(G)<\frac{k+1}{2}$. Hence $k_{1} \geq \frac{k}{2} \geq \delta(G)$. Now let v be a vertex of G with $\operatorname{deg} v=d \leq k_{1}$, let V_{1} consist of the d neighbours of v together with any $k_{1}-d$ other vertices of G and let $V_{2}=G-V_{1}$. Then V_{2} consists of v together with k_{2} non-neighbours of v and hence $\tau\left(G\left[V_{2}\right]\right) \leq k_{2}$. Also, $\tau\left(G\left[\left(V_{1}\right]\right) \leq\left|V_{1}\right|=k_{1}\right.$.

In the next two theorems we use the remarks following Theorem 3.4; the first one follows directly from them.

Theorem 4.2. If G is a graph with $\tau(G) \leq 11$, then G is τ-partitionable.
Corollary 4.3. If G is a graph of order at most 13 , then G is τ partitionable.

Proof. If $\tau(G) \leq 11$, the result follows from Theorem 4.2. If $\tau(G)=12$ or 13, the result follows from Proposition 4.1.

Theorem 4.4. If G is a graph containing a cycle and $c(G) \leq 7$, then G is τ-partitionable.

Proof. Let $\tau(G)=k_{1}+k_{2}$ with $k_{1} \geq k_{2}$. If $k_{2} \leq 5$, then G is $\left(k_{1}, k_{2}\right)$ partitionable by the remarks following Theorem 3.4. Otherwise $k_{1} \geq k_{2} \geq 6$ so that G is $\left(k_{1}, k_{2}\right)$-partitionable by Theorem 3.10.

Theorem 4.5. Suppose G is a graph such that every cyclic block of G is Hamiltonian. Then G is τ-partitionable.
Proof. Let

$$
\tau(G)=k=k_{1}+k_{2} \text { and suppose that } k_{1} \geq k_{2}
$$

Case (i). $v(B) \leq k_{2}$ for every block B of G.
By Lemma 2.5 we can partition the blocks of G in such a way that no two incident blocks are in the same class.

Case (ii). There is a block A of G such that $v(A)>k_{1}$.
Then $v(B) \leq k_{2}$ for every other block B of G by Lemma 2.4. Put k_{1} of the vertices of A in V_{1} and the other vertices of A in V_{2}. Then we put all the remaining vertices of each block incident with a vertex which is in $V_{1}\left(V_{2}\right)$ in V_{2} (V_{1} respectively). Continue in the obvious way.

Case (iii). There is a block A such that $v(A) \geq k_{2}$ and $v(B) \leq k_{1}$ for every block B of G.
Put k_{2} vertices of A in V_{2}, and the remaining vertices of A in V_{1}. Then put all the remaining vertices of each block of G incident with a vertex of $A \cap V_{2}$ in V_{1}. Now put the remaining vertices of each block B that is incident with a vertex of $A \cap V_{1}$ as follows:

Let $\{a\}=V(B) \cap\left(A \cap V_{1}\right)$. If $v(B) \leq k_{2}+1$, put all the vertices of $B-a$ in V_{2}. If $v(B)>k_{2}+1$, put k_{2} of the vertices of $B-a$ in V_{2}, and the rest in V_{1}.

Carry on distributing in this way: If two blocks share a cut vertex in V_{2}, one of the blocks will be completely in V_{1}, while if two blocks share a cut vertex in V_{1}, neither of the two blocks will have more than k_{2} vertices in V_{2}. Now

$$
\tau\left(G\left[V_{2}\right]\right) \leq k_{2}
$$

since each path in $G\left[V_{2}\right]$ lies in a single block of G and we did not put more than k_{2} vertices of any block in V_{2}.

Also, $\tau\left(G\left[V_{1}\right]\right) \leq k_{1}$ for if P is a path in $G\left[V_{1}\right]$ and $v(P)>k_{1}$, then P has vertices in at least two different blocks of G. Let

$$
H=\cup\{V(B) \mid V(B) \cap V(P) \neq \emptyset\}
$$

Then at least one endblock B of H has at least k_{2} vertices in V_{2}. Let Q be a path containing all the vertices of B, and all the vertices of P. Then $v(Q)>k_{1}+k_{2}$.

Since B has at least k_{2} vertices in V_{2} and $\tau(G)=k_{1}+k_{2}$, it follows that P has at most k_{1} vertices in V_{1}.

A graph G is called a block graph if every block of G is complete. As a special case of Theorem 4.5, we have

Corollary 4.6. If G is a block graph, then G is τ-partitionable.
Corollary 4.7. If G is a graph without even cycles, then G is τ partitionable.

Proof. If G has no even cycles, then every cyclic block of G is an odd cycle. Hence G is τ-partitionable by Theorem 4.5.

The next two results show that if the maximum degree of a graph is either small or large compared to its order, the graph is τ-partitionable.

Theorem 4.8. If G is a graph with $\Delta(G) \leq 3$, then G is τ-partitionable.
Proof. Let $\left(k_{1}, k_{2}\right)$ be any pair of positive integers satisfying $k_{1}+k_{2}=\tau(G)$ and $k_{1} \geq k_{2}$. If $k_{2} \leq 4$, then the required partition can be obtained from Theorem 3.4. Otherwise, it can be obtained from Theorem 3.6.

Theorem 4.9. If G is a graph with $\Delta(G) \geq v(G)-7$, then G is τ partitionable.

Proof. Let $\left(k_{1}, k_{2}\right)$ be any pair of postive integers satisfying $k_{1}+k_{2}=\tau(G)$. If $k_{2} \leq 5$, it follows from the remarks following Theorem 3.4 that G has a $\left(k_{1}, k_{2}\right)$-partition. If $k_{2} \geq 6$, it follows from Corollary 3.9 that G has a $\left(k_{1}, k_{2}\right)$-partition.
Finally we can now prove
Theorem 4.10. Every decomposable graph is τ-partitionable.
Proof. Let G be a decomposable graph with $\tau(G)=k$. Then G is a subgraph of some k - τ-saturated graph G^{*} which is also decomposable. By Corollary 2.2, $\Delta\left(G^{*}\right)=v\left(G^{*}\right)-1$. Therefore, by Theorem 4.9, G^{*} is τ partitionable, and hence G is τ-partitionable.

One last remark about the problem in general: If G is a graph such that for every pair of positive integers k_{1} and k_{2} for which $\tau(G)=k_{1}+k_{2}$ the vertex set $V(G)$ can be partitioned into two subsets V_{1} and V_{2} such that $\tau\left(G\left[V_{i}\right]\right)$ is equal to k_{i} for $i=1,2$, then G is clearly τ-partitionable. We do not know if the converse of this implication is also true.

Acknowledgement

We wish to thank Peter Mihók for the many discussions one of the authors had with him on this problem and its history.

References

[1] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discussiones Mathematicae Graph Theory $\mathbf{1 7}$ (1997) 5-50.
[2] I. Broere, M. Frick and G. Semanišin, Maximal graphs with respect to hereditary properties, Discussiones Mathematicae Graph Theory 17 (1997) 51-66.
[3] I. Broere, P. Hajnal and P. Mihók, Partition problems and kernels of graph, Discussiones Mathematicae Graph Theory 17 (1997) 311-313.
[4] G. Chartrand, D.P. Geller and S.T. Hedetniemi, A generalization of the chromatic number, Proc. Camb. Phil. Soc. 64 (1968) 265-271.
[5] G. Chartrand and L. Lesniak, Graphs and Digraphs, second edition (Wadsworth \& Brooks/Cole, Monterey, 1986).
[6] G. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81.
[7] P. Hajnal, Graph partitions (in Hungarian), Thesis, supervised by L. Lovász, J.A. University, Szeged, 1984.
[8] L. Kászonyi and Zs. Tuza, Saturated graphs with minimal number of edges, J. Graph Theory 10 (1986) 203-210.
[9] J.M. Laborde, C. Payan and N.H. Xuong, Independent sets and longest directed paths in digraphs, in: Graphs and other combinatorial topics (Prague, 1982), 173-177 (Teubner-Texte Math., 59, 1983).
[10] L. Lovász, On decomposition of graphs, Studia Sci. Math. Hungar 1 (1966) 237-238.
[11] P. Mihók, Problem 4, p. 86 in: M. Borowiecki and Z. Skupien (eds), Graphs, Hypergraphs and Matroids (Zielona Góra, 1985).
[12] M. Stiebitz, Decomposing graphs under degree constraints, J. Graph Theory 23 (1996) 321-324.
[13] J. Vronka, Vertex sets of graphs with prescribed properties (in Slovak), Thesis, supervised by P. Mihók, P.J. Safárik University, Košice, 1986.

Received 10 October 1997
Revised 27 February 1998

[^0]: * All the authors were partially supported by funds from the South African Foundation for Research Development.

