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Abstract

In this note, all chromatic equivalence classes for 2-connected
3-chromatic graphs with five triangles and cyclomatic number six are
described. New families of chromatically unique graphs of order n are
presented for each n > 8. This is a generalization of a result stated
in [5]. Moreover, a proof for the conjecture posed in [5] is given.
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1. INTRODUCTION

The graphs which we consider here are finite, undirected, simple and loop-
less. Let G be a graph, V(G) its vertex set, E(G) its edge set, x(G) its
chromatic number and P(G, \) its chromatic polynomial. Two graphs G
and H are said to be chromatically equivalent, or in short y-equivalent,
written G ~ H, if P(G,\) = P(H,\). A graph G is said to be chromat-
ically unique, or in short y-unique, if for any graph H satisfying H ~ G,
we have H = @, i.e. H is isomorphic to G. A family of all nonisomorphic
chromatically equivalent graphs is called a y-equivalence class.

A wheel W, is a graph of order n, n > 4, obtained by the join of K;
and C),_1. Any edge incident with the central vertex in W, is called a spoke
of the wheel. For any two integers n, k withn >4 andn—12>k > 1, let
W (n, k) denote the graph of order n obtained from a wheel W,, by deleting
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all but k consecutive spokes. It is known that the graphs W(n,1)(n > 4)
and W(n,2) (n > 4) are x-unique. Chao and Whitehead [1] showed that the
graphs W(n,3) (n > 5) and W(n,4) (n > 6) are x-unique, while W (7,5)
is not. Then Koch and Teo [3] showed that all graphs W (n,5)(n > 8) are
x-unique. Recently Li and Whitehead [5] showed that all graphs W (n, 6)
(n > 8) are x-unique. This is a solution to one of the problems stated
in [2] (see Problem 2 [2]). They also decribed two additional families of
chromatically unique graphs. The family of graphs they studied consists of
2-connected 3-chromatic graphs with five triangles and cyclomatic number
six. In this paper, all classes of y-equivalent graphs of order at least 8
for this family are described. In particular, a complete characterization of
chromatically unique graphs for the family is presented. Also a proof for the
conjecture posed in [5] is given.

2. KNOWN RESULTS

In computing chromatic polynomials, we make use of Whitney’s reduction
formula given in [6]. The formula is

P(G,A) = P(G—¢,\) = P(G/e, )
or equivalently
P(G_¢,\) = P(G,A\) + P(G/e, )

where G_. is the graph obtained from G by deleting an edge e and G/, is
the graph obtained from G by contracting the edge e.

We also make use of the overlaping formula given in [6]. The formula is

where G is a gluing of two disjoint graphs H and F' over their complete
subgraph K, for p > 1.

Moreover, we shall use the known results for y-equivalent graphs pre-
sented in Lemma 1. For a graph F, let I(F') denote the number of induced
subgraphs of G which are isomorphic to F.

Lemma 1 [3]. Let G and H be two x-equivalent graphs. Then

1) [V(G) = V(H) |,
(i) | B(G) |=] E(H) |,
(iil) x(G) = x(H),

(iv) Ic(C3) = Iu(Cs),
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(v) I(Cy) —2Ig(Ky4) = Ig(Cy) — 21 (Ky),

(vi) G is connected iff H is connected,

(vil) G s 2-connected iff H is 2-connected.

3. RESULTS
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Next we consider the following 2-connected pairwise nonisomorphic graphs
X;(n), shortly denoted by X;, each of order n, n > 8, presented in Figure 1.

Pn—5 Pn—ﬁ Pn—ﬁ Pn—ﬁ
XO X1 X2 X3
v e v d d A
Pn—6 Pn—5 Pn—5 Pn—ﬁ
X4 X5 X6 X7
AVE KEA
v v e T A
Pnf5 Pn—5 Pn—5 Pn—5
X Xy X10 X1
Pn74 Pnf4 Pnf4 Pnf4
X9 Xi3 X14 X5

Figure 1
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Thin lines denote here paths, filled circle — vertices, and bold lines — edges
of a graph. Checking the degree sequences of these graphs one can easy note
that they are pairwise nonisomorphic.

First we prove the following lemma.

Lemma 2. X5 ~ X4, and X; ¢ X; for other pairs i,j = 0, ...,

13 and

Proof. By using Whitney’s reduction formula we have:

i,

P(Xo,\) = (A -
P(X1,A) =(A—
P(Xo,\)=(\—
P(X3,A) =(A—
P(X4,A)=(A—
P(X5,\) =(\—
P(Xg,\) =(\—
P(X7,A) =(A—
P(Xg,A)=(A—

2) (Cn 57)‘)7

2)*(P(Cn-1,A) = P(Cn—s5, 7)),

2)3((A = 3)P(Cn—4, ) + P(Cp_s,\)),

2)3( ( n—3» ) - 2P<Cn—47)‘) +P(Cn—57)‘))7

2)2((AN2 = BA+T)P(Cp_g,A) — P(Cp_s, \)),

2)2(A2 = BA+ T)P(Cp_4, \),

2)*((A = 2)P(Cp—3,A) — (2A = 5)P(Cyp—4, N)),

2)2(()‘ ) ( n— 37)‘) - ()‘_4)P(Cn—4a)‘) +P(Cn—57)\))7

2)2((A = 2)P(Cr—3,A) — (2A = 5)P(Cu1, A) — P(Cu5, M),

and the chromatic polynomials for other graphs G of the lemma are of the
following form : P(G,\) = (A — )()\ 2)Q(G, A), where the factor Q(G, \)
is presented in Table 1 and (A —2)2? } P(G, ).

Table 1
G Q(G, )
X [(A—2)° —(A— 2>2+<A 2) — 1] [(A—1)" % + (=) ]+
’ +(A =)0 4 (—1)n-
¥ A=2)[A =" 21" = (A—4)(A—1)"P
v ()" =D = [A =" = (A= 1)" 5+ 2(=1)"]
A=2{A=-1)" 3 - A=)+ AN=-1)"
X11 +3(=1)""2 —2(A = 2)[(A — )5 4 (—=1)" 4]}
—[A =15 — (A= 1)" O 42(=1)" ]
X (A —2)[(A - >"-3+<f1>" J—{(A=3)[A -1
12 H(=D+ (A2 = 5A+ DA = D5 + (1))}
X (A2 =6A+9)[(A—1)"* 4+ (=1)"7]
R O i e Sk
X, X15 | A2 =52+ 7)[(A— )" P(A —2) —2(-1)"]
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(A\=2)° | P(Xo.\):

()‘_2)4 ‘ P(le)‘) and ( )5 /{/P(Xh ),

(A—=2)% | P(X;,)\) and (\— )4 f P(X;,\) for i =2,3;

(A—=2)%2 | P(X;,\) and (A—2)% JP(X;,\) for 4 <i<8;

(A—2)2 J P(X;, ) for 9 <i < 15;

Evidently graphs X4, X15 are x-equivalent. Looking at the above properties
and checking the values of chromatic polynomials for A = 2,3 or 4, we
calculate that other pairs of the graphs are not y-equivalent. This completes
the proof. [ |

Theorem 3. For each n> 8, a 2-connected 3-chromatic graph of order n
with five triangles and cyclomatic number six is x-equivalent to one of the
graphs X;(n),i =0, ..., 14 presented in Figure 1.

Proof. Let R be a 2-connected 3-chromatic graph of order n > 8 with five
triangles and cyclomatic number six.
Suppose that there exists a graph G % R and such that G ~ R.
Lemma 1 implies | V(G) |=n,| E(G) |=n+5,x(G) = 3,1c(K3) = 5,
I¢(Ky) = 0 and G is a 2-connected graph. Let H be a subgraph of G
induced by the edges of the five triangles in G, and let | V(H) |= h. So

(1) 6<h

Now we define some parameters, which will be useful for the description
of all possible candidates for H with h vertices and five triangles, and its
supergraph G. Let

B = [{z e V(H)|du(z) =2 and dg(z) = 3} |,
@ B = |{zx e V(H) | dg(z) =2 and dg(z) > 4} |,

v = |{z € V(H)|dy(x) >3 and dg(x) = dg(z) + 1} |,

v = |{z e V(H)|dg(x) >3 and dg(x) > dy(z) + 2} |,

6 [ {z e V(G) - V(H) | da(x) = 3} |

We have

2n+5) > Y (du(x) | e € V(H))+ 0 +28"+2(n—h)+v+29"+9
=a+03+20"+7+29y +5+2n.
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This implies that

(3) a+ 3 +28"+~v+29+6<10.

Let ¢ be the number of connected components of the graph H. Evidently
each connected component contains at least one triangle. Since G is a
2-connected graph and H has five triangles and it does not contain Ky,
then the cyclomatic number of H is equal to 5 if H is disconnected, and it
is equal to 5 or 6 if H is connected. So by (2) we get

(4) a=10—-2cifc>1
and
(5) a>8ifc=1.

The list of all possible candidates for H with h vertices and five triangles
will be described by considering the following five cases. Three of them are
very simple. For the cases 4 and 5 we use the known theorem of Erdés and
Gallai on characterization of degree sequences (see [4], Theorem 6.2). All
resulting graphs are presented in Figures 2-3 if H # G and in Figure 4 if
H~(G.

Case 1. Suppose that ¢ = 5, and let H;, i = 1,2,3,4,5 be connected
components of H. Evidently each of H; is isomorphic to Ks.

Now 2-connectivity of G and formulas (3)—(4) imply a = 0, 5’ = 10,
B3'=0,v=0,7=0,6=0.

Case 2. Suppose that ¢ = 4, and let H;, i = 1,2,3,4 be connected
components of H. Now 2-connectivity of G and formulas (3)—(4) imply
a=203+~v=8,0"=0,7 =0,06 = 0. Evidently each of H;,7 = 1,2,3 is
isomorphic to K3 and Hy is isomorphic to 2K + Ky or K1 4+ 2K5.

Case 3. Suppose that ¢ = 3, and let H;, ¢ = 1,2,3 be connected
components of H. Now 2-connectivity of G and formulas (3)—(4) imply
a=4,8+~v=6,8"=0,7 =0,06 = 0. Moreover, if a graph H; has a cut
vertex x, then the graph H; — x has exactly two connected components.

Thus if two graphs of H;,i = 1,2,3 are isomorphic to K3 then, the other
one is isomorphic to the last graph presented in lines 1-5 of Figure 2 and
if exactly one of H;,¢ = 1,2, 3 is isomorphic to K3, then the other two are
isomorphic to a graph 2K7 + Ky or K1 + 2K (see lines 6-8 of Figure 2).
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Case 4. Suppose that ¢ = 2, and let Hy, H» be connected components
of H. Then from (4) o > 6 and from (3) 3'+~v=4,8" =0, =0,06 =0. So
2-connectivity of G implies that if a graph H; has a cut vertex x, then the
graph H; —x has two connected components. Thus we have to consider three
cases for the second component Hy. Namely, Ho = K3, K1 +2K5,2K1 + K>.
Considering simple degree conditions we get all available candidates for H
presented in Figure 2 (continued).

D A A A A
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C:2,H2:K3

aW= = - YNV

C:Z, H2:K1+2K2
or Hy = 2K + Ky
Figure 2

Case 5. Assume that ¢ = 1. Then from (2) and (3) @ > 8 and '+~ < 2.
Moreover, 3"+~ + 6 = 0. If /' +~v = 0 we get H ~ G and Figure 4 lists
all such graphs (each edge belongs to a triangle). For the opposite case
3 + ~ = 2. This follows by 2-connectivity of G. Moreover, 2-connectivity
of G implies that if a graph H has a cut vertex zx, then the graph H — x
has two connected components. Since H has five triangles, we get h < 11.
Considering h = 6, ..., 11 and keeping the inequalities (2) and (3) we get all
available candidates for H presented in Figure 3.

For each case of ¢ = 5,4,3,2 and 1 (if H # G) each required 2-connected
graph G is obtained from H by adding paths in such a way that exactly
two vertices of each connected component of H are incident to an edge
outside H. Looking at the graphs H and Lemma 2 we get all information
on G presented in Table 1. The last column of Table 2 lists the graphs
X, that are y-equivalent to respective graphs G. The column NB denotes
a consecutive number of a graph H or H; for each respective group. This
completes the proof. [ |



e S o S
é PP o
A2 A e e

Lo R e A o
A A S ST
S S e ]
R

el

107



HHHHHHHH

Figure 3



THE CHROMATICITY OF A FAMILY OF 2-CONNECTED ... 109

h=38
[
H~ X4 H~ X, H~ X4 H~ X4
HNXQ HNXl HNXJ
h=9
o
H~ X, H~ X, H~ X
h =10
H ~ X

Figure 4

Immediately from the proof of Theorem 3 and Lemma 2 we get the following
three results.

Corollary 4. Each X;(n) for 9 <i <13 and n > 8 is a x-unique graph of
order n.
The new chromatically unique graphs of order n are the graphs X;(n) for

i = 12,13 (see Figure 1) for each n > 8.

Corollary 5. Each x-equivalence class containing graphs X14(n), X15(n)
for n > 8 has exactly these two nonisomorphic elements.

Corollary 6. Each x-equivalence class containing a graph Xz(n), n > 7,
consists of all graphs defined in the conjecture of Li and Whitehead [5].
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