Discussiones Mathematicae Graph Theory 18 (1998) 99–111

THE CHROMATICITY OF A FAMILY OF 2-CONNECTED 3-CHROMATIC GRAPHS WITH FIVE TRIANGLES AND CYCLOMATIC NUMBER SIX

HALINA BIELAK

Institute of Mathematics M. Curie-Skłodowska University Lublin, Poland e-mail: hbiel@golem.umcs.lublin.pl

Abstract

In this note, all chromatic equivalence classes for 2-connected 3-chromatic graphs with five triangles and cyclomatic number six are described. New families of chromatically unique graphs of order n are presented for each $n \geq 8$. This is a generalization of a result stated in [5]. Moreover, a proof for the conjecture posed in [5] is given.

Keywords: chromatically equivalent graphs, chromatic polynomial, chromatically unique graphs, cyclomatic number.

1991 Mathematics Subject Classification: 05C15.

1. INTRODUCTION

The graphs which we consider here are finite, undirected, simple and loopless. Let G be a graph, V(G) its vertex set, E(G) its edge set, $\chi(G)$ its chromatic number and $P(G, \lambda)$ its chromatic polynomial. Two graphs G and H are said to be *chromatically equivalent*, or in short χ -equivalent, written $G \sim H$, if $P(G, \lambda) = P(H, \lambda)$. A graph G is said to be *chromatically unique*, or in short χ -unique, if for any graph H satisfying $H \sim G$, we have $H \cong G$, i.e. H is isomorphic to G. A family of all nonisomorphic chromatically equivalent graphs is called a χ -equivalence class.

A wheel W_n is a graph of order $n, n \ge 4$, obtained by the join of K_1 and C_{n-1} . Any edge incident with the central vertex in W_n is called a *spoke* of the wheel. For any two integers n, k with $n \ge 4$ and $n-1 \ge k \ge 1$, let W(n,k) denote the graph of order n obtained from a wheel W_n by deleting all but k consecutive spokes. It is known that the graphs $W(n,1)(n \ge 4)$ and W(n,2) $(n \ge 4)$ are χ -unique. Chao and Whitehead [1] showed that the graphs W(n,3) $(n \ge 5)$ and W(n,4) $(n \ge 6)$ are χ -unique, while W(7,5)is not. Then Koch and Teo [3] showed that all graphs $W(n,5)(n \ge 8)$ are χ -unique. Recently Li and Whitehead [5] showed that all graphs W(n,6) $(n \ge 8)$ are χ -unique. This is a solution to one of the problems stated in [2] (see Problem 2 [2]). They also decribed two additional families of chromatically unique graphs. The family of graphs they studied consists of 2-connected 3-chromatic graphs with five triangles and cyclomatic number six. In this paper, all classes of χ -equivalent graphs of order at least 8 for this family are described. In particular, a complete characterization of chromatically unique graphs for the family is presented. Also a proof for the conjecture posed in [5] is given.

2. KNOWN RESULTS

In computing chromatic polynomials, we make use of Whitney's reduction formula given in [6]. The formula is

$$P(G,\lambda) = P(G_{-e},\lambda) - P(G/_e,\lambda)$$

or equivalently

$$P(G_{-e},\lambda) = P(G,\lambda) + P(G/_e,\lambda)$$

where G_{-e} is the graph obtained from G by deleting an edge e and $G/_e$ is the graph obtained from G by contracting the edge e.

We also make use of the overlaping formula given in [6]. The formula is

$$P(G,\lambda) = P(H,\lambda)P(F,\lambda)/P(K_p,\lambda)$$

where G is a gluing of two disjoint graphs H and F over their complete subgraph K_p for $p \ge 1$.

Moreover, we shall use the known results for χ -equivalent graphs presented in Lemma 1. For a graph F, let $I_G(F)$ denote the number of induced subgraphs of G which are isomorphic to F.

Lemma 1 [3]. Let G and H be two χ -equivalent graphs. Then

- (i) |V(G)| = |V(H)|,(ii) |E(G)| = |E(H)|,(iii) $\chi(G) = \chi(H),$
- (iv) $I_G(C_3) = I_H(C_3),$

- (v) $I_G(C_4) 2I_G(K_4) = I_H(C_4) 2I_H(K_4),$
- (vi) G is connected iff H is connected,
- (vii) G is 2-connected iff H is 2-connected.

3. Results

Next we consider the following 2-connected pairwise nonisomorphic graphs $X_i(n)$, shortly denoted by X_i , each of order $n, n \ge 8$, presented in Figure 1.

Figure 1

Thin lines denote here paths, filled circle — vertices, and bold lines — edges of a graph. Checking the degree sequences of these graphs one can easy note that they are pairwise nonisomorphic.

First we prove the following lemma.

Lemma 2. $X_{15} \sim X_{14}$, and $X_i \not\sim X_j$ for other pairs i, j = 0, ..., 13 and $i \neq j$.

Proof. By using Whitney's reduction formula we have:

$$\begin{split} P(X_0,\lambda) &= (\lambda-2)^5 P(C_{n-5},\lambda), \\ P(X_1,\lambda) &= (\lambda-2)^4 (P(C_{n-4},\lambda) - P(C_{n-5},\lambda)), \\ P(X_2,\lambda) &= (\lambda-2)^3 ((\lambda-3)P(C_{n-4},\lambda) + P(C_{n-5},\lambda)), \\ P(X_3,\lambda) &= (\lambda-2)^3 (P(C_{n-3},\lambda) - 2P(C_{n-4},\lambda) + P(C_{n-5},\lambda)), \\ P(X_4,\lambda) &= (\lambda-2)^2 ((\lambda^2 - 5\lambda + 7)P(C_{n-4},\lambda) - P(C_{n-5},\lambda)), \\ P(X_5,\lambda) &= (\lambda-2)^2 (\lambda^2 - 5\lambda + 7)P(C_{n-4},\lambda), \\ P(X_6,\lambda) &= (\lambda-2)^2 ((\lambda-2)P(C_{n-3},\lambda) - (2\lambda - 5)P(C_{n-4},\lambda) + P(C_{n-5},\lambda)), \\ P(X_7,\lambda) &= (\lambda-2)^2 ((\lambda-2)P(C_{n-3},\lambda) - (\lambda - 4)P(C_{n-4},\lambda) + P(C_{n-5},\lambda)), \\ P(X_8,\lambda) &= (\lambda-2)^2 ((\lambda-2)P(C_{n-3},\lambda) - (2\lambda - 5)P(C_{n-4},\lambda) - P(C_{n-5},\lambda)), \end{split}$$

and the chromatic polynomials for other graphs G of the lemma are of the following form : $P(G, \lambda) = (\lambda - 1)(\lambda - 2)Q(G, \lambda)$, where the factor $Q(G, \lambda)$ is presented in Table 1 and $(\lambda - 2)^2 \not\mid P(G, \lambda)$.

G	$Q(G,\lambda)$
X_9	$[(\lambda - 2)^3 - (\lambda - 2)^2 + (\lambda - 2) - 1] [(\lambda - 1)^{n-5} + (-1)^{n-4}] +$
	$+(\lambda - 1)^{n-6} + (-1)^{n-5}$
v	$(\lambda - 2)[(\lambda - 1)^{n-3} - 2(\lambda - 1)^{n-4} - (\lambda - 4)(\lambda - 1)^{n-5}]$
Λ_{10}	$-(-1)^{n}(\lambda-7)] - [(\lambda-1)^{n-5} - (\lambda-1)^{n-6} + 2(-1)^{n}]$
	$(\lambda - 2)\{(\lambda - 1)^{n-3} - (\lambda - 1)^{n-4} + (\lambda - 1)^{n-5}\}$
X_{11}	$+3(-1)^{n-2}-2(\lambda-2)[(\lambda-1)^{n-5}+(-1)^{n-4}]\}$
	$-[(\lambda - 1)^{n-5} - (\lambda - 1)^{n-6} + 2(-1)^{n-4}]$
V	$(\lambda - 2)[(\lambda - 1)^{n-3} + (-1)^{n-2}] - \{(\lambda - 3)[(\lambda - 1)^{n-4}] - (\lambda - $
Λ_{12}	$+(-1)^{n-3}] + (\lambda^2 - 5\lambda + 7)[(\lambda - 1)^{n-5} + (-1)^{n-4}]\}$
V	$(\lambda^2 - 6\lambda + 9)[(\lambda - 1)^{n-4} + (-1)^{n-3}]$
A13	$+(2\lambda - 5)[(\lambda - 1)^{n-5} + (-1)^{n-4}]$
X_{14}, X_{15}	$(\lambda^2 - 5\lambda + 7)[(\lambda - 1)^{n-5}(\lambda - 2) - 2(-1)^n]$

Table 1

THE CHROMATICITY OF A FAMILY OF 2-CONNECTED ...

Since $P(C_n, \lambda) = (\lambda - 1)((\lambda - 1)^{n-1} + (-1)^n)$, we get the following properties: $(\lambda - 2)^5 \mid P(X_0, \lambda);$ $(\lambda - 2)^4 \mid P(X_1, \lambda) \text{ and } (\lambda - 2)^5 \not \mid P(X_1, \lambda);$ $(\lambda - 2)^3 \mid P(X_i, \lambda) \text{ and } (\lambda - 2)^4 \not \mid P(X_i, \lambda) \text{ for } i = 2, 3;$ $(\lambda - 2)^2 \mid P(X_i, \lambda) \text{ and } (\lambda - 2)^3 \not \mid P(X_i, \lambda) \text{ for } 4 \le i \le 8;$ $(\lambda - 2)^2 \not \mid P(X_i, \lambda) \text{ for } 9 \le i \le 15;$

Evidently graphs X_{14}, X_{15} are χ -equivalent. Looking at the above properties and checking the values of chromatic polynomials for $\lambda = 2,3$ or 4, we calculate that other pairs of the graphs are not χ -equivalent. This completes the proof.

Theorem 3. For each $n \ge 8$, a 2-connected 3-chromatic graph of order n with five triangles and cyclomatic number six is χ -equivalent to one of the graphs $X_i(n), i = 0, ..., 14$ presented in Figure 1.

Proof. Let R be a 2-connected 3-chromatic graph of order $n \ge 8$ with five triangles and cyclomatic number six.

Suppose that there exists a graph $G \not\simeq R$ and such that $G \sim R$.

Lemma 1 implies $|V(G)| = n, |E(G)| = n + 5, \chi(G) = 3, I_G(K_3) = 5, I_G(K_4) = 0$ and G is a 2-connected graph. Let H be a subgraph of G induced by the edges of the five triangles in G, and let |V(H)| = h. So

(1)
$$6 \le h$$

Now we define some parameters, which will be useful for the description of all possible candidates for H with h vertices and five triangles, and its supergraph G. Let

$$\alpha = 2(|E(H)| - h),$$

$$\beta' = |\{x \in V(H) \mid d_H(x) = 2 \text{ and } d_G(x) = 3\}|,$$

$$\beta'' = |\{x \in V(H) \mid d_H(x) = 2 \text{ and } d_G(x) \ge 4\}|,$$

$$\gamma = |\{x \in V(H) \mid d_H(x) \ge 3 \text{ and } d_G(x) = d_H(x) + 1\}|,$$

$$\gamma' = |\{x \in V(H) \mid d_H(x) \ge 3 \text{ and } d_G(x) \ge d_H(x) + 2\}|,$$

$$\delta = |\{x \in V(G) - V(H) \mid d_G(x) \ge 3\}|.$$

We have

$$2(n+5) \ge \sum (d_H(x) \mid x \in V(H)) + \beta' + 2\beta'' + 2(n-h) + \gamma + 2\gamma' + \delta$$
$$= \alpha + \beta' + 2\beta'' + \gamma + 2\gamma' + \delta + 2n.$$

This implies that

(3)
$$\alpha + \beta' + 2\beta'' + \gamma + 2\gamma' + \delta \le 10.$$

Let c be the number of connected components of the graph H. Evidently each connected component contains at least one triangle. Since G is a 2-connected graph and H has five triangles and it does not contain K_4 , then the cyclomatic number of H is equal to 5 if H is disconnected, and it is equal to 5 or 6 if H is connected. So by (2) we get

$$(4) \qquad \qquad \alpha = 10 - 2c \text{ if } c > 1$$

and

(5)
$$\alpha \ge 8 \text{ if } c = 1.$$

The list of all possible candidates for H with h vertices and five triangles will be described by considering the following five cases. Three of them are very simple. For the cases 4 and 5 we use the known theorem of Erdös and Gallai on characterization of degree sequences (see [4], Theorem 6.2). All resulting graphs are presented in Figures 2–3 if $H \not\simeq G$ and in Figure 4 if $H \simeq G$.

Case 1. Suppose that c = 5, and let H_i , i = 1, 2, 3, 4, 5 be connected components of H. Evidently each of H_i is isomorphic to K_3 .

Now 2-connectivity of G and formulas (3)–(4) imply $\alpha = 0$, $\beta' = 10$, $\beta'' = 0$, $\gamma = 0$, $\gamma' = 0$, $\delta = 0$.

Case 2. Suppose that c = 4, and let H_i , i = 1, 2, 3, 4 be connected components of H. Now 2-connectivity of G and formulas (3)–(4) imply $\alpha = 2, \beta' + \gamma = 8, \beta'' = 0, \gamma' = 0, \delta = 0$. Evidently each of $H_i, i = 1, 2, 3$ is isomorphic to K_3 and H_4 is isomorphic to $2K_1 + K_2$ or $K_1 + 2K_2$.

Case 3. Suppose that c = 3, and let H_i , i = 1, 2, 3 be connected components of H. Now 2-connectivity of G and formulas (3)–(4) imply $\alpha = 4, \beta' + \gamma = 6, \beta'' = 0, \gamma' = 0, \delta = 0$. Moreover, if a graph H_i has a cut vertex x, then the graph $H_i - x$ has exactly two connected components.

Thus if two graphs of H_i , i = 1, 2, 3 are isomorphic to K_3 then, the other one is isomorphic to the last graph presented in lines 1–5 of Figure 2 and if exactly one of H_i , i = 1, 2, 3 is isomorphic to K_3 , then the other two are isomorphic to a graph $2K_1 + K_2$ or $K_1 + 2K_2$ (see lines 6–8 of Figure 2).

THE CHROMATICITY OF A FAMILY OF 2-CONNECTED ...

Case 4. Suppose that c = 2, and let H_1 , H_2 be connected components of H. Then from (4) $\alpha \ge 6$ and from (3) $\beta' + \gamma = 4$, $\beta'' = 0$, $\gamma' = 0$, $\delta = 0$. So 2-connectivity of G implies that if a graph H_i has a cut vertex x, then the graph $H_i - x$ has two connected components. Thus we have to consider three cases for the second component H_2 . Namely, $H_2 \cong K_3$, $K_1 + 2K_2$, $2K_1 + K_2$. Considering simple degree conditions we get all available candidates for H_1 presented in Figure 2 (continued).

$$c = 3$$

Figure 2

Case 5. Assume that c = 1. Then from (2) and (3) $\alpha \geq 8$ and $\beta' + \gamma \leq 2$. Moreover, $\beta'' + \gamma' + \delta = 0$. If $\beta' + \gamma = 0$ we get $H \simeq G$ and Figure 4 lists all such graphs (each edge belongs to a triangle). For the opposite case $\beta' + \gamma = 2$. This follows by 2-connectivity of G. Moreover, 2-connectivity of G implies that if a graph H has a cut vertex x, then the graph H - x has two connected components. Since H has five triangles, we get $h \leq 11$. Considering h = 6, ..., 11 and keeping the inequalities (2) and (3) we get all available candidates for H presented in Figure 3.

For each case of c = 5, 4, 3, 2 and 1 (if $H \not\simeq G$) each required 2-connected graph G is obtained from H by adding paths in such a way that exactly two vertices of each connected component of H are incident to an edge outside H. Looking at the graphs H and Lemma 2 we get all information on G presented in Table 1. The last column of Table 2 lists the graphs X_i that are χ -equivalent to respective graphs G. The column NB denotes a consecutive number of a graph H or H_1 for each respective group. This completes the proof.

106

THE CHROMATICITY OF A FAMILY OF 2-CONNECTED ...

c = 1, h = 9

Figure 3

Figure 4

Immediately from the proof of Theorem 3 and Lemma 2 we get the following three results.

Corollary 4. Each $X_i(n)$ for $9 \le i \le 13$ and $n \ge 8$ is a χ -unique graph of order n.

The new chromatically unique graphs of order n are the graphs $X_i(n)$ for i = 12, 13 (see Figure 1) for each $n \ge 8$.

Corollary 5. Each χ -equivalence class containing graphs $X_{14}(n), X_{15}(n)$ for $n \geq 8$ has exactly these two nonisomorphic elements.

Corollary 6. Each χ -equivalence class containing a graph $X_7(n)$, $n \geq 7$, consists of all graphs defined in the conjecture of Li and Whitehead [5].

	1 11	ND	V ·	1		7 77	ND	NZ /
<i>c</i> =	$h = \text{ or } H_2$	NB	$X_i, i =$	ļ	c =	$h = \text{ or } H_2$	NB	$X_i, i =$
5	15	1	0				1	0
4	13	1	0, 1	1			2	0
	14	2	0				3	0
3	11	1	0.1	i	1		4	0
	11	2	0.1.2				5	0
	12	3	0.1				6	0, 1
	12	4	0.1				7	0, 1
	13	5	0				8	0, 1
	11	6	0.1.3				9	0, 1
	12	7	0.1				10	0, 1
	13	8	0.1				11	0, 1
	10	1	5,1	1			12	0, 1, 2
		1	0,0			8	13	0, 1
		2	0, 1, 2, 4				14	0, 1, 2, 4
		3	0, 1, 2				15	0, 1, 2
		4	0, 1, 2				16	0, 1, 2
		o C	0, 1, 2, 8				17	0, 1, 2
		6	0 1 0				18	0, 1, 2
	K_3	(0, 1, 2				19	0, 1, 3
2		0	0,1				20	0, 1, 2
		9	0,1	ļ			21	0, 1
		10	0 1				22	0, 1
		11	0,1				23	0, 1, 2, 8
		12	0,1				24	0, 1, 2
		10	013				25	0, 1, 2, 3, 7
		15	1				26	0, 1, 3
		16	0				1	0
		17	0				2	0
		18	Ő				3	0
		19	0.1				4	0
		20	0				6	0
		1	0				7	0
	$K_1 + 2K_2$	2	0, 1, 2				8	Ő
		3	0, 1				9	0 1
		4	0				10	0
		5	0				11	ĩ
		1	0, 1			9	12	0
	$2K_1 + K_2$	2	0, 1, 2, 3, 7			-	13	0
		3	0, 1, 3				14	1
		4	0,3				15	0, 1
		5	0,1				16	0, 1
	6	1	5, 6, 12, 14	1			17	0, 1
		2	5, 6, 13, 14				18	0
	7	1	0, 1, 2, 4, 9				19	0
		2	0, 1, 2, 4			20	2	
		3	0, 1, 2, 4			21	2	
		4	0, 1, 2			22	1	
1		5	0, 1, 2				23	0, 1
		6	0,1				24	0, 1, 3
		7	5				25	0, 1, 3
		8	5,6			10	1	0
		9	0, 1, 2, 4, 8				2	0
		10	0, 1, 2, 4, 8, 11	l			3	0
		11	0, 1, 2				4	0
		12	0, 1, 2, 8				D C	0,1
1		13	0, 2, 2, 8				0	1
1		14	0, 1, 2, 8, 10	l		11	1	U

References

- C.Y. Chao and E.G. Whitehead Jr., *Chromatically unique graphs*, Discrete Math. 27 (1979) 171–177.
- [2] K.M. Koh and C.P. Teo, The search for chromatically unique graphs, Graphs and Combinatorics 6 (1990) 259–285.
- [3] K.M. Koh and C.P. Teo, The chromatic uniqueness of certain broken wheels, Discrete Math. 96 (1991) 65–69.
- [4] F. Harary, Graph Theory (Reading, 1969).
- [5] N-Z. Li and E.G. Whitehead Jr., The chromaticity of certain graphs with five triangles, Discrete Math. 122 (1993) 365–372.
- [6] R.C. Read, An introduction to chromatic polynomials, J. Combin. Theory 4 (1968) 52–71.

Received 25 May 1997 Revised 16 September 1997