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Abstract

In this note, all chromatic equivalence classes for 2-connected
3-chromatic graphs with five triangles and cyclomatic number six are
described. New families of chromatically unique graphs of order n are
presented for each n ≥ 8. This is a generalization of a result stated
in [5]. Moreover, a proof for the conjecture posed in [5] is given.
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1. Introduction

The graphs which we consider here are finite, undirected, simple and loop-
less. Let G be a graph, V (G) its vertex set, E(G) its edge set, χ(G) its
chromatic number and P (G,λ) its chromatic polynomial. Two graphs G
and H are said to be chromatically equivalent, or in short χ-equivalent,
written G ∼ H, if P (G,λ) = P (H,λ). A graph G is said to be chromat-

ically unique, or in short χ-unique, if for any graph H satisfying H ∼ G,
we have H ∼= G, i.e. H is isomorphic to G. A family of all nonisomorphic
chromatically equivalent graphs is called a χ-equivalence class.

A wheel Wn is a graph of order n, n ≥ 4, obtained by the join of K1

and Cn−1. Any edge incident with the central vertex in Wn is called a spoke

of the wheel. For any two integers n, k with n ≥ 4 and n − 1 ≥ k ≥ 1, let
W (n, k) denote the graph of order n obtained from a wheel Wn by deleting
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all but k consecutive spokes. It is known that the graphs W (n, 1)(n ≥ 4)
and W (n, 2) (n ≥ 4) are χ-unique. Chao and Whitehead [1] showed that the
graphs W (n, 3) (n ≥ 5) and W (n, 4) (n ≥ 6) are χ-unique, while W (7, 5)
is not. Then Koch and Teo [3] showed that all graphs W (n, 5)(n ≥ 8) are
χ-unique. Recently Li and Whitehead [5] showed that all graphs W (n, 6)
(n ≥ 8) are χ-unique. This is a solution to one of the problems stated
in [2] (see Problem 2 [2]). They also decribed two additional families of
chromatically unique graphs. The family of graphs they studied consists of
2-connected 3-chromatic graphs with five triangles and cyclomatic number
six. In this paper, all classes of χ-equivalent graphs of order at least 8
for this family are described. In particular, a complete characterization of
chromatically unique graphs for the family is presented. Also a proof for the
conjecture posed in [5] is given.

2. Known Results

In computing chromatic polynomials, we make use of Whitney’s reduction
formula given in [6]. The formula is

P (G,λ) = P (G−e, λ) − P (G/e, λ)

or equivalently
P (G−e, λ) = P (G,λ) + P (G/e, λ)

where G−e is the graph obtained from G by deleting an edge e and G/e is
the graph obtained from G by contracting the edge e.

We also make use of the overlaping formula given in [6]. The formula is

P (G,λ) = P (H,λ)P (F, λ)/P (Kp, λ)

where G is a gluing of two disjoint graphs H and F over their complete
subgraph Kp for p ≥ 1.

Moreover, we shall use the known results for χ-equivalent graphs pre-
sented in Lemma 1. For a graph F , let IG(F ) denote the number of induced
subgraphs of G which are isomorphic to F .

Lemma 1 [3]. Let G and H be two χ-equivalent graphs. Then

(i) | V (G) |=| V (H) |,

(ii) | E(G) |=| E(H) |,

(iii) χ(G) = χ(H),

(iv) IG(C3) = IH(C3),
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(v) IG(C4) − 2IG(K4) = IH(C4) − 2IH(K4),

(vi) G is connected iff H is connected,

(vii) G is 2-connected iff H is 2-connected.

3. Results

Next we consider the following 2-connected pairwise nonisomorphic graphs
Xi(n), shortly denoted by Xi, each of order n, n ≥ 8, presented in Figure 1.
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Thin lines denote here paths, filled circle — vertices, and bold lines — edges
of a graph. Checking the degree sequences of these graphs one can easy note
that they are pairwise nonisomorphic.

First we prove the following lemma.

Lemma 2. X15 ∼ X14, and Xi 6∼ Xj for other pairs i, j = 0, ..., 13 and

i 6= j.

Proof. By using Whitney’s reduction formula we have:

P (X0, λ) = (λ − 2)5P (Cn−5, λ),

P (X1, λ) = (λ − 2)4(P (Cn−4, λ) − P (Cn−5, λ)),

P (X2, λ) = (λ − 2)3((λ − 3)P (Cn−4, λ) + P (Cn−5, λ)),

P (X3, λ) = (λ − 2)3(P (Cn−3, λ) − 2P (Cn−4, λ) + P (Cn−5, λ)),

P (X4, λ) = (λ − 2)2((λ2 − 5λ + 7)P (Cn−4, λ) − P (Cn−5, λ)),

P (X5, λ) = (λ − 2)2(λ2 − 5λ + 7)P (Cn−4, λ),

P (X6, λ) = (λ − 2)2((λ − 2)P (Cn−3, λ) − (2λ − 5)P (Cn−4, λ)),

P (X7, λ) = (λ − 2)2((λ − 3)P (Cn−3, λ) − (λ − 4)P (Cn−4, λ) + P (Cn−5, λ)),

P (X8, λ) = (λ− 2)2((λ− 2)P (Cn−3, λ)− (2λ− 5)P (Cn−4, λ)−P (Cn−5, λ)),

and the chromatic polynomials for other graphs G of the lemma are of the
following form : P (G,λ) = (λ − 1)(λ − 2)Q(G,λ), where the factor Q(G,λ)
is presented in Table 1 and (λ − 2)2 6 | P (G,λ).

Table 1

G Q(G, λ)

X9

[(λ − 2)3 − (λ − 2)2 + (λ − 2) − 1] [(λ − 1)n−5 + (−1)n−4]+

+(λ − 1)n−6 + (−1)n−5

X10

(λ − 2)[(λ − 1)n−3 − 2(λ − 1)n−4 − (λ − 4)(λ − 1)n−5

−(−1)n(λ − 7)] − [(λ − 1)n−5 − (λ − 1)n−6 + 2(−1)n]

X11

(λ − 2){(λ − 1)n−3 − (λ − 1)n−4 + (λ − 1)n−5

+3(−1)n−2 − 2(λ − 2)[(λ − 1)n−5 + (−1)n−4]}

−[(λ − 1)n−5 − (λ − 1)n−6 + 2(−1)n−4]

X12

(λ − 2)[(λ − 1)n−3 + (−1)n−2] − {(λ − 3)[(λ − 1)n−4

+(−1)n−3] + (λ2 − 5λ + 7)[(λ − 1)n−5 + (−1)n−4]}

X13

(λ2 − 6λ + 9)[(λ − 1)n−4 + (−1)n−3]

+(2λ − 5)[(λ − 1)n−5 + (−1)n−4]

X14, X15 (λ2 − 5λ + 7)[(λ − 1)n−5(λ − 2) − 2(−1)n]
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Since P (Cn, λ) = (λ−1)((λ−1)n−1+(−1)n), we get the following properties:

(λ − 2)5 | P (X0, λ);
(λ − 2)4 | P (X1, λ) and (λ − 2)5 6 | P (X1, λ);
(λ − 2)3 | P (Xi, λ) and (λ − 2)4 6 | P (Xi, λ) for i = 2, 3;

(λ − 2)2 | P (Xi, λ) and (λ − 2)3 6 | P (Xi, λ) for 4 ≤ i ≤ 8;
(λ − 2)2 6 | P (Xi, λ) for 9 ≤ i ≤ 15;

Evidently graphs X14, X15 are χ-equivalent. Looking at the above properties
and checking the values of chromatic polynomials for λ = 2, 3 or 4, we
calculate that other pairs of the graphs are not χ-equivalent. This completes
the proof.

Theorem 3. For each n≥ 8, a 2-connected 3-chromatic graph of order n
with five triangles and cyclomatic number six is χ-equivalent to one of the

graphs Xi(n), i = 0, ..., 14 presented in Figure 1.

Proof. Let R be a 2-connected 3-chromatic graph of order n ≥ 8 with five
triangles and cyclomatic number six.

Suppose that there exists a graph G 6' R and such that G ∼ R.

Lemma 1 implies | V (G) |= n, | E(G) |= n + 5, χ(G) = 3, IG(K3) = 5,
IG(K4) = 0 and G is a 2-connected graph. Let H be a subgraph of G
induced by the edges of the five triangles in G, and let | V (H) |= h. So

6 ≤ h(1)

Now we define some parameters, which will be useful for the description
of all possible candidates for H with h vertices and five triangles, and its
supergraph G. Let

α = 2(| E(H) | −h),

β′ = | {x ∈ V (H) | dH(x) = 2 and dG(x) = 3} |,

β′′ = | {x ∈ V (H) | dH(x) = 2 and dG(x) ≥ 4} |,

γ = | {x ∈ V (H) | dH(x) ≥ 3 and dG(x) = dH(x) + 1} |,

γ′ = | {x ∈ V (H) | dH(x) ≥ 3 and dG(x) ≥ dH(x) + 2} |,

δ = | {x ∈ V (G) − V (H) | dG(x) ≥ 3} | .

(2)

We have

2(n + 5) ≥
∑

(dH(x) | x ∈ V (H)) + β ′ + 2β′′ + 2(n − h) + γ + 2γ ′ + δ

= α + β′ + 2β′′ + γ + 2γ′ + δ + 2n .
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This implies that

α + β′ + 2β′′ + γ + 2γ′ + δ ≤ 10 .(3)

Let c be the number of connected components of the graph H. Evidently
each connected component contains at least one triangle. Since G is a
2-connected graph and H has five triangles and it does not contain K4,
then the cyclomatic number of H is equal to 5 if H is disconnected, and it
is equal to 5 or 6 if H is connected. So by (2) we get

α = 10 − 2c if c > 1(4)

and

α ≥ 8 if c = 1 .(5)

The list of all possible candidates for H with h vertices and five triangles
will be described by considering the following five cases. Three of them are
very simple. For the cases 4 and 5 we use the known theorem of Erdös and
Gallai on characterization of degree sequences (see [4], Theorem 6.2). All
resulting graphs are presented in Figures 2–3 if H 6' G and in Figure 4 if
H ' G.

Case 1. Suppose that c = 5, and let Hi, i = 1, 2, 3, 4, 5 be connected
components of H. Evidently each of Hi is isomorphic to K3.

Now 2-connectivity of G and formulas (3)–(4) imply α = 0, β ′ = 10,
β′′ = 0, γ = 0, γ ′ = 0, δ = 0.

Case 2. Suppose that c = 4, and let Hi, i = 1, 2, 3, 4 be connected
components of H. Now 2-connectivity of G and formulas (3)–(4) imply
α = 2, β′ + γ = 8, β′′ = 0, γ′ = 0, δ = 0. Evidently each of Hi, i = 1, 2, 3 is
isomorphic to K3 and H4 is isomorphic to 2K1 + K2 or K1 + 2K2.

Case 3. Suppose that c = 3, and let Hi, i = 1, 2, 3 be connected
components of H. Now 2-connectivity of G and formulas (3)–(4) imply
α = 4, β′ + γ = 6, β′′ = 0, γ′ = 0, δ = 0. Moreover, if a graph Hi has a cut
vertex x, then the graph Hi − x has exactly two connected components.

Thus if two graphs of Hi, i = 1, 2, 3 are isomorphic to K3 then, the other
one is isomorphic to the last graph presented in lines 1–5 of Figure 2 and
if exactly one of Hi, i = 1, 2, 3 is isomorphic to K3, then the other two are
isomorphic to a graph 2K1 + K2 or K1 + 2K2 (see lines 6–8 of Figure 2).
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Case 4. Suppose that c = 2, and let H1, H2 be connected components
of H. Then from (4) α ≥ 6 and from (3) β ′ +γ = 4, β′′ = 0, γ′ = 0, δ = 0. So
2-connectivity of G implies that if a graph Hi has a cut vertex x, then the
graph Hi−x has two connected components. Thus we have to consider three
cases for the second component H2. Namely, H2

∼= K3,K1 +2K2, 2K1 +K2.
Considering simple degree conditions we get all available candidates for H1

presented in Figure 2 (continued).

s s

s

s s

s s

s s

s

s s

s

s s

s

s s

s

s s

s

s s

s

s s

s

s s

s

s s

s

s s

s

s s

s s

s

c = 4

c = 5

s s

s

s s

s

s s

s s

s

s s

s

s s

s

s s

s s

s s

s

s s

s

s s

s s

s s

s

s s

s

s s

s s

s s

s

s s

s

s s

s s

s s

s

s s

s s

s s

s

s s

s

s

s

s

s

s

s

s

s

s s

s s

s s

s s

s s

s s

s

s s

s s

s s s

s s

s

c = 3



106 H. Bielak

s s

s

s s

s s

s

s s

s

s s

s s

ss

s
s s

s

s s

s s

s s

s

s s

s s

s s

s

s s

s

s

s

s

s

s

ss s

s s

s s

s s

s

s s

s s

s s s

s s

s

c = 2, H2 = K1 + 2K2

s

ss s

s s s

ss s

s s s

s

s

s

c = 2, H2 = K3

s

ss s

s s

s

s s

s s

s

s

s s

s s

s s

s

s

s

s

s

s

s s

s

s s

s

s

s ss s

s s

s

ss

s

s

s

s

s s

s

s

s

s

s

s

s s

s

s

s

s

s

s s

s

s

s

s

s s

s s

s

ss

s s

s s

s

sss s

s s

s

s

s s

s s

s

s

s

s

ss s

s s

s

ss

or H2 = 2K1 + K2

Figure 2

Case 5. Assume that c = 1. Then from (2) and (3) α ≥ 8 and β ′+γ ≤ 2.
Moreover, β ′′ + γ′ + δ = 0. If β ′ + γ = 0 we get H ' G and Figure 4 lists
all such graphs (each edge belongs to a triangle). For the opposite case
β′ + γ = 2. This follows by 2-connectivity of G. Moreover, 2-connectivity
of G implies that if a graph H has a cut vertex x, then the graph H − x
has two connected components. Since H has five triangles, we get h ≤ 11.
Considering h = 6, ..., 11 and keeping the inequalities (2) and (3) we get all
available candidates for H presented in Figure 3.

For each case of c = 5, 4, 3, 2 and 1 (if H 6' G) each required 2-connected
graph G is obtained from H by adding paths in such a way that exactly
two vertices of each connected component of H are incident to an edge
outside H. Looking at the graphs H and Lemma 2 we get all information
on G presented in Table 1. The last column of Table 2 lists the graphs
Xi that are χ-equivalent to respective graphs G. The column NB denotes
a consecutive number of a graph H or H1 for each respective group. This
completes the proof.
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Immediately from the proof of Theorem 3 and Lemma 2 we get the following
three results.

Corollary 4. Each Xi(n) for 9 ≤ i ≤ 13 and n ≥ 8 is a χ-unique graph of

order n.

The new chromatically unique graphs of order n are the graphs Xi(n) for
i = 12, 13 (see Figure 1) for each n ≥ 8.

Corollary 5. Each χ-equivalence class containing graphs X14(n), X15(n)
for n ≥ 8 has exactly these two nonisomorphic elements.

Corollary 6. Each χ-equivalence class containing a graph X7(n), n ≥ 7,
consists of all graphs defined in the conjecture of Li and Whitehead [5].
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Table 2

c = h = or H2 NB Xi, i =

5 15 1 0

4 13 1 0, 1
14 2 0

11 1 0, 1
11 2 0, 1, 2
12 3 0, 1

3 12 4 0, 1
13 5 0

11 6 0, 1, 3
12 7 0, 1
13 8 0, 1

1 5, 6
2 0, 1, 2, 4
3 0, 1, 2
4 0, 1, 2
5 0, 1, 2, 8
6 0

7 0, 1, 2
8 0, 1
9 0, 1

K3 10 0

11 0, 1
12 0, 1
13 0

14 0, 1, 3
2 15 1

16 0

17 0

18 0

19 0, 1
20 0

1 0

2 0, 1, 2
K1 + 2K2 3 0, 1

4 0

5 0

1 0, 1
2 0, 1, 2, 3, 7

2K1 + K2 3 0, 1, 3
4 0, 3
5 0, 1

6 1 5, 6, 12, 14
2 5, 6, 13, 14
1 0, 1, 2, 4, 9
2 0, 1, 2, 4
3 0, 1, 2, 4
4 0, 1, 2

1 5 0, 1, 2
6 0, 1
7 5

7 8 5, 6
9 0, 1, 2, 4, 8
10 0, 1, 2, 4, 8, 11
11 0, 1, 2
12 0, 1, 2, 8
13 0, 2, 2, 8
14 0, 1, 2, 8, 10

c = h = or H2 NB Xi, i =

1 0

2 0

3 0

4 0

5 0

6 0, 1
7 0, 1
8 0, 1
9 0, 1
10 0, 1
11 0, 1
12 0, 1, 2
13 0, 1

8 14 0, 1, 2, 4
15 0, 1, 2
16 0, 1, 2
17 0, 1, 2
18 0, 1, 2
19 0, 1, 3
20 0, 1, 2
21 0, 1
22 0, 1
23 0, 1, 2, 8

1 24 0, 1, 2
25 0, 1, 2, 3, 7
26 0, 1, 3
1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0, 1
10 0

11 1

9 12 0

13 0

14 1

15 0, 1
16 0, 1
17 0, 1
18 0

19 0

20 2

21 2

22 1

23 0, 1
24 0, 1, 3
25 0, 1, 3
1 0

2 0

10 3 0

4 0

5 0, 1
6 1

11 1 0
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