THE CHROMATICITY OF A FAMILY OF 2-CONNECTED 3-CHROMATIC GRAPHS WITH FIVE TRIANGLES AND CYCLOMATIC NUMBER SIX

Halina Bielak
Institute of Mathematics
M. Curie-Sktodowska University
Lublin, Poland
e-mail: hbiel@golem.umcs.lublin.pl

Abstract

In this note, all chromatic equivalence classes for 2 -connected 3 -chromatic graphs with five triangles and cyclomatic number six are described. New families of chromatically unique graphs of order n are presented for each $n \geq 8$. This is a generalization of a result stated in [5]. Moreover, a proof for the conjecture posed in [5] is given.

Keywords: chromatically equivalent graphs, chromatic polynomial, chromatically unique graphs, cyclomatic number.
1991 Mathematics Subject Classification: 05C15.

1. Introduction

The graphs which we consider here are finite, undirected, simple and loopless. Let G be a graph, $V(G)$ its vertex set, $E(G)$ its edge set, $\chi(G)$ its chromatic number and $P(G, \lambda)$ its chromatic polynomial. Two graphs G and H are said to be chromatically equivalent, or in short χ-equivalent, written $G \sim H$, if $P(G, \lambda)=P(H, \lambda)$. A graph G is said to be chromatically unique, or in short χ-unique, if for any graph H satisfying $H \sim G$, we have $H \cong G$, i.e. H is isomorphic to G. A family of all nonisomorphic chromatically equivalent graphs is called a χ-equivalence class.

A wheel W_{n} is a graph of order $n, n \geq 4$, obtained by the join of K_{1} and C_{n-1}. Any edge incident with the central vertex in W_{n} is called a spoke of the wheel. For any two integers n, k with $n \geq 4$ and $n-1 \geq k \geq 1$, let $W(n, k)$ denote the graph of order n obtained from a wheel W_{n} by deleting
all but k consecutive spokes. It is known that the graphs $W(n, 1)(n \geq 4)$ and $W(n, 2)(n \geq 4)$ are χ-unique. Chao and Whitehead [1] showed that the graphs $W(n, 3)(n \geq 5)$ and $W(n, 4)(n \geq 6)$ are χ-unique, while $W(7,5)$ is not. Then Koch and Teo [3] showed that all graphs $W(n, 5)(n \geq 8)$ are χ-unique. Recently Li and Whitehead [5] showed that all graphs $W(n, 6)$ $(n \geq 8)$ are χ-unique. This is a solution to one of the problems stated in [2] (see Problem $2[2]$). They also decribed two additional families of chromatically unique graphs. The family of graphs they studied consists of 2 -connected 3 -chromatic graphs with five triangles and cyclomatic number six. In this paper, all classes of χ-equivalent graphs of order at least 8 for this family are described. In particular, a complete characterization of chromatically unique graphs for the family is presented. Also a proof for the conjecture posed in [5] is given.

2. Known Results

In computing chromatic polynomials, we make use of Whitney's reduction formula given in [6]. The formula is

$$
P(G, \lambda)=P\left(G_{-e}, \lambda\right)-P(G / e, \lambda)
$$

or equivalently

$$
P\left(G_{-e}, \lambda\right)=P(G, \lambda)+P(G / e, \lambda)
$$

where G_{-e} is the graph obtained from G by deleting an edge e and G / e is the graph obtained from G by contracting the edge e.

We also make use of the overlaping formula given in [6]. The formula is

$$
P(G, \lambda)=P(H, \lambda) P(F, \lambda) / P\left(K_{p}, \lambda\right)
$$

where G is a gluing of two disjoint graphs H and F over their complete subgraph K_{p} for $p \geq 1$.

Moreover, we shall use the known results for χ-equivalent graphs presented in Lemma 1. For a graph F, let $I_{G}(F)$ denote the number of induced subgraphs of G which are isomorphic to F.

Lemma 1 [3]. Let G and H be two χ-equivalent graphs. Then
(i) $|V(G)|=|V(H)|$,
(ii) $|E(G)|=|E(H)|$,
(iii) $\chi(G)=\chi(H)$,
(iv) $I_{G}\left(C_{3}\right)=I_{H}\left(C_{3}\right)$,
(v) $I_{G}\left(C_{4}\right)-2 I_{G}\left(K_{4}\right)=I_{H}\left(C_{4}\right)-2 I_{H}\left(K_{4}\right)$,
(vi) G is connected iff H is connected,
(vii) G is 2-connected iff H is 2 -connected.

3. Results

Next we consider the following 2-connected pairwise nonisomorphic graphs $X_{i}(n)$, shortly denoted by X_{i}, each of order $n, n \geq 8$, presented in Figure 1 .

Figure 1

Thin lines denote here paths, filled circle - vertices, and bold lines - edges of a graph. Checking the degree sequences of these graphs one can easy note that they are pairwise nonisomorphic.

First we prove the following lemma.

Lemma 2. $X_{15} \sim X_{14}$, and $X_{i} \nsucc X_{j}$ for other pairs $i, j=0, \ldots, 13$ and $i \neq j$.

Proof. By using Whitney's reduction formula we have:
$P\left(X_{0}, \lambda\right)=(\lambda-2)^{5} P\left(C_{n-5}, \lambda\right)$,
$P\left(X_{1}, \lambda\right)=(\lambda-2)^{4}\left(P\left(C_{n-4}, \lambda\right)-P\left(C_{n-5}, \lambda\right)\right)$,
$P\left(X_{2}, \lambda\right)=(\lambda-2)^{3}\left((\lambda-3) P\left(C_{n-4}, \lambda\right)+P\left(C_{n-5}, \lambda\right)\right)$,
$P\left(X_{3}, \lambda\right)=(\lambda-2)^{3}\left(P\left(C_{n-3}, \lambda\right)-2 P\left(C_{n-4}, \lambda\right)+P\left(C_{n-5}, \lambda\right)\right)$,
$P\left(X_{4}, \lambda\right)=(\lambda-2)^{2}\left(\left(\lambda^{2}-5 \lambda+7\right) P\left(C_{n-4}, \lambda\right)-P\left(C_{n-5}, \lambda\right)\right)$,
$P\left(X_{5}, \lambda\right)=(\lambda-2)^{2}\left(\lambda^{2}-5 \lambda+7\right) P\left(C_{n-4}, \lambda\right)$,
$P\left(X_{6}, \lambda\right)=(\lambda-2)^{2}\left((\lambda-2) P\left(C_{n-3}, \lambda\right)-(2 \lambda-5) P\left(C_{n-4}, \lambda\right)\right)$,
$P\left(X_{7}, \lambda\right)=(\lambda-2)^{2}\left((\lambda-3) P\left(C_{n-3}, \lambda\right)-(\lambda-4) P\left(C_{n-4}, \lambda\right)+P\left(C_{n-5}, \lambda\right)\right)$, $P\left(X_{8}, \lambda\right)=(\lambda-2)^{2}\left((\lambda-2) P\left(C_{n-3}, \lambda\right)-(2 \lambda-5) P\left(C_{n-4}, \lambda\right)-P\left(C_{n-5}, \lambda\right)\right)$,
and the chromatic polynomials for other graphs G of the lemma are of the following form : $P(G, \lambda)=(\lambda-1)(\lambda-2) Q(G, \lambda)$, where the factor $Q(G, \lambda)$ is presented in Table 1 and $(\lambda-2)^{2} \not \backslash P(G, \lambda)$.

Table 1

G	$Q(G, \lambda)$
X_{9}	$\left[(\lambda-2)^{3}-(\lambda-2)^{2}+(\lambda-2)-1\right]\left[(\lambda-1)^{n-5}+(-1)^{n-4}\right]+$ $+(\lambda-1)^{n-6}+(-1)^{n-5}$
X_{10}	$(\lambda-2)\left[(\lambda-1)^{n-3}-2(\lambda-1)^{n-4}-(\lambda-4)(\lambda-1)^{n-5}\right.$ $\left.-(-1)^{n}(\lambda-7)\right]-\left[(\lambda-1)^{n-5}-(\lambda-1)^{n-6}+2(-1)^{n}\right]$
X_{11}	$(\lambda-2)\left\{(\lambda-1)^{n-3}-(\lambda-1)^{n-4}+(\lambda-1)^{n-5}\right.$ $\left.+3(-1)^{n-2}-2(\lambda-2)\left[(\lambda-1)^{n-5}+(-1)^{n-4}\right]\right\}$ $-\left[(\lambda-1)^{n-5}-(\lambda-1)^{n-6}+2(-1)^{n-4}\right]$
X_{12}	$(\lambda-2)\left[(\lambda-1)^{n-3}+(-1)^{n-2}\right]-\left\{(\lambda-3)\left[(\lambda-1)^{n-4}\right.\right.$ $\left.\left.+(-1)^{n-3}\right]+\left(\lambda^{2}-5 \lambda+7\right)\left[(\lambda-1)^{n-5}+(-1)^{n-4}\right]\right\}$
X_{13}	$\left(\lambda^{2}-6 \lambda+9\right)\left[(\lambda-1)^{n-4}+(-1)^{n-3}\right]$ $+(2 \lambda-5)\left[(\lambda-1)^{n-5}+(-1)^{n-4}\right]$
X_{14}, X_{15}	$\left(\lambda^{2}-5 \lambda+7\right)\left[(\lambda-1)^{n-5}(\lambda-2)-2(-1)^{n}\right]$

Since $P\left(C_{n}, \lambda\right)=(\lambda-1)\left((\lambda-1)^{n-1}+(-1)^{n}\right)$, we get the following properties: $(\lambda-2)^{5} \mid P\left(X_{0}, \lambda\right)$;
$(\lambda-2)^{4} \mid P\left(X_{1}, \lambda\right)$ and $(\lambda-2)^{5} \quad X P\left(X_{1}, \lambda\right)$;
$(\lambda-2)^{3} \mid P\left(X_{i}, \lambda\right)$ and $(\lambda-2)^{4} \quad \nmid P\left(X_{i}, \lambda\right)$ for $i=2,3$;
$(\lambda-2)^{2} \mid P\left(X_{i}, \lambda\right)$ and $(\lambda-2)^{3} \quad \Varangle P\left(X_{i}, \lambda\right)$ for $4 \leq i \leq 8$;
$(\lambda-2)^{2} \times P\left(X_{i}, \lambda\right)$ for $9 \leq i \leq 15$;
Evidently graphs X_{14}, X_{15} are χ-equivalent. Looking at the above properties and checking the values of chromatic polynomials for $\lambda=2,3$ or 4 , we calculate that other pairs of the graphs are not χ-equivalent. This completes the proof.

Theorem 3. For each $n \geq 8$, a 2-connected 3-chromatic graph of order n with five triangles and cyclomatic number six is χ-equivalent to one of the graphs $X_{i}(n), i=0, \ldots, 14$ presented in Figure 1.

Proof. Let R be a 2-connected 3 -chromatic graph of order $n \geq 8$ with five triangles and cyclomatic number six.

Suppose that there exists a graph $G \nsucceq R$ and such that $G \sim R$.
Lemma 1 implies $|V(G)|=n,|E(G)|=n+5, \chi(G)=3, I_{G}\left(K_{3}\right)=5$, $I_{G}\left(K_{4}\right)=0$ and G is a 2 -connected graph. Let H be a subgraph of G induced by the edges of the five triangles in G, and let $|V(H)|=h$. So

$$
\begin{equation*}
6 \leq h \tag{1}
\end{equation*}
$$

Now we define some parameters, which will be useful for the description of all possible candidates for H with h vertices and five triangles, and its supergraph G. Let

$$
\begin{align*}
\alpha & =2(|E(H)|-h), \\
\beta^{\prime} & =\mid\left\{x \in V(H) \mid d_{H}(x)=2 \text { and } d_{G}(x)=3\right\} \mid, \\
\beta^{\prime \prime} & =\mid\left\{x \in V(H) \mid d_{H}(x)=2 \text { and } d_{G}(x) \geq 4\right\} \mid, \\
\gamma & =\mid\left\{x \in V(H) \mid d_{H}(x) \geq 3 \text { and } d_{G}(x)=d_{H}(x)+1\right\} \mid, \tag{2}\\
\gamma^{\prime} & =\mid\left\{x \in V(H) \mid d_{H}(x) \geq 3 \text { and } d_{G}(x) \geq d_{H}(x)+2\right\} \mid, \\
\delta & =\left|\left\{x \in V(G)-V(H) \mid d_{G}(x) \geq 3\right\}\right| .
\end{align*}
$$

We have

$$
\begin{aligned}
2(n+5) \geq \sum\left(d_{H}(x) \mid x \in V(H)\right) & +\beta^{\prime}+2 \beta^{\prime \prime}+2(n-h)+\gamma+2 \gamma^{\prime}+\delta \\
& =\alpha+\beta^{\prime}+2 \beta^{\prime \prime}+\gamma+2 \gamma^{\prime}+\delta+2 n .
\end{aligned}
$$

This implies that

$$
\begin{equation*}
\alpha+\beta^{\prime}+2 \beta^{\prime \prime}+\gamma+2 \gamma^{\prime}+\delta \leq 10 . \tag{3}
\end{equation*}
$$

Let c be the number of connected components of the graph H. Evidently each connected component contains at least one triangle. Since G is a 2 -connected graph and H has five triangles and it does not contain K_{4}, then the cyclomatic number of H is equal to 5 if H is disconnected, and it is equal to 5 or 6 if H is connected. So by (2) we get

$$
\begin{equation*}
\alpha=10-2 c \text { if } c>1 \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha \geq 8 \text { if } c=1 . \tag{5}
\end{equation*}
$$

The list of all possible candidates for H with h vertices and five triangles will be described by considering the following five cases. Three of them are very simple. For the cases 4 and 5 we use the known theorem of Erdös and Gallai on characterization of degree sequences (see [4], Theorem 6.2). All resulting graphs are presented in Figures 2-3 if $H \nsucceq G$ and in Figure 4 if $H \simeq G$.

Case 1. Suppose that $c=5$, and let $H_{i}, i=1,2,3,4,5$ be connected components of H. Evidently each of H_{i} is isomorphic to K_{3}.

Now 2 -connectivity of G and formulas (3)-(4) imply $\alpha=0, \beta^{\prime}=10$, $\beta^{\prime \prime}=0, \gamma=0, \gamma^{\prime}=0, \delta=0$.

Case 2. Suppose that $c=4$, and let $H_{i}, i=1,2,3,4$ be connected components of H. Now 2-connectivity of G and formulas (3)-(4) imply $\alpha=2, \beta^{\prime}+\gamma=8, \beta^{\prime \prime}=0, \gamma^{\prime}=0, \delta=0$. Evidently each of $H_{i}, i=1,2,3$ is isomorphic to K_{3} and H_{4} is isomorphic to $2 K_{1}+K_{2}$ or $K_{1}+2 K_{2}$.

Case 3. Suppose that $c=3$, and let $H_{i}, i=1,2,3$ be connected components of H. Now 2-connectivity of G and formulas (3)-(4) imply $\alpha=4, \beta^{\prime}+\gamma=6, \beta^{\prime \prime}=0, \gamma^{\prime}=0, \delta=0$. Moreover, if a graph H_{i} has a cut vertex x, then the graph $H_{i}-x$ has exactly two connected components.

Thus if two graphs of $H_{i}, i=1,2,3$ are isomorphic to K_{3} then, the other one is isomorphic to the last graph presented in lines 1-5 of Figure 2 and if exactly one of $H_{i}, i=1,2,3$ is isomorphic to K_{3}, then the other two are isomorphic to a graph $2 K_{1}+K_{2}$ or $K_{1}+2 K_{2}$ (see lines 6-8 of Figure 2).

Case 4. Suppose that $c=2$, and let H_{1}, H_{2} be connected components of H. Then from (4) $\alpha \geq 6$ and from (3) $\beta^{\prime}+\gamma=4, \beta^{\prime \prime}=0, \gamma^{\prime}=0, \delta=0$. So 2-connectivity of G implies that if a graph H_{i} has a cut vertex x, then the graph $H_{i}-x$ has two connected components. Thus we have to consider three cases for the second component H_{2}. Namely, $H_{2} \cong K_{3}, K_{1}+2 K_{2}, 2 K_{1}+K_{2}$. Considering simple degree conditions we get all available candidates for H_{1} presented in Figure 2 (continued).

$$
c=5
$$

$$
c=4
$$

$$
c=2, H_{2}=K_{1}+2 K_{2}
$$

$$
\text { or } H_{2}=2 K_{1}+K_{2}
$$

Figure 2
Case 5. Assume that $c=1$. Then from (2) and (3) $\alpha \geq 8$ and $\beta^{\prime}+\gamma \leq 2$. Moreover, $\beta^{\prime \prime}+\gamma^{\prime}+\delta=0$. If $\beta^{\prime}+\gamma=0$ we get $H \simeq G$ and Figure 4 lists all such graphs (each edge belongs to a triangle). For the opposite case $\beta^{\prime}+\gamma=2$. This follows by 2-connectivity of G. Moreover, 2-connectivity of G implies that if a graph H has a cut vertex x, then the graph $H-x$ has two connected components. Since H has five triangles, we get $h \leq 11$. Considering $h=6, \ldots, 11$ and keeping the inequalities (2) and (3) we get all available candidates for H presented in Figure 3.

For each case of $c=5,4,3,2$ and 1 (if $H \nsucceq G$) each required 2-connected graph G is obtained from H by adding paths in such a way that exactly two vertices of each connected component of H are incident to an edge outside H. Looking at the graphs H and Lemma 2 we get all information on G presented in Table 1. The last column of Table 2 lists the graphs X_{i} that are χ-equivalent to respective graphs G. The column NB denotes a consecutive number of a graph H or H_{1} for each respective group. This completes the proof.

$$
\begin{aligned}
& c=1, h=6 \\
& \text { Cosolos) } \\
& c=1, h=7
\end{aligned}
$$

$$
\begin{aligned}
& \text { Cols, }
\end{aligned}
$$

$$
\begin{aligned}
& c=1, h=8 \\
& \text { Cos, } \\
& \text { Cosel) } \\
& \text { Coses) } \\
& \text { Coses) } \\
& \text { Cosec) } \\
& \text { ? }
\end{aligned}
$$

$c=1, h=9$
coses,
Coses,

$$
h=10
$$

?

$$
h=11
$$

-

Figure 3

Figure 4
Immediately from the proof of Theorem 3 and Lemma 2 we get the following three results.

Corollary 4. Each $X_{i}(n)$ for $9 \leq i \leq 13$ and $n \geq 8$ is a χ-unique graph of order n.

The new chromatically unique graphs of order n are the graphs $X_{i}(n)$ for $i=12,13$ (see Figure 1) for each $n \geq 8$.

Corollary 5. Each χ-equivalence class containing graphs $X_{14}(n), X_{15}(n)$ for $n \geq 8$ has exactly these two nonisomorphic elements.

Corollary 6. Each χ-equivalence class containing a graph $X_{7}(n), n \geq 7$, consists of all graphs defined in the conjecture of Li and Whitehead [5].

Table 2

$c=$	$h=$ or H_{2}	NB	$X_{i}, \quad i=$
5	15	1	0
4	13	1	0, 1
	14	2	0
3	11	1	0,1
	11	2	0, 1, 2
	12	3	0,1
	12	4	0,1
	13	5	0
	11	6	0, 1, 3
	12	7	0,1
	13	8	0, 1
2	K_{3}	1	5,6
		2	0, 1, 2, 4
		3	0, 1, 2
		4	0, 1,2
		5	0, 1, 2, 8
		6	0
		7	0, 1, 2
		8	0, 1
		9	0, 1
		10	0
		11	0,1
		12	0,1
		13	0
		14	0, 1, 3
		15	1
		16	0
		17	0
		18	0
		19	0, 1
		20	0
	$K_{1}+2 K_{2}$	1	0
		2	0, 1, 2
		3	0, 1
		4	0
		5	0
	$2 K_{1}+K_{2}$	1	0,1
		2	0, 1, 2, 3, 7
		3	0, 1, 3
		4	0,3
		5	0,1
1	6	1	5, 6, 12, 14
		2	5, 6, 13, 14
	7	1	0, 1, 2, 4, 9
		2	0, 1, 2, 4
		3	0, 1, 2, 4
		4	0, 1, 2
		5	0, 1, 2
		6	0,1
		7	5
		8	5, 6
		9	0, 1, 2, 4, 8
		10	$0,1,2,4,8,11$
		11	0,1,2
		12	0,1,2,8
		13	0,2,2,8
		14	0, 1, 2, 8, 10

$c=$	$h=$ or H_{2}	NB	$X_{i}, \quad i=$
1	8	1	0
		2	0
		3	0
		4	0
		5	0
		6	0, 1
		7	0, 1
		8	0,1
		9	0,1
		10	0, 1
		11	0, 1
		12	0, 1, 2
		13	0, 1
		14	$0,1,2,4$
		15	0, 1, 2
		16	0, 1, 2
		17	0, 1, 2
		18	0, 1, 2
		19	0, 1, 3
		20	0, 1, 2
		21	0,1
		22	0, 1
		23	$0,1,2,8$
		24	0, 1, 2
		25	0, 1, 2, 3, 7
		26	0, 1, 3
	9	1	0
		2	0
		3	0
		4	0
		5	0
		6	0
		7	0
		8	0
		9	0, 1
		10	0
		11	1
		12	0
		13	0
		14	1
		15	0, 1
		16	0, 1
		17	0, 1
		18	0
		19	0
		20	2
		21	2
		22	1
		23	0,1
		24	0, 1, 3
		25	0, 1, 3
	10	1	0
		2	0
		3	0
		4	0
		5	0, 1
		6	1
	11	1	0

References

[1] C.Y. Chao and E.G. Whitehead Jr., Chromatically unique graphs, Discrete Math. 27 (1979) 171-177.
[2] K.M. Koh and C.P. Teo, The search for chromatically unique graphs, Graphs and Combinatorics 6 (1990) 259-285.
[3] K.M. Koh and C.P. Teo, The chromatic uniqueness of certain broken wheels, Discrete Math. 96 (1991) 65-69.
[4] F. Harary, Graph Theory (Reading, 1969).
[5] N-Z. Li and E.G. Whitehead Jr., The chromaticity of certain graphs with five triangles, Discrete Math. 122 (1993) 365-372.
[6] R.C. Read, An introduction to chromatic polynomials, J. Combin. Theory 4 (1968) 52-71.

