KERNELS IN EDGE COLOURED LINE DIGRAPH

H. GALEANA-SÁNCHEZ

Instituto de Matemáticas, U.N.A.M., C.U. Circuito Exterior, D. F. 04510 México

AND

L. PASTRANA RAMÍREZ

Departamento de Matemáticas de la Facultad de Ciencias de la Universidad Nacional Autónoma de México México, D.F.

Abstract

We call the digraph D an m-coloured digraph if the arcs of D are coloured with m colours. A directed path (or a directed cycle) is called monochromatic if all of its arcs are coloured alike. A set $N \subseteq V(D)$ is said to be a kernel by monochromatic paths if it satisfies the two following conditions (i) for every pair of different vertices $u, v \in N$ there is no monochromatic directed path between them and (ii) for every vertex $x \in V(D) - N$ there is a vertex $y \in N$ such that there is an xy-monochromatic directed path.

Let D be an m-coloured digraph and L(D) its line digraph. The inner m-coloration of L(D) is the edge coloration of L(D) defined as follows: If h is an arc of D of colour c, then any arc of the form (x, h) in L(D) also has colour c.

In this paper it is proved that if D is an m-coloured digraph without monochromatic directed cycles, then the number of kernels by monochromatic paths in D is equal to the number of kernels by monochromatic paths in the inner edge coloration of L(D).

Keywords: kernel, kernel by monochromatic paths, line digraph, edge coloured digraph.

1991 Mathematics Subject Classification: 05C20.

1. INTRODUCTION

For general concepts we refer the reader to [1]. The existence of kernels by monochromatic paths in edge coloured digraphs was studied primarily by Sauer, Sands and Woodrow in [4]; they proved that any 2-coloured digraph has a kernel by monochromatic paths; sufficient conditions for the existence of kernels by monochromatic paths in m-coloured digraphs have been studied in [2], [3], [4], [5].

Definition 1.1. The line digraph of D = (X, U) is the digraph L(D) = (U, W) (we also denote U = V(L(D))) and W = A(L(D)) with a set of vertices as the set of arcs of D, and for any $h, k \in U$ there is $(h, k) \in W$ if and only if the corresponding arcs h, k induce a directed path in D; i.e., the terminal endpoint of h is the initial endpoint of k.

In what follows, we denote the arc $h = (u, v) \in U$ and the vertex h in L(D) by the same symbol.

If H is a subset of arcs in D it is also a subset of vertices of L(D). When we want to emphasize our interest in H as a set of vertices of L(D), we use the symbol H_L instead of H.

Definition 1.2. Let D be an m-coloured digraph and L(D) its line digraph; the inner m-coloration of L(D) is the edge coloration of L(D) defined as follows: If h is an arc of D with colour c then any arc of the form (x, h) in L(D) also has colour c.

Definition 1.3. A subset $N \subseteq V(D)$ is said to be independent by monochromatic paths if for every pair of different vertices $u, v \in N$ there is no *uv*-monochromatic directed path. The subset $N \subseteq V(D)$ is absorbant by monochromatic paths if for every vertex $x \in V(D) - N$ there is a vertex $y \in N$ such that there is an *xy*-monochromatic directed path. And a subset $N \subseteq V(D)$ is said to be a kernel by monochromatic paths if N is both independent and absorbant by monochromatic paths.

Definition 1.4. A sequence of vertices x_1, x_2, \ldots, x_n such that $(x_i, x_{i+1}) \in U$ for $1 \leq i \leq n-1$ is called a *directed walk*; when $x_i \neq x_j$ for $i \neq j$, $1 \leq i, j \leq n$ will be called a *directed path*.

2. Kernels in Edge Coloured Line Digraph

Lemma 2.1. Let D be an m-coloured digraph, $x_0, x_n \in V(D)$, $T = (x_0, x_1, \dots, x_{n-1}, x_n)$ a monochromatic directed path in D and $a_0 = (x, x_0)$ be an arc of D whose terminal endpoint is x_0 . There exists an a_0a_n -monochromatic directed path in the inner m-coloration of L(D), where $a_n = (x_{n-1}, x_n)$.

Proof. Denote by $a_i = (x_{i-1}, x_i)$; for i = 1, 2, ..., n. Since T is a directed path in D, it follows from Definition 2.1 that $(a_1, a_2, ..., a_n)$ is a directed path in L(D); in fact, the choice of a_0 and Definition 2.1 imply $(a_0, a_1, ..., a_n)$ is a directed path in L(D).

Suppose without loss of generality that T is monochromatic of colour c. Since a_{i+1} has colour c for $0 \le i \le n-1$ it follows from Definition 1.2 that (a_i, a_{i+1}) has colour c for $0 \le i \le n-1$, hence (a_0, a_1, \ldots, a_n) is a monochromatic directed path of colour c.

Lemma 2.2. Let D be an m-coloured digraph without monochromatic directed cycles, $a_0, a_n \in V(L(D))$. If there exists an a_0, a_n -monochromatic directed path in the inner m-coloration of L(D), then the terminal endpoint of a_0 is different from the terminal endpoint of a_n and there exists a monochromatic directed path from the terminal endpoint of a_0 to the terminal endpoint of a_n in D.

Proof. Let (a_0, a_1, \ldots, a_n) be a monochromatic directed path of colour c in the inner *m*-coloration of L(D) and $a_i = (x_i, x_{i+1}), 0 \le i \le n$. It follows from Definition 2.1 that (x_1, \ldots, x_{n+1}) is a directed walk in D; since (a_i, a_{i+1}) has colour $c, 0 \le i \le n-1$ it follows from Definition 1.2 that a_{i+1} has colour c in $D, 0 \le i \le n-1$. Hence $(x_1, x_2, \ldots, x_n, x_{n+1})$ is a monochromatic directed walk of colour c in D. Since D has no monochromatic directed cycles it follows that $x_i \ne x_j \quad \forall i \ne j, 1 \le i \le n+1, 1 \le j \le n+1$; in particular $x_1 \ne x_{n+1}$ (Notice that any monochromatic closed directed walk contains a monochromatic directed cycle) and (x_1, \ldots, x_{n+1}) is a monochromatic directed path.

Definition 2.1. Let D = (X, U) be a digraph. We denote by $\mathcal{P}(\mathcal{X})$ the set of all the subsets of the set X and $f: \mathcal{P}(\mathcal{X}) \to \mathcal{P}(\mathcal{U})$ will denote the function defined as follows: for each $Z \subseteq X$, $f(Z) = \{(u, x) \in U \mid x \in Z\}$.

Lemma 2.3. Let D be an m-coloured digraph without monochromatic directed cycles; if $Z \subseteq V(D)$ is independent by monochromatic paths in D, then $f(Z)_L$ is independent by monochromatic paths in the inner m-coloration of L(D).

Proof. We proceed by contradiction. Let D be an *m*-coloured digraph and $Z \subseteq V(D)$ independent by monochromatic paths. Suppose (by contradiction) that $f(Z)_L$ is not independent by monochromatic paths in the

inner *m*-coloration of L(D). Then there exists $h, k \in f(Z)_L$ and an hkmonochromatic directed path in the inner *m*-coloration of L(D). It follows from Lemma 2.2 that the terminal endpoint of h is different from the terminal endpoint of k and there exists a monochromatic directed path from the terminal endpoint of h to the terminal endpoint of k. Since $h \in f(Z)_L$ (resp. $k \in f(Z)_L$) we have from Definition 2.1 that the terminal endpoint of h (resp. of k) is in Z; so we have a monochromatic directed path between two vertices of Z, a contradiction.

Theorem 2.1. Let D = (X, U) be an m-coloured digraph without monochromatic directed cycles. The number of kernels by monochromatic paths of D is equal to the number of kernels by monochromatic paths in the inner m-coloration of L(D).

Proof. Denote by \mathcal{K} the set of all the kernels by monochromatic paths of D and by \mathcal{K}^* the set of all the kernels by monochromatic paths in the inner *m*-coloration of L(D).

(1) If $Z \in \mathcal{K}$, then $f(Z)_L \in \mathcal{K}^*$. Since $Z \in \mathcal{K}$, we have that Z is independent by monochromatic paths and Lemma 2.3 implies that $f(Z)_L$ is independent by monochromatic paths. Now we will prove that $f(Z)_L$ is absorbant by monochromatic paths. Let k = (u, v) be a vertex of L(D) such that $k \in$ $(V(L(D)) - f(Z)_L)$, it follows from Definition 2.1 that $v \in (V(D) - Z)$. Since Z is a kernel by monochromatic paths of D, it follows from Definition 1.3 that there exists $z \in Z$ and a monochromatic directed path from v to z in D, say $(v = x_0, x_1, \ldots, x_{n-1}, x_n = z)$. Then it follows from Lemma 2.1 that there exists an $(u, v)(x_{n-1}, x_n)$ -monochromatic directed path in the inner m-coloration of L(D) and since $z \in Z$, we have from Definition 2.1 that $(x_{n-1}, x_n = z) \in f(Z)_L$.

(2) The function $f': \mathcal{K} \to \mathcal{K}^*$, where f' is the restriction of f to \mathcal{K} is an injective function. Let $Z_1, Z_2 \in \mathcal{K}$ and $Z_1 \neq Z_2$. Let us suppose, e.g., that $Z_1 - Z_2 \neq \emptyset$. Let $v \in (Z_1 - Z_2)$, since Z_2 is a kernel by monochromatic paths of D, it follows from Definition 1.3 that there exists $u \in Z_2$ and a vu-monochromatic directed path, let $h = (x_n, u)$ be the last arc of such a path. It follows from Definition 2.1 that $h \in f(Z_2)_L$. Finally, notice that since $v \in Z_1$, the subset Z_1 is independent by monochromatic paths and there exists a vu-monochromatic directed path, we have that $u \notin Z_1$ and then $h \notin f(Z_1)_L$. Hence $h \in (f(Z_2)_L - f(Z_1)_L)$ and so $f(Z_1)_L \neq f(Z_2)_L$.

Define a function $g: \mathcal{P}(U) \to \mathcal{P}(X)$ as follows:

KERNELS IN EDGE COLOURED LINE DIGRAPH

If $H \subseteq U$, then $g(H) = C(H) \cup D(H)$, where $C(H) = \{x \in X \mid \text{there exists} (z, x) \in H\}$ (the set of all the terminal endpoints of arcs of H). $D(H) = \{x \in X \mid \delta_D(x) = 0 \text{ and there is no monochromatic directed path} \}$

from x to C(H). (Where $\delta_D^-(x) = \{y \in V(D) \mid (y, x) \in U\}$).

(3) If $H_L \in \mathcal{K}^*$, then $g(H_L) \in \mathcal{K}$.

(3.1) If $H_L \in \mathcal{K}^*$, then $g(H_L)$ is independent by monochromatic paths. Suppose that $H_L \in \mathcal{K}^*$, and let $u, v \in g(H_L), u \neq v$; we will prove that there is no *uv*-monochromatic directed path in *D*. We will analyze several cases:

Case 1. $u, v \in C(H_L)$.

In this case we proceed by contradiction. Suppose (by contradiction) that there exists an *uv*-monochromatic directed path $T = (u = x_0, x_1, \ldots, x_n = v)$ in *D*. Since $u, v \in C(H_L)$, *u* is the terminal endpoint of an arc $h \in H_L$ and *v* is the terminal endpoint of an arc $k \in H_L$.

When $k = (x_{n-1}, x_n = v)$ we have from Lemma 2.1 that there exists an hk-monochromatic directed path, a contradiction (because H_L is independent by monochromatic paths and $h, k \in H_L$).

Otherwise if $k \neq (x_{n-1}, x_n = v)$, we have $(x_{n-1}, x_n = v) \notin H_L$ (because if $(x_{n-1}, x_n = v) \in H_L$ we would have the monochromatic directed path $(h, a_0, a_1, \ldots, a_{n-1})$ where $a_i = (x_i, x_{i+1}), 0 \leq i \leq n-1$; from h to $(x_{n-1}, x_n = v) = a_{n-1}$ with $h, a_{n-1} \in H_L$, a contradiction). Since H_L is absorbant by monochromatic paths and $a_{n-1} = (x_{n-1}, x_n = v) \notin H_L$, there exists $b \in H_L$ and an $a_{n-1}b$ -monochromatic directed path in the inner m-coloration of L(D); let $(a_{n-1} = b_0, b_1, \ldots, b_m = b)$ be such a path. Since the terminal endpoint of k is v (the same as $a_{n-1} = b_0$) we have from Definitions 1.1 and 1.2 that also $(k, b_1, b_2, \ldots, b_m = b)$ is a monochromatic directed path in the inner m-coloration of L(D) with $k, b \in H_L$, a contradiction.

Case 2. $u \in C(H_L), v \in D(H_L)$.

Since $v \in D(H_L)$, we have $\delta_D(v) = 0$, so there is no *uv*-monochromatic directed path in D.

Case 3. $u \in D(H_L), v \in C(H_L)$.

Since $u \in D(H_L)$, we have that there is no monochromatic directed path from u to $C(H_L)$, in particular there is no uv-monochromatic directed path.

Case 4. $u, v \in D(H_L)$. Since $v \in D(H_L)$, we have $\delta_D^-(v) = 0$ and clearly, there is no *uv*-monochromatic directed path in D.

(3.2) If $H_L \in \mathcal{K}^*$, then $g(H_L)$ is absorbant by monochromatic paths.

Let $u \in X - g(H_L) = X - (C(H_L) \cup D(H_L))$. Since $u \notin (C(H_L) \cup D(H_L))$, we have that there is no arc in H whose terminal endpoint is u, and at least one of the two following conditions holds: $\delta_D^-(u) > 0$ or there exists a monochromatic directed path from u to $C(H_L)$.

We will analyze the two possible cases.

Case 1. There is no arc in H_L whose terminal endpoint is u and $\delta_D^-(u) > 0$. The hypothesis in this case implies that there exists an arc $(t, u) \in U - H_L$. Since $H_L \in \mathcal{K}^*$, we have that H_L is absorbant by monochromatic paths; hence there exists $p = (s, m) \in H_L$ and a monochromatic directed path from (t, u) to p. Now it follows from Lemma 2.2 that u is different from m and there exists a monochromatic directed path from u to m. Finally, notice that since $(s, m) \in H_L$, we have $m \in g(H_L)$. So there exists a monochromatic directed path from u to m with $m \in g(H_L)$.

Case 2. There is no arc in H_L whose terminal endpoint is u and there exists a monochromatic directed path from u to $C(H_L)$.

Clearly in this case we have a monochromatic directed path from u to $g(H_L) = C(H_L) \cup D(H_L).$

(4) The function $g': \mathcal{K}^* \to \mathcal{K}$, where g' is the restriction of g to \mathcal{K} is an injective function. Let $N_L, P_L \in \mathcal{K}^*$, such that $N_L \neq P_L$. Let us suppose, e.g., that $N_L - P_L \neq \emptyset$. Let $h \in N_L - P_L$, and u the terminal endpoint of h. Since u is the terminal endpoint of an arc in N_L , we have that $u \in g(N_L)$. Now we will prove that $u \notin g(P_L)$. Since P_L is absorbant by monochromatic paths and $h \notin P_L$, we have that there exists $k \in P_L$ and an hk-monochromatic directed path in the inner m-coloration of L(D).

Let v be the terminal endpoint of k; hence $v \in g(P_L)$ and it follows from Lemma 2.2 that u is different from v and there exists an uv-monochromatic directed path in D. Since $g(P_L)$ is independent by monochromatic paths (This follows directly from (3) and Definition 1.3), we have that $u \notin g(P_L)$. We conclude $u \in g(N_L) - g(P_L)$ and so $g(N_L) \neq g(P_L)$. Finally, notice that it follows from (2) and (4) that:

Card $\mathcal{K} \leq \text{Card } \mathcal{K}^* \leq \text{Card } \mathcal{K}$ and hence $\text{Card } \mathcal{K} = \text{Card } \mathcal{K}^*$.

Note 2.1. Let D be an m-coloured digraph and L(D) its line digraph; similarly as in Definition 1.2 we can define the outer m-coloration of L(D)as follows: If h is arc of D with colour c, then any arc of the form (h, x) in L(D) also has colour c. However, Theorem 2.1 does not hold if we change inner m-coloration of L(D) by outer m-coloration of L(D). In Figure 1, we show a digraph D without monochromatic directed cycles with one kernel by monochromatic paths such that the outer m-coloration of its line digraph (Figure 2) has no kernel by monochromatic paths.

Note 2.2. Theorem 2.1 does not hold if we drop the hypothesis that D has no monochromatic directed cycles. In Figure 3, we show a digraph D with monochromatic directed cycles which has two kernels by monochromatic paths such that the inner *m*-coloration of its line digraph (Figure 4) has just one kernel by monochromatic paths. And in Figure 5, we show a digraph with monochromatic directed cycles without a kernel by monochromatic paths and its line digraph has two kernels by monochromatic paths (see Figure 6).

Figure 5

98

Figure 6

References

- [1] C. Berge, Graphs (North Holland, Amsterdam, New York, 1985).
- H. Galeana-Sánchez, On monochromatic paths and monochromatic cycles in edge coloured tournaments, Discrete Math. 156 (1996) 103–112.
- [3] H. Galeana-Sánchez and J.J. García Ruvalcaba, Kernels in $\{C_3, T_3\}$ -free arc colorations of $K_n e$, submitted.
- [4] B. Sands, N. Sauer and R. Woodrow, On Monochromatic Paths in Edge Coloured Digraphs, J. Combin. Theory (B) 33 (1982) 271–275.
- [5] Shen Minggang, On Monochromatic Paths in m-Coloured Tournaments, J. Combin. Theory (B) 45 (1988) 108–111.

Received 27 April 1997 Revised 22 September 1997