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Abstract

We call the digraph D an m-coloured digraph if the arcs of D are
coloured with m colours. A directed path (or a directed cycle) is called
monochromatic if all of its arcs are coloured alike. A set N ⊆ V (D)
is said to be a kernel by monochromatic paths if it satisfies the two
following conditions (i) for every pair of different vertices u, v ∈ N

there is no monochromatic directed path between them and (ii) for
every vertex x ∈ V (D) − N there is a vertex y ∈ N such that there is
an xy-monochromatic directed path.

Let D be an m-coloured digraph and L(D) its line digraph. The
inner m-coloration of L(D) is the edge coloration of L(D) defined as
follows: If h is an arc of D of colour c, then any arc of the form (x, h)
in L(D) also has colour c.

In this paper it is proved that if D is an m-coloured digraph with-
out monochromatic directed cycles, then the number of kernels by
monochromatic paths in D is equal to the number of kernels by mon-
ochromatic paths in the inner edge coloration of L(D).

Keywords: kernel, kernel by monochromatic paths, line digraph, edge
coloured digraph.
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1. Introduction

For general concepts we refer the reader to [1]. The existence of kernels by
monochromatic paths in edge coloured digraphs was studied primarily by
Sauer, Sands and Woodrow in [4]; they proved that any 2-coloured digraph
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has a kernel by monochromatic paths; sufficient conditions for the existence
of kernels by monochromatic paths in m-coloured digraphs have been studied
in [2], [3], [4], [5].

Definition 1.1. The line digraph of D = (X,U) is the digraph L(D) =
(U,W ) (we also denote U = V (L(D))) and W = A(L(D)) with a set of
vertices as the set of arcs of D, and for any h, k ∈ U there is (h, k) ∈ W if
and only if the corresponding arcs h, k induce a directed path in D; i.e., the
terminal endpoint of h is the initial endpoint of k.

In what follows, we denote the arc h = (u, v) ∈ U and the vertex h in L(D)
by the same symbol.

If H is a subset of arcs in D it is also a subset of vertices of L(D). When
we want to emphasize our interest in H as a set of vertices of L(D), we use
the symbol HL instead of H.

Definition 1.2. Let D be an m-coloured digraph and L(D) its line digraph;
the inner m-coloration of L(D) is the edge coloration of L(D) defined as
follows: If h is an arc of D with colour c then any arc of the form (x, h) in
L(D) also has colour c.

Definition 1.3. A subset N ⊆ V (D) is said to be independent by
monochromatic paths if for every pair of different vertices u, v ∈ N there is
no uv-monochromatic directed path. The subset N ⊆ V (D) is absorbant
by monochromatic paths if for every vertex x ∈ V (D)−N there is a vertex
y ∈ N such that there is an xy-monochromatic directed path. And a sub-
set N ⊆ V (D) is said to be a kernel by monochromatic paths if N is both
independent and absorbant by monochromatic paths.

Definition 1.4. A sequence of vertices x1, x2, . . . , xn such that (xi, xi+1) ∈
U for 1 ≤ i ≤ n − 1 is called a directed walk; when xi 6= xj for i 6= j,
1 ≤ i, j ≤ n will be called a directed path.

2. Kernels in Edge Coloured Line Digraph

Lemma 2.1. Let D be an m-coloured digraph, x0, xn ∈ V (D), T = (x0, x1,

. . . , xn−1, xn) a monochromatic directed path in D and a0 = (x, x0) be an arc

of D whose terminal endpoint is x0. There exists an a0an-monochromatic

directed path in the inner m-coloration of L(D), where an = (xn−1, xn).
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Proof. Denote by ai = (xi−1, xi); for i = 1, 2, . . . , n. Since T is a di-
rected path in D, it follows from Definition 2.1 that (a1, a2, . . . , an) is a
directed path in L(D); in fact, the choice of a0 and Definition 2.1 imply
(a0, a1, . . . , an) is a directed path in L(D).

Suppose without loss of generality that T is monochromatic of colour c.
Since ai+1 has colour c for 0 ≤ i ≤ n − 1 it follows from Definition 1.2
that (ai, ai+1) has colour c for 0 ≤ i ≤ n − 1, hence (a0, a1, . . . , an) is a
monochromatic directed path of colour c.

Lemma 2.2. Let D be an m-coloured digraph without monochromatic di-

rected cycles, a0, an ∈ V (L(D)). If there exists an a0, an-monochromatic di-

rected path in the inner m-coloration of L(D), then the terminal endpoint of

a0 is different from the terminal endpoint of an and there exists a monochro-

matic directed path from the terminal endpoint of a0 to the terminal endpoint

of an in D.

Proof. Let (a0, a1, . . . , an) be a monochromatic directed path of colour c

in the inner m-coloration of L(D) and ai = (xi, xi+1), 0 ≤ i ≤ n. It follows
from Definition 2.1 that (x1, . . . xn+1) is a directed walk in D; since (ai, ai+1)
has colour c, 0 ≤ i ≤ n−1 it follows from Definition 1.2 that ai+1 has colour
c in D, 0 ≤ i ≤ n − 1. Hence (x1, x2, . . . , xn, xn+1) is a monochromatic di-
rected walk of colour c in D. Since D has no monochromatic directed cycles
it follows that xi 6= xj ∀ i 6= j, 1 ≤ i ≤ n + 1, 1 ≤ j ≤ n + 1; in particular
x1 6= xn+1 (Notice that any monochromatic closed directed walk contains
a monochromatic directed cycle) and (x1, . . . , xn+1) is a monochromatic di-
rected path.

Definition 2.1. Let D = (X,U) be a digraph. We denote by P(X ) the set
of all the subsets of the set X and f :P(X ) → P(U) will denote the function
defined as follows: for each Z ⊆ X, f(Z) = {(u, x) ∈ U | x ∈ Z}.

Lemma 2.3. Let D be an m-coloured digraph without monochromatic di-

rected cycles; if Z ⊆ V (D) is independent by monochromatic paths in D,

then f(Z)L is independent by monochromatic paths in the inner m-coloration

of L(D).

Proof. We proceed by contradiction. Let D be an m-coloured digraph
and Z ⊆ V (D) independent by monochromatic paths. Suppose (by con-
tradiction) that f(Z)L is not independent by monochromatic paths in the
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inner m-coloration of L(D). Then there exists h, k ∈ f(Z)L and an hk-
monochromatic directed path in the inner m-coloration of L(D). It follows
from Lemma 2.2 that the terminal endpoint of h is different from the ter-
minal endpoint of k and there exists a monochromatic directed path from
the terminal endpoint of h to the terminal endpoint of k. Since h ∈ f(Z)L

(resp. k ∈ f(Z)L) we have from Definition 2.1 that the terminal endpoint
of h (resp. of k) is in Z; so we have a monochromatic directed path between
two vertices of Z, a contradiction.

Theorem 2.1. Let D = (X,U) be an m-coloured digraph without mono-

chromatic directed cycles. The number of kernels by monochromatic paths

of D is equal to the number of kernels by monochromatic paths in the inner

m-coloration of L(D).

Proof. Denote by K the set of all the kernels by monochromatic paths of
D and by K∗ the set of all the kernels by monochromatic paths in the inner
m-coloration of L(D).

(1) If Z ∈ K, then f(Z)L ∈ K∗. Since Z ∈ K, we have that Z is independent
by monochromatic paths and Lemma 2.3 implies that f(Z)L is independent
by monochromatic paths. Now we will prove that f(Z)L is absorbant by
monochromatic pahts. Let k = (u, v) be a vertex of L(D) such that k ∈
(V (L(D)) − f(Z)L), it follows from Definition 2.1 that v ∈ (V (D) − Z).
Since Z is a kernel by monochromatic paths of D, it follows from Definition
1.3 that there exists z ∈ Z and a monochromatic directed path from v to z in
D, say (v = x0, x1, . . . , xn−1, xn = z). Then it follows from Lemma 2.1 that
there exists an (u, v)(xn−1, xn)-monochromatic directed path in the inner
m-coloration of L(D) and since z ∈ Z, we have from Definition 2.1 that
(xn−1, xn = z) ∈ f(Z)L.

(2) The function f ′:K → K∗, where f ′ is the restriction of f to K is an
injective function. Let Z1, Z2 ∈ K and Z1 6= Z2. Let us suppose, e.g., that
Z1 − Z2 6= ∅. Let v ∈ (Z1 − Z2), since Z2 is a kernel by monochromatic
paths of D, it follows from Definition 1.3 that there exists u ∈ Z2 and a
vu-monochromatic directed path, let h = (xn, u) be the last arc of such a
path. It follows from Definition 2.1 that h ∈ f(Z2)L. Finally, notice that
since v ∈ Z1, the subset Z1 is independent by monochromatic paths and
there exists a vu-monochromatic directed path, we have that u 6∈ Z1 and
then h 6∈ f(Z1)L. Hence h ∈ (f(Z2)L − f(Z1)L) and so f(Z1)L 6= f(Z2)L.

Define a function g:P(U) → P(X) as follows:
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If H ⊆ U , then g(H) = C(H) ∪D(H), where C(H) = {x ∈ X | there exists
(z, x) ∈ H} (the set of all the terminal endpoints of arcs of H).
D(H) = {x ∈ X | δ−D(x) = 0 and there is no monochromatic directed path
from x to C(H)}. (Where δ−D(x) = {y ∈ V (D) | (y, x) ∈ U}).

(3) If HL ∈ K∗, then g(HL) ∈ K.

(3.1) If HL ∈ K∗, then g(HL) is independent by monochromatic paths.
Suppose that HL ∈ K∗, and let u, v ∈ g(HL), u 6= v; we will prove that there
is no uv-monochromatic directed path in D. We will analyze several cases:

Case 1. u, v ∈ C(HL).
In this case we proceed by contradiction. Suppose (by contradition) that
there exists an uv-monochromatic directed path T = (u = x0, x1, . . . , xn

= v) in D. Since u, v ∈ C(HL), u is the terminal endpoint of an arc h ∈ HL

and v is the terminal endpoint of an arc k ∈ HL.
When k = (xn−1, xn = v) we have from Lemma 2.1 that there exists an hk-
monochromatic directed path, a contradiction (because HL is independent
by monochromatic paths and h, k ∈ HL).
Otherwise if k 6= (xn−1, xn = v), we have (xn−1, xn = v) 6∈ HL (be-
cause if (xn−1, xn = v) ∈ HL we would have the monochromatic directed
path (h, a0, a1, . . . , an−1) where ai = (xi, xi+1), 0 ≤ i ≤ n − 1; from h to
(xn−1, xn = v) = an−1 with h, an−1 ∈ HL, a contradiction). Since HL

is absorbant by monochromatic paths and an−1 = (xn−1, xn = v) 6∈ HL,
there exists b ∈ HL and an an−1b-monochromatic directed path in the inner
m-coloration of L(D); let (an−1 = b0, b1, . . . , bm = b) be such a path. Since
the terminal endpoint of k is v (the same as an−1 = b0) we have from Defini-
tions 1.1 and 1.2 that also (k, b1, b2, . . . , bm = b) is a monochromatic directed
path in the inner m-coloration of L(D) with k, b ∈ HL, a contradiction.

Case 2. u ∈ C(HL), v ∈ D(HL).
Since v ∈ D(HL), we have δ−D(v) = 0, so there is no uv-monochromatic
directed path in D.

Case 3. u ∈ D(HL), v ∈ C(HL).
Since u ∈ D(HL), we have that there is no monochromatic directed path
from u to C(HL), in particular there is no uv-monochromatic directed path.

Case 4. u, v ∈ D(HL).
Since v ∈ D(HL), we have δ−D(v) = 0 and clearly, there is no uv-monochro-
matic directed path in D.

(3.2) If HL ∈ K∗, then g(HL) is absorbant by monochromatic paths.
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Let u ∈ X − g(HL) = X − (C(HL) ∪D(HL)). Since u 6∈ (C(HL)∪D(HL)),
we have that there is no arc in H whose terminal endpoint is u, and at
least one of the two following conditions holds: δ−D(u) > 0 or there exists
a monochromatic directed path from u to C(HL).

We will analyze the two possible cases.

Case 1. There is no arc in HL whose terminal endpoint is u and
δ−D(u) > 0. The hypothesis in this case implies that there exists an arc
(t, u) ∈ U−HL. Since HL ∈ K∗, we have that HL is absorbant by monochro-
matic paths; hence there exists p = (s,m) ∈ HL and a monochromatic
directed path from (t, u) to p. Now it follows from Lemma 2.2 that u is
different from m and there exists a monochromatic directed path from u to
m. Finally, notice that since (s,m) ∈ HL, we have m ∈ g(HL). So there
exists a monochromatic directed path from u to m with m ∈ g(HL).

Case 2. There is no arc in HL whose terminal endpoint is u and there
exists a monochromatic directed path from u to C(HL).
Clearly in this case we have a monochromatic directed path from u to
g(HL) = C(HL) ∪ D(HL).

(4) The function g′:K∗ → K, where g′ is the restriction of g to K is an
injective function. Let NL, PL ∈ K∗, such that NL 6= PL. Let us suppose,
e.g., that NL −PL 6= ∅. Let h ∈ NL −PL, and u the terminal endpoint of h.
Since u is the terminal endpoint of an arc in NL, we have that u ∈ g(NL).
Now we will prove that u 6∈ g(PL). Since PL is absorbant by monochro-
matic paths and h 6∈ PL, we have that there exists k ∈ PL and an hk-
monochromatic directed path in the inner m-coloration of L(D).
Let v be the terminal endpoint of k; hence v ∈ g(PL) and it follows from
Lemma 2.2 that u is different from v and there exists an uv-monochromatic
directed path in D. Since g(PL) is independent by monochromatic paths
(This follows directly from (3) and Definition 1.3), we have that u 6∈ g(PL).
We conclude u ∈ g(NL)− g(PL) and so g(NL) 6= g(PL). Finally, notice that
it follows from (2) and (4) that:
Card K ≤ Card K∗ ≤ Card K and hence Card K = Card K∗.

Note 2.1. Let D be an m-coloured digraph and L(D) its line digraph;
similarly as in Definition 1.2 we can define the outer m-coloration of L(D)
as follows: If h is arc of D with colour c, then any arc of the form (h, x) in
L(D) also has colour c. However, Theorem 2.1 does not hold if we change
inner m-coloration of L(D) by outer m-coloration of L(D). In Figure 1, we
show a digraph D without monochromatic directed cycles with one kernel
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by monochromatic paths such that the outer m-coloration of its line digraph
(Figure 2) has no kernel by monochromatic paths.
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Note 2.2. Theorem 2.1 does not hold if we drop the hypothesis that D has
no monochromatic directed cycles. In Figure 3, we show a digraph D with
monochromatic directed cycles which has two kernels by monochromatic
paths such that the inner m-coloration of its line digraph (Figure 4) has just
one kernel by monochromatic paths. And in Figure 5, we show a digraph
with monochromatic directed cycles without a kernel by monochromatic
paths and its line digraph has two kernels by monochromatic paths (see
Figure 6).
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