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Abstract

In this paper, the chromaticity of K3-gluings of two wheels is stud-
ied. For each even integer n ≥ 6 and each odd integer 3 ≤ q ≤ [n/2] all
K3-gluings of wheels Wq+2 and Wn−q+2 create an χ-equivalent class.
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Introduction

The graphs which we consider here are finite, undirected, simple and loop-
less. Let G be a graph, V (G) be its vertex set, E(G) be its edge set, χ(G) be
its chromatic number and P (G,λ) be its chromatic polynomial. Two graphs
G and H are said to be chromatically equivalent, or in short χ-equivalent,
written G ∼ H, if P (G,λ) = P (H,λ). A graph G is said to be chromatically

unique, or in short χ-unique, if for any graph H satisfying H ∼ G, we have
H ∼= G, i.e. H is isomorphic to G. A wheel Wn is a graph of order n, n ≥ 4,
obtained by the join of K1 and a cycle Cn−1 of order n−1. Let for a vertex x
of G the symbol N(x) denote a subgraph of G induced by the set of vertices
adjacent to x.

A H-gluing of two graphs G and F is a graph obtained by identifying
an induced subgraph of G isomorphic to H with such a subgraph of F in
the disjoint union of G and F. Koh and Teo [5] gave a survey on several
results on chromaticity of Kr-gluings of graphs for r ≥ 1. One of more
interesting results has been discovered by Koh and Goh [4]. They completely
characterized χ-unique K3-gluings of complete graphs of order ≥ 3 and a K4-
homeomorph.
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In this paper, the χ-equivalent classes for K3-gluings of two wheels are stud-
ied. In computing chromatic polynomials, we make use of Whitney’s reduc-
tion formula given in [8]. The formula is

P (G,λ) = P (G−e, λ) − P (G/e, λ)(1)

or equivalently

P (G−e, λ) = P (G,λ) + P (G/e, λ)(2)

where G−e is the graph obtained from G by deleting an edge e and G/e is
the graph obtained from G by contracting the edge e.

We also make use of the overlaping formula given in [8]. The formula is

P (G,λ) = P (H,λ)P (F, λ)/P (Kp, λ)(3)

where G is a Kp-gluing of two disjoint graphs H and F, for p ≥ 1.

Preliminary Results

We shall use the known results for χ-equivalent graphs presented in
Lemma 1, where IG(F ) denotes the number of induced subgraphs of G
which are isomorphic to F .

Lemma 1 [6]. Let G and H be two χ-equivalent graphs. Then

(i) | V (G) |=| V (H) |;

(ii) | E(G) |=| E(H) |;

(iii) χ(G) = χ(H);

(iv) IG(C3) = IH(C3);

(v) IG(C4) − 2IG(K4) = IH(C4) − 2IH(K4);

(vi) G is connected iff H is connected;

(vii) G is 2-connected iff H is 2-connected.

The following simple immediate observation plays an important role in prov-
ing that graphs with triangles are χ-unique or χ-equivalent.

Lemma 2. Let T be a tree with n vertices. Then there are n − 1 triangles

in the join T + K1.
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Lemma 3. Let T be a tree with n vertices and let v /∈ V (T ). Let H de-

note a graph obtained from T by adding the vertex v and m edges between v
and vertices of T, (m ≤ n). Then the number of triangles of H is ≤ m − 1.

Moreover, the equality holds if and only if the subgraph induced by the ver-

tices adjacent to v is a tree.

Lemma 4. Let F be a unicyclic K3-free graph with n vertices and let v /∈
V (F ). Let H denote a graph obtained from F by adding the vertex v and m
edges between v and vertices of F, (m ≤ n). Then the number of triangles of

H is ≤ m. Moreover, the equality holds if and only if the subgraph induced

by the vertices adjacent to v is connected and it contains the cycle of F .

Lemma 5. Let F be a connected K3-free graph with n vertices and with only

two fundamental cycles, and let v /∈ V (F ). Let H be a graph obtained from

F by adding the vertex v and m ≤ n edges between v and m vertices of F.
Then the number of triangles of H is ≤ m + 1. Moreover, the equality holds

if and only if the subgraph induced by the vertices adjacent to v is connected

and contains two fundamental cycles.

Let us assume that n ≥ 6 is an integer number. For an integer number
q, n

2 ≥ q ≥ 3, the graph W q
n+1 is obtained from Wn+1 by adding exactly

one new edge joining two vertices at distance q in the subgraph Cn of Wn+1.
In other words, W q

n+1 is a K3-gluing of Wn−q+2 and Wq+2 identifying their
central vertices.

Lemma 6. (λ− 2)2 6 | P (W q
n+1, λ). Moreover W q

n+1 is uniquely 3-colourable

if n is even and q is odd , n
2 ≥ q ≥ 3.

Proof. By using Whitney’s reduction formula we have:

P (W q
n+1, λ) = P (Wn+1, λ) −

P (Wn−q+1, λ) · P (Wq+1, λ)

P (K2, λ)
.(4)

Evidently according to the known result for P (Cn, λ) (see [1]), we get that

P (Wn+1, λ) = λ{(λ − 2)n + (−1)n(λ − 2)}

= λ(λ − 1)(λ − 2) · Ps(Wn+1, λ),
(5)

where
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Ps(Wn+1, λ) =



















(λ − 3)
(n−3)/2

∑

i=0
(λ − 2)2i, if n is odd,

n−2
∑

i=0
(−1)i(λ − 2)i, if n is even.

Note that

Ps(Wn+1, 2) =

{

−1, if n is odd ,
1, if n is even,

and

Ps(Wn+1, 3) =

{

0, if n is odd ,
1, if n is even.

From (4) and (5) we get

P (W q
n+1, λ) = λ(λ − 1)(λ − 2) · [Ps(Wn+1, λ)

− (λ − 2) · Ps(Wn−q+1, λ) · Ps(Wq+1, λ)].

Note that (λ− 2) | P (W q
n+1, λ). Let P (W q

n+1, λ) = (λ− 2)R(W q
n+1, λ). Then

R(W q
n+1, 2) = ±2 and P (W q

n+1, λ) is not divisible by (λ − 2)2. Since for
an even n and an odd q we have P (W q

n+1, 3) = 6, then W q
n+1 is uniquely

3-colourable.

Lemma 7 [2]. Let G be a graph containing at least two triangles. If there

is a vertex of a triangle having degree two in G, then (λ − 2)2 | P (G,λ).

Lemma 8. Let G be a graph obtained by K2-gluing of two graphs such that

each of them has a triangle. Then (λ − 2)2 | P (G,λ).

Proof. Directly from (3).

Lemma 9. Let H and F be non-isomorphic χ-unique graphs. Then K1 +
H 6∼ K1 + F.

Proof. Evidently P (G + K1, λ) = λ · P (G,λ − 1) for any graph G.
Let H and F be non-isomorphic χ-unique graphs. Suppose that P (H +
K1, λ) = P (F + K1, λ) then P (H,λ − 1) = P (F, λ − 1) and we get
a contradiction.
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Main Results

We prove that each of χ-equivalent classes for some cases of W q
n+1 consists

of two graphs.

Theorem 1. For each even integer n ≥ 6 and each odd integer 3 ≤ q ≤
[n/2] all K3-gluings of wheels Wq+2 and Wn−q+2 create a χ-equivalent class.

Proof. Let n be even, (n ≥ 6) and let G ∼ W q
n+1. Then P (G,λ) =

P (W q
n+1, λ) and therefore, by Lemmas 1, 6 and 7 any candidate for G has the

following properties: | V (G) |= n+1, | E(G) |= 2n+1, IG(C3) = n+1, G
is a 2-connected unique 3-colourable graph and no vertex of any triangle of
G has degree two in G.

Let V1, V2 and V3 be colour classes of the uniquelly 3-colouring of G and
let | Vi |= ni, i = 1, 2, 3. Evidently n1 + n2 + n3 = n + 1.

Let Gi be the subgraph of G induced by V (G) − Vi, where i = 1, 2, 3.
Evidently, each of Gi, i = 1, 2, 3, is connected (see Theorem 12.16 in [3]).
Therefore

2n − 1 = (n1 + n2 − 1) + (n1 + n3 − 1) + (n2 + n3 − 1)

≤ | E(G3) | + | E(G2) | + | E(G1) |= 2n + 1.
(6)

Without loss of generality, we have two cases:

Case 1. Let G3 and G2 be trees and let G1 be a connected graph with
two fundamental cycles, say C, C ′. Note that | V (G1) |= n2+n3 = n+1−n1

and | E(G1) |= n+2−n1. Consequently, the number m(V1, V (G1)) of edges
from V1 to V (G1) satisfies the following equality

m(V1, V (G1)) = 2n + 1 − (n + 2 − n1) = n + n1 − 1.(7)

Suppose that no vertex of V1 is adjacent to all vertices of any cycle of G1.
Then by Lemma 3 and formula (7)

n+1 = IG(C3) ≤
n1
∑

i=1

(deg(vi)−1) =
n1
∑

i=1

deg(vi)−n1 = n+n1−1−n1 = n−1,

and we get a contradiction. Therefore we can assume that some vertex
v ∈ V1 is adjacent to all vertices of a fundamental cycle of G1, say C, and
since G2 and G3 are trees, then v is unique. Now if there exists no vertex of
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V1 adjacent to all vertices of the cycle C ′ of G1, where C ′ 6= C then similarly,
by Lemmas 3 and 4 we get that

n + 1 = IG(C3) ≤
n1
∑

i=1

(deg(vi) − 1) + 1 = n,(8)

and it leads to a contradiction. Therefore according to the above argument
there is exactly one vertex v′ ∈ V1 which is adjacent to all vertices of C ′.
Suppose that a subgraph of G1 induced by the set of all vertices adjacent
to a vertex of V1 is disconnected. Looking at the tree structure of G2 and
G3 and Lemmas 3-5 we obtain the inequality presented in formula (8), and
it leads to a contradiction.

From the above it follows that

Lemma 10. One of the vertices of V1, say v, is adjacent to all vertices

of a connected subgraph of G1 which contains C, and one of the vertices of

V1, say v′, is adjacent to all vertices of a connected subgraph of G1 which

contains C ′, and each of the other vertices of V1 is adjacent to the vertices

of a subtree of G1.

Let us consider degrees of the vertices of G. Immediately by 2-connectivity
of G and Lemmas 6, 7 and 10 we get that each vertex of V1 has degree at
least 3 in G. Similarly, each 1-degree vertex of G1 has at least two neighbours
in V1. Suppose that a 2-degree vertex x of G1 has degree 2 in G. Then by
Lemma 10 the vertex x does not belong to any cycle of G1 and it is a cut
vertex of G. It leads to a contradiction to 2-connectivity of G. It follows that

Lemma 11. deg(x) ≥ 3 for each x ∈ V (G).

Suppose now that V (N(x)) = V (G1) for some x ∈ V1. Then by Lemma 5
the vertex x belongs to n2 + n3 + 1 triangles of G, and each of n + 1 −
(n2 + n3 + 1) = n1 − 1 other triangles contains a vertex of V1 − {x}. By
formula (7) the number of edges from the set V1 −{x} to V (G1) is equal to
n + n1 − 1 − (n2 + n3) = 2(n1 − 1). So this fact and 2-connectivity of G
imply that deg(y) = 2 for each y ∈ V1 − {x}. Therefore from Lemma 7, the
set V1 consists of exactly one vertex x and G1 has not any vertex of degree
one. Thus deg(x) = n and G is isomorphic to the join of K1 and one of the
three graphs presented in Figure 1.
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Figure 1

If G1 is isomorphic to a graph of the structure (C) or (B), then Lemma 8
implies (λ − 2)2|P (G,λ) and we get a contradiction to Lemma 6.

Therefore G1 is isomorphic to a graph of the structure (A). Note that
each of the three paths from the vertex a to b is odd length, since n is even
and C,C ′ have even length. Since each generalized θ-graph is χ-unique [7],
from Lemma 9 we get G ∼= W q

n+1.

We have to consider the case : V (N(x)) 6= V (G1) for each x ∈ V1.

First suppose that the vertex v ∈ V1 is adjacent to all vertices of C and
C ′, i.e., v = v′. The assumption of the case and Lemma 10 imply V (G1) −
V (C ∪ C ′) 6= Ø. So there exists a vertex u ∈ V (G1) − V (N(v)) such that
degG1

(u) = 1. Thus

n + 1 = IG(C3) ≤
n1
∑

i=1

(deg(vi) − 1) + 2 = n + 1.(9)

Lemma 5 and V (N(v)) 6= V (G1) imply that v belongs to at most n2 + n3

triangles of G, and vertices of V1 − {v} belong to at least n1 triangles.
Moreover, the number of edges from V1−{v} to V (G1) is at least 2(n1−1)+1.
Therefore | V1 |≥ 2.

Lemma 11 implies that the vertex u is adjacent to two different vertices
v1, v2 ∈ V1 − {v}. Let w be a neighbour of u in G1. From Lemmas 10, 11
we have that w is adjacent to v1 and v2. Therefore we get either a cycle in
the subgraph N(w) or that G is a K2-gluing of two graphs with triangles.
The first case contradicts acyclicity of G2 and G3. By Lemma 8 the other
case gives (λ − 2)2|P (G,λ) and it contradicts Lemma 6.

Therefore suppose now that the vertex v ∈ V1 is not adjacent to a vertex
of C ′. Thus v 6= v′. Applying the same arguments as before we get that
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G1 does not have any vertex of degree 1. Hence we can consider only the
following three subcases: G1 is a K2-gluing of two cycles of even order, a
K1-gluing of two cycles of even order, or it consists of two cycles of even
order and exactly one path connecting them.

Since n is even, then for the first case we get that V1−{v, v′} 6= Ø and 2-
connectivity of G, Lemma 10 and acyclicity of G2 and G3 imply N(v1) ∼= K2

for each v1 ∈ V1 − {v, v′} and this gives a contradiction to Lemma 11.
For two other cases Lemma 10 and acyclicity of G2 and G3 imply

| V (N(v1)) ∩ V (N(v2)) |≤ 2, for each pair of different vertices v1, v2 ∈ V1.
Therefore by 2-connectivity of G we get that G is a K2-gluing of two graphs
with triangles. Hence we get a contradiction to the Lemma 6.

Case 2. Let G3 be a tree, and G2, G1 be unicyclic graphs with even
cycles. Note that

| E(G1) |=| V (G1) |= n + 1 − n1,
| E(G2) |=| V (G2) |= n1 + n3 = n + 1 − n2.

The number of edges from V1 to V (G1) is equal to

2n + 1 − (n + 1 − n1) = n + n1.(10)

Similarly, the number of edges from V2 to V (G2) is equal to

2n + 1 − (n + 1 − n2) = n + n2.(11)

Let C1 be the cycle of G1, and C2 be the cycle of G2.
Suppose that there is no vertex in V1 adjacent to all of the vertices of C1.

Then each vertex of V1 is adjacent to a subforest in G1.
By Lemma 3 the number of triangles in G containing a vertex v1

i ∈ V1

is at most d(v1
i ) − 1. So the number of triangles in G is at most

n + 1 = IG(C3) ≤
n1
∑

i=1

(deg(v1
i ) − 1)

=
n1
∑

i=1

deg(v1
i ) − n1 = n + n1 − n1 = n,

(12)

and we get a contradiction.
Therefore there exists at least one vertex v1 ∈ V1 adjacent to all of the

vertices of C1. Suppose that there is another such vertex, i.e., let w1 ∈
V1 − {v1} and let w1 be adjacent to all of the vertices of C1. Assume also
without loss of generality that u1, u2, ..., u2m are consecutive vertices of C1,
where u1, u3, ..., u2m−1 ∈ V2 and u2, u4, ..., u2m ∈ V3. Note that the subgraph



Equivalent Classes for K3-Gluings of Wheels 81

induced by {u1, v
1, u3, w

1} is a cycle in G3. This contradicts the fact that
G3 is a tree. Thus we have proved that there exists exactly one vertex v1 in
V1 adjacent to all vertices in C1. Similarly, there exists exactly one vertex v2

in V2 adjacent to all vertices in C2. Suppose that a subgraph of G1 induced
by all vertices adjacent to a vertex of V1 is disconnected. Hence by Lemmas
3-4 we get the formula (12), and it leads to a contradiction.

Thus we have the following observations.

Lemma 12. One vertex, v1 ∈ V1, is adjacent to all of the vertices of a

connected subgraph of G1 which contains the even cycle. Each other vertex

of V1 is adjacent to the vertices of a subtree of G1.

Similarly, by symmetry, the vertices of V2 must satisfy the respective condi-
tions of the following result.

Lemma 13. One vertex, v2 ∈ V2, is adjacent to all of the vertices of a

connected subgraph of G2 which contains the even cycle. Each other vertex

of V2 is adjacent to the vertices of a subtree of G2.

Lemma 12 and acyclicity of G3 give the following lemma.

Lemma 14. |V (N(v)) ∩ V (N(v′)) ≤ 3 for v, v′ ∈ V1, v 6= v′.

Moreover, Lemma 11 presented in case 1 holds for G.

Subcase 2.1. Suppose that N(v1) = V (G1). Then by Lemma 4 the
vertex v1 belongs to n+1−n1 triangles in G, and each of other n+1− (n+
1 − n1) = n1 triangles contains a vertex of V1 − {v1} 6= Ø. Note that the
number of edges from V1−{v1} to V (G1) is equal to 2n+1−2(n+1−n1) =
2n1 − 1 = 2(n1 − 1) + 1. This and Lemma 11 lead to |V1| = 2. Hence there
exists exactly one vertex in V1 different from v1, say w1, and its degree
equals 3.

Therefore, from Lemma 7 and from the fact that n is even, the graph
G1 consists of C1 and exactly one tree T rooted at a vertex of C1. Moreover,
for each pair x, y of leaves of T we have that distG1

(x, y) = 2 and then T has
only two leaves. Since n is even, T has an even number of vertices (including
root vertex). Therefore T ∼= P2t or T is a K1-gluing of P2t−1 and K2, where
t ≥ 1, and G1 is one of the two graphs presented in Figure 2.

By Lemma 11 each leaf of the rooted tree T is adjacent to w1 and v1.
Lemmas 6, 8 imply that the graph G is not any K2-gluing of two graphs
with triangles in each of them. Therefore G1 is a unicyclic graph with one
leaf and a cycle of length n − 2.
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If two of the vertices which are adjacent to w1 have colour 2, then
{x,w1, y, v1} induces C4 in G3, and we have a contradiction.

Therefore two of the vertices which are adjacent to w1 have colour 3
and then {x,w1, y, v1} induces C4 in G2.

Hence G is K3-gluing of Wn−1 and W5 such that the centers of the wheels
are not overlapped. Note that by Lemma 1(v) the graph G is isomorphic to
W q

n+1 and this is possible only for q = 3.

Subcase 2.2. We can assume that N(v1) 6= V (G1) and by symmetry
N(v2) 6= V (G2). Then by Lemmas 12, 13 each of the graphs G1, G2 is
unicyclic with a vertex of degree one. Evidently by Lemma 11 each leave
in G1 is adjacent to at least two vertices of V1. Let v1, v2 be the vertices
of Lemmas 12 and 13, respectively. Let x be a leave in G1 which is not
adjacent to v1, and let x1 be the neighbour of x in G1.

Let x2 be a neighbour of x1 in G1 such that x2 6= x and deg(x2) ≥ 2.

Lemmas 11, 12 imply that the vertex x has at least two neighbours
in V1. Let us consider N(x1). Since G is not any K2-gluing of two graphs
with triangles and G3 has not any cycle, then Lemmas 6, 7, 11, 12 and 14
imply that N(x1) contains a cycle belonging to G2. Evidently, the cycle is
unique. The same arguments give x1 ∈ V (C1) and therefore G1 has a unique
rooted tree and it is isomorphic to a graph presented in Figure 3. Similarly,
G2 is isomorphic to a graph presented in Figure 3.
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t t
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qC1

Figure 3
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Let a, b ∈ V (N(x1)) ∩ V (C1), {w1, ..., wt} = V1 − {v1} and let x =
x1, x2, ..., xm be the leaves of G1. If neither a nor b is adjacent to a ver-
tex wj , j = 1, ..., t, then G is a K2-gluing of two graphs with triangles, for
K2 induced by {v1, x1} and we get a contradiction. Thus without loss of
generality, we can assume that a is adjacent to w1. Then there exists an al-
ternating sequence passing through all vertices of V1 and all leaves of V (G1)
and having one of the two forms

a,w1, x1, w2, x2, ..., xm, wm, b, v1

or
a,w1, x1, w2, x2, ..., xm, v1.

The first case gives an odd cycle in G2 and we get a contradiction. The other
one gives a K3-gluing of two wheels which does not identify their central
vertices. Since each generalized θ-graph is χ-unique [7], from Lemma 9 we
get that these wheels must be isomorphic to Wq+2 and Wn−q+2, respectively.

The proof is complete.

Since the wheels W6,W8 are not χ-unique graphs [2], [9] the χ-equivalent
classes for other cases of n and q can contain more than two graphs. The
graphs G ' W q

n+1, for n odd or q even are not uniquelly χ(G)-colourable.
Thus, the proof techniques used in this paper cannot be used to characterize
χ-equivalent classes for these graphs.
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