# EQUIVALENT CLASSES FOR $K_3$ -GLUINGS OF WHEELS

### HALINA BIELAK

Institute of Mathematics M. Curie-Skłodowska University e-mail: hbiel@golem.umcs.lublin.pl

#### Abstract

In this paper, the chromaticity of  $K_3$ -gluings of two wheels is studied. For each even integer  $n \ge 6$  and each odd integer  $3 \le q \le \lfloor n/2 \rfloor$  all  $K_3$ -gluings of wheels  $W_{q+2}$  and  $W_{n-q+2}$  create an  $\chi$ -equivalent class.

**Keywords:** chromatically equivalent graphs, chromatic polynomial, chromatically unique graphs, wheels.

1991 Mathematics Subject Classification: 05C15.

#### INTRODUCTION

The graphs which we consider here are finite, undirected, simple and loopless. Let G be a graph, V(G) be its vertex set, E(G) be its edge set,  $\chi(G)$  be its chromatic number and  $P(G, \lambda)$  be its chromatic polynomial. Two graphs G and H are said to be *chromatically equivalent*, or in short  $\chi$ -equivalent, written  $G \sim H$ , if  $P(G, \lambda) = P(H, \lambda)$ . A graph G is said to be *chromatically* unique, or in short  $\chi$ -unique, if for any graph H satisfying  $H \sim G$ , we have  $H \cong G$ , i.e. H is isomorphic to G. A wheel  $W_n$  is a graph of order  $n, n \ge 4$ , obtained by the join of  $K_1$  and a cycle  $C_{n-1}$  of order n-1. Let for a vertex x of G the symbol N(x) denote a subgraph of G induced by the set of vertices adjacent to x.

A *H*-gluing of two graphs *G* and *F* is a graph obtained by identifying an induced subgraph of *G* isomorphic to *H* with such a subgraph of *F* in the disjoint union of *G* and *F*. Koh and Teo [5] gave a survey on several results on chromaticity of  $K_r$ -gluings of graphs for  $r \ge 1$ . One of more interesting results has been discovered by Koh and Goh [4]. They completely characterized  $\chi$ -unique  $K_3$ -gluings of complete graphs of order  $\ge 3$  and a  $K_4$ homeomorph. In this paper, the  $\chi$ -equivalent classes for  $K_3$ -gluings of two wheels are studied. In computing chromatic polynomials, we make use of Whitney's reduction formula given in [8]. The formula is

(1) 
$$P(G,\lambda) = P(G_{-e},\lambda) - P(G/_e,\lambda)$$

or equivalently

(2) 
$$P(G_{-e},\lambda) = P(G,\lambda) + P(G/_e,\lambda)$$

where  $G_{-e}$  is the graph obtained from G by deleting an edge e and  $G/_e$  is the graph obtained from G by contracting the edge e.

We also make use of the overlaping formula given in [8]. The formula is

(3) 
$$P(G,\lambda) = P(H,\lambda)P(F,\lambda)/P(K_p,\lambda)$$

where G is a  $K_p$ -gluing of two disjoint graphs H and F, for  $p \ge 1$ .

## PRELIMINARY RESULTS

We shall use the known results for  $\chi$ -equivalent graphs presented in Lemma 1, where  $I_G(F)$  denotes the number of induced subgraphs of G which are isomorphic to F.

**Lemma 1** [6]. Let G and H be two  $\chi$ -equivalent graphs. Then

- (i) |V(G)| = |V(H)|;
- (ii) |E(G)| = |E(H)|;
- (iii)  $\chi(G) = \chi(H);$
- (iv)  $I_G(C_3) = I_H(C_3);$
- (v)  $I_G(C_4) 2I_G(K_4) = I_H(C_4) 2I_H(K_4);$
- (vi) G is connected iff H is connected;
- (vii) G is 2-connected iff H is 2-connected.

The following simple immediate observation plays an important role in proving that graphs with triangles are  $\chi$ -unique or  $\chi$ -equivalent.

**Lemma 2.** Let T be a tree with n vertices. Then there are n-1 triangles in the join  $T + K_1$ .

**Lemma 3.** Let T be a tree with n vertices and let  $v \notin V(T)$ . Let H denote a graph obtained from T by adding the vertex v and m edges between v and vertices of  $T, (m \leq n)$ . Then the number of triangles of H is  $\leq m - 1$ . Moreover, the equality holds if and only if the subgraph induced by the vertices adjacent to v is a tree.

**Lemma 4.** Let F be a unicyclic  $K_3$ -free graph with n vertices and let  $v \notin V(F)$ . Let H denote a graph obtained from F by adding the vertex v and m edges between v and vertices of F,  $(m \leq n)$ . Then the number of triangles of H is  $\leq m$ . Moreover, the equality holds if and only if the subgraph induced by the vertices adjacent to v is connected and it contains the cycle of F.

**Lemma 5.** Let F be a connected  $K_3$ -free graph with n vertices and with only two fundamental cycles, and let  $v \notin V(F)$ . Let H be a graph obtained from F by adding the vertex v and  $m \leq n$  edges between v and m vertices of F. Then the number of triangles of H is  $\leq m + 1$ . Moreover, the equality holds if and only if the subgraph induced by the vertices adjacent to v is connected and contains two fundamental cycles.

Let us assume that  $n \ge 6$  is an integer number. For an integer number q,  $\frac{n}{2} \ge q \ge 3$ , the graph  $W_{n+1}^q$  is obtained from  $W_{n+1}$  by adding exactly one new edge joining two vertices at distance q in the subgraph  $C_n$  of  $W_{n+1}$ . In other words,  $W_{n+1}^q$  is a  $K_3$ -gluing of  $W_{n-q+2}$  and  $W_{q+2}$  identifying their central vertices.

**Lemma 6.**  $(\lambda - 2)^2 \not\mid P(W_{n+1}^q, \lambda)$ . Moreover  $W_{n+1}^q$  is uniquely 3-colourable if n is even and q is odd,  $\frac{n}{2} \ge q \ge 3$ .

**Proof.** By using Whitney's reduction formula we have:

(4) 
$$P(W_{n+1}^q, \lambda) = P(W_{n+1}, \lambda) - \frac{P(W_{n-q+1}, \lambda) \cdot P(W_{q+1}, \lambda)}{P(K_2, \lambda)}.$$

Evidently according to the known result for  $P(C_n, \lambda)$  (see [1]), we get that

(5) 
$$P(W_{n+1},\lambda) = \lambda\{(\lambda-2)^n + (-1)^n(\lambda-2)\} \\ = \lambda(\lambda-1)(\lambda-2) \cdot P_s(W_{n+1},\lambda),$$

where

$$P_s(W_{n+1}, \lambda) = \begin{cases} (\lambda - 3) \sum_{i=0}^{(n-3)/2} (\lambda - 2)^{2i}, & \text{if } n \text{ is odd,} \\ \sum_{i=0}^{n-2} (-1)^i (\lambda - 2)^i, & \text{if } n \text{ is even.} \end{cases}$$

Note that

$$P_s(W_{n+1}, 2) = \begin{cases} -1, & \text{if } n \text{ is odd }, \\ 1, & \text{if } n \text{ is even,} \end{cases}$$

and

$$P_s(W_{n+1},3) = \begin{cases} 0, & \text{if } n \text{ is odd }, \\ 1, & \text{if } n \text{ is even.} \end{cases}$$

From (4) and (5) we get

$$P(W_{n+1}^q, \lambda) = \lambda(\lambda - 1)(\lambda - 2) \cdot [P_s(W_{n+1}, \lambda) - (\lambda - 2) \cdot P_s(W_{n-q+1}, \lambda) \cdot P_s(W_{q+1}, \lambda)].$$

Note that  $(\lambda - 2) | P(W_{n+1}^q, \lambda)$ . Let  $P(W_{n+1}^q, \lambda) = (\lambda - 2)R(W_{n+1}^q, \lambda)$ . Then  $R(W_{n+1}^q, 2) = \pm 2$  and  $P(W_{n+1}^q, \lambda)$  is not divisible by  $(\lambda - 2)^2$ . Since for an even n and an odd q we have  $P(W_{n+1}^q, 3) = 6$ , then  $W_{n+1}^q$  is uniquely 3-colourable.

**Lemma 7** [2]. Let G be a graph containing at least two triangles. If there is a vertex of a triangle having degree two in G, then  $(\lambda - 2)^2 \mid P(G, \lambda)$ .

**Lemma 8.** Let G be a graph obtained by  $K_2$ -gluing of two graphs such that each of them has a triangle. Then  $(\lambda - 2)^2 | P(G, \lambda)$ .

**Proof.** Directly from (3).

**Lemma 9.** Let H and F be non-isomorphic  $\chi$ -unique graphs. Then  $K_1 + H \not\sim K_1 + F$ .

**Proof.** Evidently  $P(G + K_1, \lambda) = \lambda \cdot P(G, \lambda - 1)$  for any graph G. Let H and F be non-isomorphic  $\chi$ -unique graphs. Suppose that  $P(H + K_1, \lambda) = P(F + K_1, \lambda)$  then  $P(H, \lambda - 1) = P(F, \lambda - 1)$  and we get a contradiction.

#### MAIN RESULTS

We prove that each of  $\chi$ -equivalent classes for some cases of  $W_{n+1}^q$  consists of two graphs.

**Theorem 1.** For each even integer  $n \ge 6$  and each odd integer  $3 \le q \le [n/2]$  all  $K_3$ -gluings of wheels  $W_{q+2}$  and  $W_{n-q+2}$  create a  $\chi$ -equivalent class.

**Proof.** Let n be even,  $(n \ge 6)$  and let  $G \sim W_{n+1}^q$ . Then  $P(G, \lambda) = P(W_{n+1}^q, \lambda)$  and therefore, by Lemmas 1, 6 and 7 any candidate for G has the following properties: |V(G)| = n+1, |E(G)| = 2n+1,  $I_G(C_3) = n+1$ , G is a 2-connected unique 3-colourable graph and no vertex of any triangle of G has degree two in G.

Let  $V_1, V_2$  and  $V_3$  be colour classes of the uniquelly 3-colouring of G and let  $|V_i| = n_i, i = 1, 2, 3$ . Evidently  $n_1 + n_2 + n_3 = n + 1$ .

Let  $G_i$  be the subgraph of G induced by  $V(G) - V_i$ , where i = 1, 2, 3. Evidently, each of  $G_i$ , i = 1, 2, 3, is connected (see Theorem 12.16 in [3]). Therefore

(6) 
$$2n-1 = (n_1+n_2-1) + (n_1+n_3-1) + (n_2+n_3-1) \\ \leq |E(G_3)| + |E(G_2)| + |E(G_1)| = 2n+1.$$

Without loss of generality, we have two cases:

Case 1. Let  $G_3$  and  $G_2$  be trees and let  $G_1$  be a connected graph with two fundamental cycles, say C, C'. Note that  $|V(G_1)| = n_2 + n_3 = n + 1 - n_1$ and  $|E(G_1)| = n + 2 - n_1$ . Consequently, the number  $m(V_1, V(G_1))$  of edges from  $V_1$  to  $V(G_1)$  satisfies the following equality

(7) 
$$m(V_1, V(G_1)) = 2n + 1 - (n + 2 - n_1) = n + n_1 - 1.$$

Suppose that no vertex of  $V_1$  is adjacent to all vertices of any cycle of  $G_1$ . Then by Lemma 3 and formula (7)

$$n+1 = I_G(C_3) \le \sum_{i=1}^{n_1} (\deg(v_i) - 1) = \sum_{i=1}^{n_1} \deg(v_i) - n_1 = n + n_1 - 1 - n_1 = n - 1,$$

and we get a contradiction. Therefore we can assume that some vertex  $v \in V_1$  is adjacent to all vertices of a fundamental cycle of  $G_1$ , say C, and since  $G_2$  and  $G_3$  are trees, then v is unique. Now if there exists no vertex of

 $V_1$  adjacent to all vertices of the cycle C' of  $G_1$ , where  $C' \neq C$  then similarly, by Lemmas 3 and 4 we get that

(8) 
$$n+1 = I_G(C_3) \le \sum_{i=1}^{n_1} (\deg(v_i) - 1) + 1 = n,$$

and it leads to a contradiction. Therefore according to the above argument there is exactly one vertex  $v' \in V_1$  which is adjacent to all vertices of C'. Suppose that a subgraph of  $G_1$  induced by the set of all vertices adjacent to a vertex of  $V_1$  is disconnected. Looking at the tree structure of  $G_2$  and  $G_3$  and Lemmas 3-5 we obtain the inequality presented in formula (8), and it leads to a contradiction.

From the above it follows that

**Lemma 10.** One of the vertices of  $V_1$ , say v, is adjacent to all vertices of a connected subgraph of  $G_1$  which contains C, and one of the vertices of  $V_1$ , say v', is adjacent to all vertices of a connected subgraph of  $G_1$  which contains C', and each of the other vertices of  $V_1$  is adjacent to the vertices of a subtree of  $G_1$ .

Let us consider degrees of the vertices of G. Immediately by 2-connectivity of G and Lemmas 6, 7 and 10 we get that each vertex of  $V_1$  has degree at least 3 in G. Similarly, each 1-degree vertex of  $G_1$  has at least two neighbours in  $V_1$ . Suppose that a 2-degree vertex x of  $G_1$  has degree 2 in G. Then by Lemma 10 the vertex x does not belong to any cycle of  $G_1$  and it is a cut vertex of G. It leads to a contradiction to 2-connectivity of G. It follows that

**Lemma 11.**  $\deg(x) \ge 3$  for each  $x \in V(G)$ .

Suppose now that  $V(N(x)) = V(G_1)$  for some  $x \in V_1$ . Then by Lemma 5 the vertex x belongs to  $n_2 + n_3 + 1$  triangles of G, and each of  $n + 1 - (n_2 + n_3 + 1) = n_1 - 1$  other triangles contains a vertex of  $V_1 - \{x\}$ . By formula (7) the number of edges from the set  $V_1 - \{x\}$  to  $V(G_1)$  is equal to  $n + n_1 - 1 - (n_2 + n_3) = 2(n_1 - 1)$ . So this fact and 2-connectivity of G imply that  $\deg(y) = 2$  for each  $y \in V_1 - \{x\}$ . Therefore from Lemma 7, the set  $V_1$  consists of exactly one vertex x and  $G_1$  has not any vertex of degree one. Thus  $\deg(x) = n$  and G is isomorphic to the join of  $K_1$  and one of the three graphs presented in Figure 1.



Figure 1

If  $G_1$  is isomorphic to a graph of the structure (C) or (B), then Lemma 8 implies  $(\lambda - 2)^2 |P(G, \lambda)|$  and we get a contradiction to Lemma 6.

Therefore  $G_1$  is isomorphic to a graph of the structure (A). Note that each of the three paths from the vertex a to b is odd length, since n is even and C, C' have even length. Since each generalized  $\theta$ -graph is  $\chi$ -unique [7], from Lemma 9 we get  $G \cong W_{n+1}^q$ .

We have to consider the case :  $V(N(x)) \neq V(G_1)$  for each  $x \in V_1$ .

First suppose that the vertex  $v \in V_1$  is adjacent to all vertices of C and C', i.e., v = v'. The assumption of the case and Lemma 10 imply  $V(G_1) - V(C \cup C') \neq \emptyset$ . So there exists a vertex  $u \in V(G_1) - V(N(v))$  such that  $\deg_{G_1}(u) = 1$ . Thus

(9) 
$$n+1 = I_G(C_3) \le \sum_{i=1}^{n_1} (\deg(v_i) - 1) + 2 = n+1.$$

Lemma 5 and  $V(N(v)) \neq V(G_1)$  imply that v belongs to at most  $n_2 + n_3$  triangles of G, and vertices of  $V_1 - \{v\}$  belong to at least  $n_1$  triangles. Moreover, the number of edges from  $V_1 - \{v\}$  to  $V(G_1)$  is at least  $2(n_1-1)+1$ . Therefore  $|V_1| \geq 2$ .

Lemma 11 implies that the vertex u is adjacent to two different vertices  $v_1, v_2 \in V_1 - \{v\}$ . Let w be a neighbour of u in  $G_1$ . From Lemmas 10, 11 we have that w is adjacent to  $v_1$  and  $v_2$ . Therefore we get either a cycle in the subgraph N(w) or that G is a  $K_2$ -gluing of two graphs with triangles. The first case contradicts acyclicity of  $G_2$  and  $G_3$ . By Lemma 8 the other case gives  $(\lambda - 2)^2 | P(G, \lambda)$  and it contradicts Lemma 6.

Therefore suppose now that the vertex  $v \in V_1$  is not adjacent to a vertex of C'. Thus  $v \neq v'$ . Applying the same arguments as before we get that

 $G_1$  does not have any vertex of degree 1. Hence we can consider only the following three subcases:  $G_1$  is a  $K_2$ -gluing of two cycles of even order, a  $K_1$ -gluing of two cycles of even order, or it consists of two cycles of even order and exactly one path connecting them.

Since n is even, then for the first case we get that  $V_1 - \{v, v'\} \neq \emptyset$  and 2connectivity of G, Lemma 10 and acyclicity of  $G_2$  and  $G_3$  imply  $N(v_1) \cong K_2$ for each  $v_1 \in V_1 - \{v, v'\}$  and this gives a contradiction to Lemma 11.

For two other cases Lemma 10 and acyclicity of  $G_2$  and  $G_3$  imply  $|V(N(v_1)) \cap V(N(v_2))| \leq 2$ , for each pair of different vertices  $v_1, v_2 \in V_1$ . Therefore by 2-connectivity of G we get that G is a  $K_2$ -gluing of two graphs with triangles. Hence we get a contradiction to the Lemma 6.

Case 2. Let  $G_3$  be a tree, and  $G_2$ ,  $G_1$  be unicyclic graphs with even cycles. Note that

 $| E(G_1) |=| V(G_1) |= n + 1 - n_1,$  $| E(G_2) |=| V(G_2) |= n_1 + n_3 = n + 1 - n_2.$ 

The number of edges from  $V_1$  to  $V(G_1)$  is equal to

(10) 
$$2n+1-(n+1-n_1) = n+n_1.$$

Similarly, the number of edges from  $V_2$  to  $V(G_2)$  is equal to

(11) 
$$2n+1-(n+1-n_2) = n+n_2.$$

Let  $C^1$  be the cycle of  $G_1$ , and  $C^2$  be the cycle of  $G_2$ .

Suppose that there is no vertex in  $V_1$  adjacent to all of the vertices of  $C^1$ . Then each vertex of  $V_1$  is adjacent to a subforest in  $G_1$ .

By Lemma 3 the number of triangles in G containing a vertex  $v_i^1 \in V_1$ is at most  $d(v_i^1) - 1$ . So the number of triangles in G is at most

(12)  
$$n+1 = I_G(C_3) \le \sum_{i=1}^{n_1} (\deg(v_i^1) - 1)$$
$$= \sum_{i=1}^{n_1} \deg(v_i^1) - n_1 = n + n_1 - n_1 = n$$

and we get a contradiction.

Therefore there exists at least one vertex  $v^1 \in V_1$  adjacent to all of the vertices of  $C^1$ . Suppose that there is another such vertex, i.e., let  $w^1 \in V_1 - \{v^1\}$  and let  $w^1$  be adjacent to all of the vertices of  $C^1$ . Assume also without loss of generality that  $u_1, u_2, ..., u_{2m}$  are consecutive vertices of  $C^1$ , where  $u_1, u_3, ..., u_{2m-1} \in V_2$  and  $u_2, u_4, ..., u_{2m} \in V_3$ . Note that the subgraph

induced by  $\{u_1, v^1, u_3, w^1\}$  is a cycle in  $G_3$ . This contradicts the fact that  $G_3$  is a tree. Thus we have proved that there exists exactly one vertex  $v^1$  in  $V_1$  adjacent to all vertices in  $C^1$ . Similarly, there exists exactly one vertex  $v^2$  in  $V_2$  adjacent to all vertices in  $C^2$ . Suppose that a subgraph of  $G_1$  induced by all vertices adjacent to a vertex of  $V_1$  is disconnected. Hence by Lemmas 3-4 we get the formula (12), and it leads to a contradiction.

Thus we have the following observations.

**Lemma 12.** One vertex,  $v^1 \in V_1$ , is adjacent to all of the vertices of a connected subgraph of  $G_1$  which contains the even cycle. Each other vertex of  $V_1$  is adjacent to the vertices of a subtree of  $G_1$ .

Similarly, by symmetry, the vertices of  $V_2$  must satisfy the respective conditions of the following result.

**Lemma 13.** One vertex,  $v^2 \in V_2$ , is adjacent to all of the vertices of a connected subgraph of  $G_2$  which contains the even cycle. Each other vertex of  $V_2$  is adjacent to the vertices of a subtree of  $G_2$ .

Lemma 12 and acyclicity of  $G_3$  give the following lemma.

**Lemma 14.**  $|V(N(v)) \cap V(N(v')) \leq 3$  for  $v, v' \in V_1, v \neq v'$ .

Moreover, Lemma 11 presented in case 1 holds for G.

Subcase 2.1. Suppose that  $N(v^1) = V(G_1)$ . Then by Lemma 4 the vertex  $v^1$  belongs to  $n+1-n_1$  triangles in G, and each of other  $n+1-(n+1-n_1) = n_1$  triangles contains a vertex of  $V_1 - \{v^1\} \neq \emptyset$ . Note that the number of edges from  $V_1 - \{v^1\}$  to  $V(G_1)$  is equal to  $2n+1-2(n+1-n_1) = 2n_1 - 1 = 2(n_1 - 1) + 1$ . This and Lemma 11 lead to  $|V_1| = 2$ . Hence there exists exactly one vertex in  $V_1$  different from  $v^1$ , say  $w^1$ , and its degree equals 3.

Therefore, from Lemma 7 and from the fact that n is even, the graph  $G_1$  consists of  $C^1$  and exactly one tree T rooted at a vertex of  $C^1$ . Moreover, for each pair x, y of leaves of T we have that  $dist_{G_1}(x, y) = 2$  and then T has only two leaves. Since n is even, T has an even number of vertices (including root vertex). Therefore  $T \cong P_{2t}$  or T is a  $K_1$ -gluing of  $P_{2t-1}$  and  $K_2$ , where  $t \ge 1$ , and  $G_1$  is one of the two graphs presented in Figure 2.

By Lemma 11 each leaf of the rooted tree T is adjacent to  $w^1$  and  $v^1$ . Lemmas 6, 8 imply that the graph G is not any  $K_2$ -gluing of two graphs with triangles in each of them. Therefore  $G_1$  is a unicyclic graph with one leaf and a cycle of length n-2.

H. BIELAK



Figure 2

If two of the vertices which are adjacent to  $w^1$  have colour 2, then  $\{x, w^1, y, v^1\}$  induces  $C_4$  in  $G_3$ , and we have a contradiction.

Therefore two of the vertices which are adjacent to  $w^1$  have colour 3 and then  $\{x, w^1, y, v^1\}$  induces  $C_4$  in  $G_2$ .

Hence G is  $K_3$ -gluing of  $W_{n-1}$  and  $W_5$  such that the centers of the wheels are not overlapped. Note that by Lemma 1(v) the graph G is isomorphic to  $W_{n+1}^q$  and this is possible only for q = 3.

Subcase 2.2. We can assume that  $N(v^1) \neq V(G_1)$  and by symmetry  $N(v^2) \neq V(G_2)$ . Then by Lemmas 12, 13 each of the graphs  $G_1$ ,  $G_2$  is unicyclic with a vertex of degree one. Evidently by Lemma 11 each leave in  $G_1$  is adjacent to at least two vertices of  $V_1$ . Let  $v^1$ ,  $v^2$  be the vertices of Lemmas 12 and 13, respectively. Let x be a leave in  $G_1$  which is not adjacent to  $v^1$ , and let  $x^1$  be the neighbour of x in  $G_1$ .

Let  $x^2$  be a neighbour of  $x^1$  in  $G_1$  such that  $x^2 \neq x$  and  $\deg(x^2) \geq 2$ .

Lemmas 11, 12 imply that the vertex x has at least two neighbours in  $V_1$ . Let us consider  $N(x^1)$ . Since G is not any  $K_2$ -gluing of two graphs with triangles and  $G_3$  has not any cycle, then Lemmas 6, 7, 11, 12 and 14 imply that  $N(x^1)$  contains a cycle belonging to  $G_2$ . Evidently, the cycle is unique. The same arguments give  $x^1 \in V(C^1)$  and therefore  $G_1$  has a unique rooted tree and it is isomorphic to a graph presented in Figure 3. Similarly,  $G_2$  is isomorphic to a graph presented in Figure 3.



Figure 3

Let  $a, b \in V(N(x^1)) \cap V(C^1)$ ,  $\{w_1, ..., w_t\} = V_1 - \{v^1\}$  and let  $x = x_1, x_2, ..., x_m$  be the leaves of  $G_1$ . If neither a nor b is adjacent to a vertex  $w_j$ , j = 1, ..., t, then G is a  $K_2$ -gluing of two graphs with triangles, for  $K_2$  induced by  $\{v^1, x^1\}$  and we get a contradiction. Thus without loss of generality, we can assume that a is adjacent to  $w_1$ . Then there exists an alternating sequence passing through all vertices of  $V_1$  and all leaves of  $V(G_1)$  and having one of the two forms

$$a, w_1, x_1, w_2, x_2, \dots, x_m, w_m, b, v^1$$
  
or

 $a, w_1, x_1, w_2, x_2, \dots, x_m, v^1.$ 

The first case gives an odd cycle in  $G_2$  and we get a contradiction. The other one gives a  $K_3$ -gluing of two wheels which does not identify their central vertices. Since each generalized  $\theta$ -graph is  $\chi$ -unique [7], from Lemma 9 we get that these wheels must be isomorphic to  $W_{q+2}$  and  $W_{n-q+2}$ , respectively.

The proof is complete.

Since the wheels  $W_6, W_8$  are not  $\chi$ -unique graphs [2], [9] the  $\chi$ -equivalent classes for other cases of n and q can contain more than two graphs. The graphs  $G \simeq W_{n+1}^q$ , for n odd or q even are not uniquely  $\chi(G)$ -colourable. Thus, the proof techniques used in this paper cannot be used to characterize  $\chi$ -equivalent classes for these graphs.

#### References

- C.Y. Chao and E.G.Whitehead, Jr., On chromatic equivalence of graphs, in: Y. Alavi and D.R. Lick, eds., Theory and Applications of Graphs, Lecture Notes in Math. 642 (Springer, Berlin, 1978) 121–131.
- [2] C.Y. Chao and E.G. Whitehead, Jr., *Chromatically unique graphs*, Discrete Math. 27 (1979) 171–177.
- [3] F. Harary, Graph Theory (Reading, 1969).
- [4] K.M. Koh and B.H. Goh, Two classes of chromatically unique graphs, Discrete Math. 82 (1990) 13–24.
- [5] K.M. Koh and C.P. Teo, The search for chromatically unique graphs, Graphs and Combinatorics 6 (1990) 259–285.
- [6] K.M. Koh and C.P. Teo, The chromatic uniqueness of certain broken wheels, Discrete Math. 96 (1991) 65–69.
- [7] B. Loerinc, Chromatic uniqueness of the generalized θ-graph, Discrete Math.
  23 (1978) 313–316.

- [8] R.C. Read, An introduction to chromatic polynomials, J. Combin. Theory 4 (1968) 52–71.
- [9] S-J. Xu and N-Z. Li, The chromaticity of wheels, Discrete Math. 51 (1984) 207–212.

Received 18 April 1997 Revised 28 August 1997