# EQUIVALENT CLASSES FOR $\boldsymbol{K}_{3}$-GLUINGS OF WHEELS 

Halina Bielak<br>Institute of Mathematics<br>M. Curie-Sktodowska University<br>e-mail: hbiel@golem.umcs.lublin.pl


#### Abstract

In this paper, the chromaticity of $K_{3}$-gluings of two wheels is studied. For each even integer $n \geq 6$ and each odd integer $3 \leq q \leq[n / 2]$ all $K_{3}$-gluings of wheels $W_{q+2}$ and $W_{n-q+2}$ create an $\chi$-equivalent class.


Keywords: chromatically equivalent graphs, chromatic polynomial, chromatically unique graphs, wheels.
1991 Mathematics Subject Classification: 05C15.

## Introduction

The graphs which we consider here are finite, undirected, simple and loopless. Let $G$ be a graph, $V(G)$ be its vertex set, $E(G)$ be its edge set, $\chi(G)$ be its chromatic number and $P(G, \lambda)$ be its chromatic polynomial. Two graphs $G$ and $H$ are said to be chromatically equivalent, or in short $\chi$-equivalent, written $G \sim H$, if $P(G, \lambda)=P(H, \lambda)$. A graph $G$ is said to be chromatically unique, or in short $\chi$-unique, if for any graph $H$ satisfying $H \sim G$, we have $H \cong G$, i.e. $H$ is isomorphic to $G$. A wheel $W_{n}$ is a graph of order $n, n \geq 4$, obtained by the join of $K_{1}$ and a cycle $C_{n-1}$ of order $n-1$. Let for a vertex $x$ of $G$ the symbol $N(x)$ denote a subgraph of $G$ induced by the set of vertices adjacent to $x$.

A $H$-gluing of two graphs $G$ and $F$ is a graph obtained by identifying an induced subgraph of $G$ isomorphic to $H$ with such a subgraph of $F$ in the disjoint union of $G$ and $F$. Koh and Teo [5] gave a survey on several results on chromaticity of $K_{r}$-gluings of graphs for $r \geq 1$. One of more interesting results has been discovered by Koh and Goh [4]. They completely characterized $\chi$-unique $K_{3}$-gluings of complete graphs of order $\geq 3$ and a $K_{4^{-}}$ homeomorph.

In this paper, the $\chi$-equivalent classes for $K_{3}$-gluings of two wheels are studied. In computing chromatic polynomials, we make use of Whitney's reduction formula given in [8]. The formula is

$$
\begin{equation*}
P(G, \lambda)=P\left(G_{-e}, \lambda\right)-P(G / e, \lambda) \tag{1}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
P\left(G_{-e}, \lambda\right)=P(G, \lambda)+P(G / e, \lambda) \tag{2}
\end{equation*}
$$

where $G_{-e}$ is the graph obtained from $G$ by deleting an edge $e$ and $G / e$ is the graph obtained from $G$ by contracting the edge $e$.

We also make use of the overlaping formula given in [8]. The formula is

$$
\begin{equation*}
P(G, \lambda)=P(H, \lambda) P(F, \lambda) / P\left(K_{p}, \lambda\right) \tag{3}
\end{equation*}
$$

where $G$ is a $K_{p}$-gluing of two disjoint graphs $H$ and $F$, for $p \geq 1$.

## Preliminary Results

We shall use the known results for $\chi$-equivalent graphs presented in Lemma 1, where $I_{G}(F)$ denotes the number of induced subgraphs of $G$ which are isomorphic to $F$.

Lemma 1 [6]. Let $G$ and $H$ be two $\chi$-equivalent graphs. Then
(i) $|V(G)|=|V(H)|$;
(ii) $|E(G)|=|E(H)|$;
(iii) $\chi(G)=\chi(H)$;
(iv) $I_{G}\left(C_{3}\right)=I_{H}\left(C_{3}\right)$;
(v) $I_{G}\left(C_{4}\right)-2 I_{G}\left(K_{4}\right)=I_{H}\left(C_{4}\right)-2 I_{H}\left(K_{4}\right)$;
(vi) $G$ is connected iff $H$ is connected;
(vii) $G$ is 2 -connected iff $H$ is 2-connected.

The following simple immediate observation plays an important role in proving that graphs with triangles are $\chi$-unique or $\chi$-equivalent.

Lemma 2. Let $T$ be a tree with $n$ vertices. Then there are $n-1$ triangles in the join $T+K_{1}$.

Lemma 3. Let $T$ be a tree with $n$ vertices and let $v \notin V(T)$. Let $H$ denote a graph obtained from $T$ by adding the vertex $v$ and $m$ edges between $v$ and vertices of $T,(m \leq n)$. Then the number of triangles of $H$ is $\leq m-1$. Moreover, the equality holds if and only if the subgraph induced by the vertices adjacent to $v$ is a tree.

Lemma 4. Let $F$ be a unicyclic $K_{3}$-free graph with $n$ vertices and let $v \notin$ $V(F)$. Let $H$ denote a graph obtained from $F$ by adding the vertex $v$ and $m$ edges between $v$ and vertices of $F,(m \leq n)$. Then the number of triangles of $H$ is $\leq m$. Moreover, the equality holds if and only if the subgraph induced by the vertices adjacent to $v$ is connected and it contains the cycle of $F$.

Lemma 5. Let $F$ be a connected $K_{3}$-free graph with $n$ vertices and with only two fundamental cycles, and let $v \notin V(F)$. Let $H$ be a graph obtained from $F$ by adding the vertex $v$ and $m \leq n$ edges between $v$ and $m$ vertices of $F$. Then the number of triangles of $H$ is $\leq m+1$. Moreover, the equality holds if and only if the subgraph induced by the vertices adjacent to $v$ is connected and contains two fundamental cycles.

Let us assume that $n \geq 6$ is an integer number. For an integer number $q, \frac{n}{2} \geq q \geq 3$, the graph $W_{n+1}^{q}$ is obtained from $W_{n+1}$ by adding exactly one new edge joining two vertices at distance $q$ in the subgraph $C_{n}$ of $W_{n+1}$. In other words, $W_{n+1}^{q}$ is a $K_{3}$-gluing of $W_{n-q+2}$ and $W_{q+2}$ identifying their central vertices.

Lemma 6. $(\lambda-2)^{2} \nmid P\left(W_{n+1}^{q}, \lambda\right)$. Moreover $W_{n+1}^{q}$ is uniquely 3-colourable if $n$ is even and $q$ is odd, $\frac{n}{2} \geq q \geq 3$.

Proof. By using Whitney's reduction formula we have:

$$
\begin{equation*}
P\left(W_{n+1}^{q}, \lambda\right)=P\left(W_{n+1}, \lambda\right)-\frac{P\left(W_{n-q+1}, \lambda\right) \cdot P\left(W_{q+1}, \lambda\right)}{P\left(K_{2}, \lambda\right)} . \tag{4}
\end{equation*}
$$

Evidently according to the known result for $P\left(C_{n}, \lambda\right)$ (see [1]), we get that

$$
\begin{align*}
P\left(W_{n+1}, \lambda\right) & =\lambda\left\{(\lambda-2)^{n}+(-1)^{n}(\lambda-2)\right\}  \tag{5}\\
& =\lambda(\lambda-1)(\lambda-2) \cdot P_{s}\left(W_{n+1}, \lambda\right),
\end{align*}
$$

where

$$
P_{s}\left(W_{n+1}, \lambda\right)= \begin{cases}(\lambda-3) \sum_{i=0}^{(n-3) / 2}(\lambda-2)^{2 i}, & \text { if } n \text { is odd } \\ \sum_{i=0}^{n-2}(-1)^{i}(\lambda-2)^{i}, & \text { if } n \text { is even }\end{cases}
$$

Note that

$$
P_{s}\left(W_{n+1}, 2\right)= \begin{cases}-1, & \text { if } n \text { is odd } \\ 1, & \text { if } n \text { is even }\end{cases}
$$

and

$$
P_{s}\left(W_{n+1}, 3\right)= \begin{cases}0, & \text { if } n \text { is odd } \\ 1, & \text { if } n \text { is even }\end{cases}
$$

From (4) and (5) we get

$$
\begin{aligned}
P\left(W_{n+1}^{q}, \lambda\right) & =\lambda(\lambda-1)(\lambda-2) \cdot\left[P_{s}\left(W_{n+1}, \lambda\right)\right. \\
& \left.-(\lambda-2) \cdot P_{s}\left(W_{n-q+1}, \lambda\right) \cdot P_{s}\left(W_{q+1}, \lambda\right)\right]
\end{aligned}
$$

Note that $(\lambda-2) \mid P\left(W_{n+1}^{q}, \lambda\right)$. Let $P\left(W_{n+1}^{q}, \lambda\right)=(\lambda-2) R\left(W_{n+1}^{q}, \lambda\right)$. Then $R\left(W_{n+1}^{q}, 2\right)= \pm 2$ and $P\left(W_{n+1}^{q}, \lambda\right)$ is not divisible by $(\lambda-2)^{2}$. Since for an even $n$ and an odd $q$ we have $P\left(W_{n+1}^{q}, 3\right)=6$, then $W_{n+1}^{q}$ is uniquely 3 -colourable.

Lemma 7 [2]. Let $G$ be a graph containing at least two triangles. If there is a vertex of a triangle having degree two in $G$, then $(\lambda-2)^{2} \mid P(G, \lambda)$.

Lemma 8. Let $G$ be a graph obtained by $K_{2}$-gluing of two graphs such that each of them has a triangle. Then $(\lambda-2)^{2} \mid P(G, \lambda)$.

Proof. Directly from (3).

Lemma 9. Let $H$ and $F$ be non-isomorphic $\chi$-unique graphs. Then $K_{1}+$ $H \nsim K_{1}+F$.

Proof. Evidently $P\left(G+K_{1}, \lambda\right)=\lambda \cdot P(G, \lambda-1)$ for any graph $G$. Let $H$ and $F$ be non-isomorphic $\chi$-unique graphs. Suppose that $P(H+$ $\left.K_{1}, \lambda\right)=P\left(F+K_{1}, \lambda\right)$ then $P(H, \lambda-1)=P(F, \lambda-1)$ and we get a contradiction.

## Main Results

We prove that each of $\chi$-equivalent classes for some cases of $W_{n+1}^{q}$ consists of two graphs.

Theorem 1. For each even integer $n \geq 6$ and each odd integer $3 \leq q \leq$ [ $n / 2$ ] all $K_{3}$-gluings of wheels $W_{q+2}$ and $W_{n-q+2}$ create a $\chi$-equivalent class.

Proof. Let $n$ be even, $(n \geq 6)$ and let $G \sim W_{n+1}^{q}$. Then $P(G, \lambda)=$ $P\left(W_{n+1}^{q}, \lambda\right)$ and therefore, by Lemmas 1,6 and 7 any candidate for $G$ has the following properties: $|V(G)|=n+1,|E(G)|=2 n+1, I_{G}\left(C_{3}\right)=n+1, G$ is a 2 -connected unique 3 -colourable graph and no vertex of any triangle of $G$ has degree two in $G$.

Let $V_{1}, V_{2}$ and $V_{3}$ be colour classes of the uniquelly 3-colouring of $G$ and let $\left|V_{i}\right|=n_{i}, i=1,2,3$. Evidently $n_{1}+n_{2}+n_{3}=n+1$.

Let $G_{i}$ be the subgraph of $G$ induced by $V(G)-V_{i}$, where $i=1,2,3$. Evidently, each of $G_{i}, i=1,2,3$, is connected (see Theorem 12.16 in [3]). Therefore

$$
\begin{align*}
2 n-1 & =\left(n_{1}+n_{2}-1\right)+\left(n_{1}+n_{3}-1\right)+\left(n_{2}+n_{3}-1\right) \\
& \leq\left|E\left(G_{3}\right)\right|+\left|E\left(G_{2}\right)\right|+\left|E\left(G_{1}\right)\right|=2 n+1 \tag{6}
\end{align*}
$$

Without loss of generality, we have two cases:
Case 1. Let $G_{3}$ and $G_{2}$ be trees and let $G_{1}$ be a connected graph with two fundamental cycles, say $C, C^{\prime}$. Note that $\left|V\left(G_{1}\right)\right|=n_{2}+n_{3}=n+1-n_{1}$ and $\left|E\left(G_{1}\right)\right|=n+2-n_{1}$. Consequently, the number $m\left(V_{1}, V\left(G_{1}\right)\right)$ of edges from $V_{1}$ to $V\left(G_{1}\right)$ satisfies the following equality

$$
\begin{equation*}
m\left(V_{1}, V\left(G_{1}\right)\right)=2 n+1-\left(n+2-n_{1}\right)=n+n_{1}-1 \tag{7}
\end{equation*}
$$

Suppose that no vertex of $V_{1}$ is adjacent to all vertices of any cycle of $G_{1}$. Then by Lemma 3 and formula (7)
$n+1=I_{G}\left(C_{3}\right) \leq \sum_{i=1}^{n_{1}}\left(\operatorname{deg}\left(v_{i}\right)-1\right)=\sum_{i=1}^{n_{1}} \operatorname{deg}\left(v_{i}\right)-n_{1}=n+n_{1}-1-n_{1}=n-1$,
and we get a contradiction. Therefore we can assume that some vertex $v \in V_{1}$ is adjacent to all vertices of a fundamental cycle of $G_{1}$, say $C$, and since $G_{2}$ and $G_{3}$ are trees, then $v$ is unique. Now if there exists no vertex of
$V_{1}$ adjacent to all vertices of the cycle $C^{\prime}$ of $G_{1}$, where $C^{\prime} \neq C$ then similarly, by Lemmas 3 and 4 we get that

$$
\begin{equation*}
n+1=I_{G}\left(C_{3}\right) \leq \sum_{i=1}^{n_{1}}\left(\operatorname{deg}\left(v_{i}\right)-1\right)+1=n \tag{8}
\end{equation*}
$$

and it leads to a contradiction. Therefore according to the above argument there is exactly one vertex $v^{\prime} \in V_{1}$ which is adjacent to all vertices of $C^{\prime}$. Suppose that a subgraph of $G_{1}$ induced by the set of all vertices adjacent to a vertex of $V_{1}$ is disconnected. Looking at the tree structure of $G_{2}$ and $G_{3}$ and Lemmas 3-5 we obtain the inequality presented in formula (8), and it leads to a contradiction.

From the above it follows that

Lemma 10. One of the vertices of $V_{1}$, say $v$, is adjacent to all vertices of a connected subgraph of $G_{1}$ which contains $C$, and one of the vertices of $V_{1}$, say $v^{\prime}$, is adjacent to all vertices of a connected subgraph of $G_{1}$ which contains $C^{\prime}$, and each of the other vertices of $V_{1}$ is adjacent to the vertices of a subtree of $G_{1}$.

Let us consider degrees of the vertices of $G$. Immediately by 2 -connectivity of $G$ and Lemmas 6,7 and 10 we get that each vertex of $V_{1}$ has degree at least 3 in $G$. Similarly, each 1-degree vertex of $G_{1}$ has at least two neighbours in $V_{1}$. Suppose that a 2-degree vertex $x$ of $G_{1}$ has degree 2 in $G$. Then by Lemma 10 the vertex $x$ does not belong to any cycle of $G_{1}$ and it is a cut vertex of $G$. It leads to a contradiction to 2-connectivity of $G$. It follows that

Lemma 11. $\operatorname{deg}(x) \geq 3$ for each $x \in V(G)$.

Suppose now that $V(N(x))=V\left(G_{1}\right)$ for some $x \in V_{1}$. Then by Lemma 5 the vertex $x$ belongs to $n_{2}+n_{3}+1$ triangles of $G$, and each of $n+1-$ $\left(n_{2}+n_{3}+1\right)=n_{1}-1$ other triangles contains a vertex of $V_{1}-\{x\}$. By formula (7) the number of edges from the set $V_{1}-\{x\}$ to $V\left(G_{1}\right)$ is equal to $n+n_{1}-1-\left(n_{2}+n_{3}\right)=2\left(n_{1}-1\right)$. So this fact and 2-connectivity of $G$ imply that $\operatorname{deg}(y)=2$ for each $y \in V_{1}-\{x\}$. Therefore from Lemma 7, the set $V_{1}$ consists of exactly one vertex $x$ and $G_{1}$ has not any vertex of degree one. Thus $\operatorname{deg}(x)=n$ and $G$ is isomorphic to the join of $K_{1}$ and one of the three graphs presented in Figure 1.


Figure 1
If $G_{1}$ is isomorphic to a graph of the structure $(C)$ or $(B)$, then Lemma 8 implies $(\lambda-2)^{2} \mid P(G, \lambda)$ and we get a contradiction to Lemma 6.

Therefore $G_{1}$ is isomorphic to a graph of the structure $(A)$. Note that each of the three paths from the vertex $a$ to $b$ is odd length, since $n$ is even and $C, C^{\prime}$ have even length. Since each generalized $\theta$-graph is $\chi$-unique [7], from Lemma 9 we get $G \cong W_{n+1}^{q}$.

We have to consider the case : $V(N(x)) \neq V\left(G_{1}\right)$ for each $x \in V_{1}$.
First suppose that the vertex $v \in V_{1}$ is adjacent to all vertices of $C$ and $C^{\prime}$, i.e., $v=v^{\prime}$. The assumption of the case and Lemma 10 imply $V\left(G_{1}\right)-$ $V\left(C \cup C^{\prime}\right) \neq \emptyset$. So there exists a vertex $u \in V\left(G_{1}\right)-V(N(v))$ such that $\operatorname{deg}_{G_{1}}(u)=1$. Thus

$$
\begin{equation*}
n+1=I_{G}\left(C_{3}\right) \leq \sum_{i=1}^{n_{1}}\left(\operatorname{deg}\left(v_{i}\right)-1\right)+2=n+1 . \tag{9}
\end{equation*}
$$

Lemma 5 and $V(N(v)) \neq V\left(G_{1}\right)$ imply that $v$ belongs to at most $n_{2}+n_{3}$ triangles of $G$, and vertices of $V_{1}-\{v\}$ belong to at least $n_{1}$ triangles. Moreover, the number of edges from $V_{1}-\{v\}$ to $V\left(G_{1}\right)$ is at least $2\left(n_{1}-1\right)+1$. Therefore $\left|V_{1}\right| \geq 2$.

Lemma 11 implies that the vertex $u$ is adjacent to two different vertices $v_{1}, v_{2} \in V_{1}-\{v\}$. Let $w$ be a neighbour of $u$ in $G_{1}$. From Lemmas 10, 11 we have that $w$ is adjacent to $v_{1}$ and $v_{2}$. Therefore we get either a cycle in the subgraph $N(w)$ or that $G$ is a $K_{2}$-gluing of two graphs with triangles. The first case contradicts acyclicity of $G_{2}$ and $G_{3}$. By Lemma 8 the other case gives $(\lambda-2)^{2} \mid P(G, \lambda)$ and it contradicts Lemma 6.

Therefore suppose now that the vertex $v \in V_{1}$ is not adjacent to a vertex of $C^{\prime}$. Thus $v \neq v^{\prime}$. Applying the same arguments as before we get that
$G_{1}$ does not have any vertex of degree 1. Hence we can consider only the following three subcases: $G_{1}$ is a $K_{2}$-gluing of two cycles of even order, a $K_{1}$-gluing of two cycles of even order, or it consists of two cycles of even order and exactly one path connecting them.

Since $n$ is even, then for the first case we get that $V_{1}-\left\{v, v^{\prime}\right\} \neq \varnothing$ and 2connectivity of $G$, Lemma 10 and acyclicity of $G_{2}$ and $G_{3}$ imply $N\left(v_{1}\right) \cong K_{2}$ for each $v_{1} \in V_{1}-\left\{v, v^{\prime}\right\}$ and this gives a contradiction to Lemma 11.

For two other cases Lemma 10 and acyclicity of $G_{2}$ and $G_{3}$ imply $\left|V\left(N\left(v_{1}\right)\right) \cap V\left(N\left(v_{2}\right)\right)\right| \leq 2$, for each pair of different vertices $v_{1}, v_{2} \in V_{1}$. Therefore by 2 -connectivity of $G$ we get that $G$ is a $K_{2}$-gluing of two graphs with triangles. Hence we get a contradiction to the Lemma 6.

Case 2. Let $G_{3}$ be a tree, and $G_{2}, G_{1}$ be unicyclic graphs with even cycles. Note that
$\left|E\left(G_{1}\right)\right|=\left|V\left(G_{1}\right)\right|=n+1-n_{1}$,
$\left|E\left(G_{2}\right)\right|=\left|V\left(G_{2}\right)\right|=n_{1}+n_{3}=n+1-n_{2}$.
The number of edges from $V_{1}$ to $V\left(G_{1}\right)$ is equal to

$$
\begin{equation*}
2 n+1-\left(n+1-n_{1}\right)=n+n_{1} \tag{10}
\end{equation*}
$$

Similarly, the number of edges from $V_{2}$ to $V\left(G_{2}\right)$ is equal to

$$
\begin{equation*}
2 n+1-\left(n+1-n_{2}\right)=n+n_{2} \tag{11}
\end{equation*}
$$

Let $C^{1}$ be the cycle of $G_{1}$, and $C^{2}$ be the cycle of $G_{2}$.
Suppose that there is no vertex in $V_{1}$ adjacent to all of the vertices of $C^{1}$. Then each vertex of $V_{1}$ is adjacent to a subforest in $G_{1}$.

By Lemma 3 the number of triangles in $G$ containing a vertex $v_{i}^{1} \in V_{1}$ is at most $d\left(v_{i}^{1}\right)-1$. So the number of triangles in $G$ is at most

$$
\begin{align*}
n+1 & =I_{G}\left(C_{3}\right) \leq \sum_{i=1}^{n_{1}}\left(\operatorname{deg}\left(v_{i}^{1}\right)-1\right)  \tag{12}\\
& =\sum_{i=1}^{n_{1}} \operatorname{deg}\left(v_{i}^{1}\right)-n_{1}=n+n_{1}-n_{1}=n
\end{align*}
$$

and we get a contradiction.
Therefore there exists at least one vertex $v^{1} \in V_{1}$ adjacent to all of the vertices of $C^{1}$. Suppose that there is another such vertex, i.e., let $w^{1} \in$ $V_{1}-\left\{v^{1}\right\}$ and let $w^{1}$ be adjacent to all of the vertices of $C^{1}$. Assume also without loss of generality that $u_{1}, u_{2}, \ldots, u_{2 m}$ are consecutive vertices of $C^{1}$, where $u_{1}, u_{3}, \ldots, u_{2 m-1} \in V_{2}$ and $u_{2}, u_{4}, \ldots, u_{2 m} \in V_{3}$. Note that the subgraph
induced by $\left\{u_{1}, v^{1}, u_{3}, w^{1}\right\}$ is a cycle in $G_{3}$. This contradicts the fact that $G_{3}$ is a tree. Thus we have proved that there exists exactly one vertex $v^{1}$ in $V_{1}$ adjacent to all vertices in $C^{1}$. Similarly, there exists exactly one vertex $v^{2}$ in $V_{2}$ adjacent to all vertices in $C^{2}$. Suppose that a subgraph of $G_{1}$ induced by all vertices adjacent to a vertex of $V_{1}$ is disconnected. Hence by Lemmas $3-4$ we get the formula (12), and it leads to a contradiction.

Thus we have the following observations.
Lemma 12. One vertex, $v^{1} \in V_{1}$, is adjacent to all of the vertices of a connected subgraph of $G_{1}$ which contains the even cycle. Each other vertex of $V_{1}$ is adjacent to the vertices of a subtree of $G_{1}$.

Similarly, by symmetry, the vertices of $V_{2}$ must satisfy the respective conditions of the following result.

Lemma 13. One vertex, $v^{2} \in V_{2}$, is adjacent to all of the vertices of a connected subgraph of $G_{2}$ which contains the even cycle. Each other vertex of $V_{2}$ is adjacent to the vertices of a subtree of $G_{2}$.

Lemma 12 and acyclicity of $G_{3}$ give the following lemma.
Lemma 14. $\mid V(N(v)) \cap V\left(N\left(v^{\prime}\right)\right) \leq 3$ for $v, v^{\prime} \in V_{1}, v \neq v^{\prime}$.
Moreover, Lemma 11 presented in case 1 holds for $G$.
Subcase 2.1. Suppose that $N\left(v^{1}\right)=V\left(G_{1}\right)$. Then by Lemma 4 the vertex $v^{1}$ belongs to $n+1-n_{1}$ triangles in $G$, and each of other $n+1-(n+$ $\left.1-n_{1}\right)=n_{1}$ triangles contains a vertex of $V_{1}-\left\{v^{1}\right\} \neq \emptyset$. Note that the number of edges from $V_{1}-\left\{v^{1}\right\}$ to $V\left(G_{1}\right)$ is equal to $2 n+1-2\left(n+1-n_{1}\right)=$ $2 n_{1}-1=2\left(n_{1}-1\right)+1$. This and Lemma 11 lead to $\left|V_{1}\right|=2$. Hence there exists exactly one vertex in $V_{1}$ different from $v^{1}$, say $w^{1}$, and its degree equals 3 .

Therefore, from Lemma 7 and from the fact that $n$ is even, the graph $G_{1}$ consists of $C^{1}$ and exactly one tree $T$ rooted at a vertex of $C^{1}$. Moreover, for each pair $x, y$ of leaves of $T$ we have that $\operatorname{dist}_{G_{1}}(x, y)=2$ and then $T$ has only two leaves. Since $n$ is even, $T$ has an even number of vertices (including root vertex). Therefore $T \cong P_{2 t}$ or $T$ is a $K_{1}$-gluing of $P_{2 t-1}$ and $K_{2}$, where $t \geq 1$, and $G_{1}$ is one of the two graphs presented in Figure 2.

By Lemma 11 each leaf of the rooted tree $T$ is adjacent to $w^{1}$ and $v^{1}$. Lemmas 6,8 imply that the graph $G$ is not any $K_{2}$-gluing of two graphs with triangles in each of them. Therefore $G_{1}$ is a unicyclic graph with one leaf and a cycle of length $n-2$.


Figure 2

If two of the vertices which are adjacent to $w^{1}$ have colour 2 , then $\left\{x, w^{1}, y, v^{1}\right\}$ induces $C_{4}$ in $G_{3}$, and we have a contradiction.

Therefore two of the vertices which are adjacent to $w^{1}$ have colour 3 and then $\left\{x, w^{1}, y, v^{1}\right\}$ induces $C_{4}$ in $G_{2}$.

Hence $G$ is $K_{3}$-gluing of $W_{n-1}$ and $W_{5}$ such that the centers of the wheels are not overlapped. Note that by Lemma $1(\mathrm{v})$ the graph $G$ is isomorphic to $W_{n+1}^{q}$ and this is possible only for $q=3$.

Subcase 2.2. We can assume that $N\left(v^{1}\right) \neq V\left(G_{1}\right)$ and by symmetry $N\left(v^{2}\right) \neq V\left(G_{2}\right)$. Then by Lemmas 12,13 each of the graphs $G_{1}, G_{2}$ is unicyclic with a vertex of degree one. Evidently by Lemma 11 each leave in $G_{1}$ is adjacent to at least two vertices of $V_{1}$. Let $v^{1}, v^{2}$ be the vertices of Lemmas 12 and 13 , respectively. Let x be a leave in $G_{1}$ which is not adjacent to $v^{1}$, and let $x^{1}$ be the neighbour of $x$ in $G_{1}$.

Let $x^{2}$ be a neighbour of $x^{1}$ in $G_{1}$ such that $x^{2} \neq x$ and $\operatorname{deg}\left(x^{2}\right) \geq 2$.
Lemmas 11, 12 imply that the vertex $x$ has at least two neighbours in $V_{1}$. Let us consider $N\left(x^{1}\right)$. Since $G$ is not any $K_{2}$-gluing of two graphs with triangles and $G_{3}$ has not any cycle, then Lemmas 6, 7, 11, 12 and 14 imply that $N\left(x^{1}\right)$ contains a cycle belonging to $G_{2}$. Evidently, the cycle is unique. The same arguments give $x^{1} \in V\left(C^{1}\right)$ and therefore $G_{1}$ has a unique rooted tree and it is isomorphic to a graph presented in Figure 3. Similarly, $G_{2}$ is isomorphic to a graph presented in Figure 3.


Figure 3

Let $a, b \in V\left(N\left(x^{1}\right)\right) \cap V\left(C^{1}\right), \quad\left\{w_{1}, \ldots, w_{t}\right\}=V_{1}-\left\{v^{1}\right\}$ and let $x=$ $x_{1}, x_{2}, \ldots, x_{m}$ be the leaves of $G_{1}$. If neither $a$ nor $b$ is adjacent to a vertex $w_{j}, j=1, \ldots, t$, then $G$ is a $K_{2}$-gluing of two graphs with triangles, for $K_{2}$ induced by $\left\{v^{1}, x^{1}\right\}$ and we get a contradiction. Thus without loss of generality, we can assume that $a$ is adjacent to $w_{1}$. Then there exists an alternating sequence passing through all vertices of $V_{1}$ and all leaves of $V\left(G_{1}\right)$ and having one of the two forms
$a, w_{1}, x_{1}, w_{2}, x_{2}, \ldots, x_{m}, w_{m}, b, v^{1}$
or
$a, w_{1}, x_{1}, w_{2}, x_{2}, \ldots, x_{m}, v^{1}$.
The first case gives an odd cycle in $G_{2}$ and we get a contradiction. The other one gives a $K_{3}$-gluing of two wheels which does not identify their central vertices. Since each generalized $\theta$-graph is $\chi$-unique [7], from Lemma 9 we get that these wheels must be isomorphic to $W_{q+2}$ and $W_{n-q+2}$, respectively. The proof is complete.

Since the wheels $W_{6}, W_{8}$ are not $\chi$-unique graphs [2], [9] the $\chi$-equivalent classes for other cases of $n$ and $q$ can contain more than two graphs. The graphs $G \simeq W_{n+1}^{q}$, for $n$ odd or $q$ even are not uniquelly $\chi(G)$-colourable. Thus, the proof techniques used in this paper cannot be used to characterize $\chi$-equivalent classes for these graphs.

## References

[1] C.Y. Chao and E.G.Whitehead, Jr., On chromatic equivalence of graphs, in: Y. Alavi and D.R. Lick, eds., Theory and Applications of Graphs, Lecture Notes in Math. 642 (Springer, Berlin, 1978) 121-131.
[2] C.Y. Chao and E.G. Whitehead, Jr., Chromatically unique graphs, Discrete Math. 27 (1979) 171-177.
[3] F. Harary, Graph Theory (Reading, 1969).
[4] K.M. Koh and B.H. Goh, Two classes of chromatically unique graphs, Discrete Math. 82 (1990) 13-24.
[5] K.M. Koh and C.P. Teo, The search for chromatically unique graphs, Graphs and Combinatorics 6 (1990) 259-285.
[6] K.M. Koh and C.P. Teo, The chromatic uniqueness of certain broken wheels, Discrete Math. 96 (1991) 65-69.
[7] B. Loerinc, Chromatic uniqueness of the generalized $\theta$-graph, Discrete Math. 23 (1978) 313-316.
[8] R.C. Read, An introduction to chromatic polynomials, J. Combin. Theory 4 (1968) 52-71.
[9] S-J. Xu and N-Z. Li, The chromaticity of wheels, Discrete Math. 51 (1984) 207-212.

Received 18 April 1997 Revised 28 August 1997

