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Abstract

We are interested in dominating sets (of vertices) with the addi-
tional property that the vertices in the dominating set can be paired
or matched via existing edges in the graph. This could model the sit-
uation of guards or police where each has a partner or backup. This
paper will focus on those graphs in which the number of matched pairs
of a minimum dominating set of this type equals the size of some max-
imal matching in the graph. In particular, we characterize the leafless
graphs of girth seven or more of this type.
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1. Introduction

A dominating set, say S, of vertices in a graph G, is a set of vertices such
that every vertex of G is either in S or adjacent to at least one member
of S. A paired-dominating set, introduced by T. Haynes and P. Slater in [1],
is a dominating set whose induced subgraph contains at least one perfect
matching. As these authors suggest, this could model the situation in which
the dominating set is a set of guards and each guard is assigned another
adjacent one (they are designated as backups for each other). Our approach
to the problem was motivated by a different application. We wish to find a
set, say M , of independent edges whose end vertices serve as a dominating
set in the graph. These edges could then be the set of “beats” that |M |
police could patrol. Although the set of police do not form a dominating
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set, we are trading constant surveillance for a saving of half the number of
guards, perhaps not an unrealistic approach in the current economic climate.

As pointed out in [1], the size, denoted γp, of a minimum paired-
dominating set is always bounded above by twice the size of any maximal
matching (since the end vertices of a maximal matching form a paired-
dominating set). In this paper we shall focus on those graphs which have
a maximal matching whose end vertices actually form a minimum paired-
dominating set (we shall use the term a γp-set, for brevity). Furthermore,
we shall restrict our attention to connected graphs with no vertices of degree
one. We will henceforth refer to vertices of degree one as leaves. Let G de-
note the leafless graphs of this type which have girth at least seven. In this
situation where there are no cycles of length six or smaller, we completely
characterize these graphs showing they must belong to an infinite family
based on the nine cycle.

2. Preliminary Results

Let us consider a graph G in G. That is, G has some maximal matching,
say M , such that V (M) forms a γp-set.

Lemma 1. Let G be a graph in G and let M be a maximal matching such

that V (M) is a γp-set in G. Then no end vertex of an edge in M can be

adjacent to an end vertex of another edge in M .

Proof. Assume not. That is, let G and M satisfy the hypothesis but as-
sume there are two edges, pq and rs say, in M such that q is adjacent to r.
Since G is leafless and has girth at least six, p must have a neighbour, say
v, which is not on the 4-path pqrs. Now v has a neighbour, say u, which
is also not on the 4-path pqrs due to the girth restriction and the leafless
situation. Since M is a maximal matching either u or v must be incident
with some edge in M . Hence, any neighbour of p, other than q, is adjacent
to a vertex in V (M) besides p. Similarly, any neighbour of s other than r

is adjacent to a vertex in V (M) besides s. Thus we could certainly inter-
change the two pairs represented by the edges pq and rs for the single pair
q and r and have a paired-dominating set that is smaller than 2|M | which is
a contradiction.

Observe that the girth restriction in the lemma is sharp as illustrated by C5

(γp = 4). The leafless property is also essential as shown by the graph in
Figure 1 where {a, b, c, d} is a γp-set.
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Figure 1. An example showing the necessity of the leafless property in Lemma 1

We now proceed to show the importance of 9-cycles in these graphs.

Lemma 2. Let G be a graph in G and let M be a maximal matching such

that V (M) is a γp-set. If there is an 8-path, say abcdefgh, in which ab, de,

and gh belong to M , then that 8-path must be part of a 9-cycle.

Proof. Assume not. That is, let G be a graph and M be a maximal
matching satisfying the hypothesis of the lemma, and let abcdefgh be an 8-
path where ab, de, and gh belong to M , but a and h do not share a common
neighbour. Observe that since G is leafless and has girth at least seven
(hence no 6-cycles), and since a and h do not share a common neighbour,
then no pair of a, d, e, and h share a common neighbour. Now consider any
vertex, say v, which is a neighbour of one of a, d, e, or h. Since v is not
a leaf, it has another neighbour which is an end vertex of some edge in M

and is not one of a, d, e, or h. This implies that we could interchange the
three edges ab, de, and gh with the two edges bc and fg and obtain a paired-
dominating set smaller than 2|M |. This is a contradiction. Therefore, a and
h must share a neighbour, implying that the 8-path is part of a 9-cycle.

Corollary 1. If G belongs to G, then the girth of G is at most nine.

In fact, every edge of a graph in G lies on a cycle of length nine.

Lemma 3. If G belongs to G then G does not contain a 7-cycle.

Proof. Assume that G satisfies the above hypothesis but does contain a
7-cycle, say C = abcdefg. Let M be a maximal matching of G such that
V (M) is a γp-set. Then, by Lemma 1, C contains at most two edges of M .

Suppose C contains two edges of M . We may assume, without loss of
generality, that the edges ab and de are in M . Then no edge of M is incident
with f or g, by Lemma 1. But then fg is neither in M nor incident with
any edge in M . This contradicts the fact that M is maximal. Hence, C

contains at most one edge of M .
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Suppose C contains exactly one edge, say ab, of M . By Lemma 1, neither c

nor g is incident with an edge in M . Hence, d and f must each be incident
with an edge in M , otherwise, cd and fg would neither be in M nor incident
with an edge in M . Let xd and yf be the edges in M . We now have the
path yfgabcdx where yf , ab, and dx are in M . Therefore, by Lemma 2, the
vertices x and y must have a common neighbour, say z. But this results in
the 6-cycle xzyfed which contradicts the girth restriction. Hence, C contains
no edge of M . This too is impossible, however. Since M is maximal, at least
one end vertex of each edge of C must be in V (M). Because C is of odd
length, this results in two edges of M having adjacent end vertices. We
know this cannot be the case due to Lemma 1. Hence the girth of G is at
least eight.

Therefore, by Lemmas 2 and 3, any graph in G must have either girth eight
or girth nine.

Lemma 4. Let G be a graph in G. If M is a maximal matching in G such

that V (M) is a γp-set, then no edge of M lies on an 8-cycle.

Proof. Suppose G contains an 8-cycle, say C = abcdefgh. Let M be a
matching satisfying the hypothesis. By Lemma 1, C contains at most two
edges in M .

Suppose C contains two edges of M . By Lemma 1, we may assume,
without loss of generality, they are either the pair ab and de or the pair
ab and ef . If the former case holds then g must be incident with an edge
in M . Let xg be the edge in M . But then xghabcde is an 8-path with xg,
ab, and de in M . Therefore, by Lemma 2, x and e must have a common
neighbour, say y. Now we have the 5-cycle xgfey which contradicts the
girth restriction. Hence, the edges ab and ef must be in M . However, this
results in the edges cd and gh being neither in M nor incident with any edge
in M , by Lemma 1. This contradicts the fact that M is maximal. Hence, C

contains at most one edge of M .

Suppose C contains exactly one edge of M , say ab. Then both d and
g must be incident with edges in M which are not in C. But then, by
Lemma 1, the edge ef is neither in M nor incident with any edge in M .
This is impossible since M is maximal. Hence, C contains no edge of M .

Lemma 5. Suppose G is in G. If M is a maximal matching such that

V (M) is a γp-set, then any vertex of G that has degree at least three must

be incident with an edge of M .



Paired-Domination 67

Proof. Let G and M satisfy the hypothesis, and let v be a vertex having
degree at least three. Assume that v is not incident with any edge of M .

Suppose v has neighbours a, b and c. They each must be incident with
some edge of M , since M is maximal. Let ax, by and cz be the edges in M .
Since G has no leaves and girth at least seven, x must have a neighbour,
say u, which is adjacent to neither y nor z. The vertex u itself must have
another neighbour, say p. The vertex p cannot be adjacent to y nor z since
this would create a 7-cycle in contradiction to Lemma 3. By Lemma 1, the
vertex u is not incident with any edge in M . Hence, p must be incident
with an edge in M , since M is maximal. Call this edge pq. By Lemma 1,
q cannot be adjacent to y nor z. However, qpuxavby is an 8-path with
qp, xa and by in M . By Lemma 2, this path must be part of a 9-cycle.
Hence, q and y share a common neighbour, say r. Similarly, q and z share
a common neighbour, say s. The vertices r and s must be distinct due to
girth restrictions. But now we have the 8-cycle qrybvczs containing two
edges which are in M . This is impossible by Lemma 4. Hence, we conclude
that v must be incident with an edge in M .

3. The Characterization

We now wish to characterize all the graphs contained in the set G. Define
the infinite family of graphs, F , to be the set of those graphs H which can be
obtained from three nonempty sets of parallel edges, {urvr : r = 1, . . . , k},
{wsxs : s = 1, . . . , l} and {ytzt : t = 1, . . . ,m}, by connecting each of the
pairs of vertices (vr, ws), (xs, yt) and (zt, ur) with a path of length two.
Hence, for each such pair of vertices a new vertex is introduced which is a
common neighbour of these vertices.

We will call the original set of k + l + m parallel edges the associated

matching of H.

The graphs in F are obviously leafless and have girth at least eight. Fur-
thermore, the associated matching of any graph in F is a maximal matching.
Note that if k = l = m = 1, then H is the 9-cycle and the end vertices of
the associated matching form a γp-set. Hence, the 9-cycle has property P .

We are prepared to show that all the graphs in F are also in G.

Theorem 1. If G is a graph in F , then G is also in G.

Proof. Let G be any graph in F . Partition the edges in the associated
matching into the sets UV = {urvr : r = 1, . . . , k}, WX = {wsxs : s =
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1, 2, . . . , l}, and Y Z = {ytzt : t = 1, 2, . . . ,m}, as previously described. We
wish to show that γp ≥ 2(k + l+m). That is, any matching (not necessarily
maximal), say M , such that V (M) is a paired-dominating set contains at
least k + l + m edges.

Let M be a matching such that V (M) is a paired-dominating set. Since
every ur and zt share a common neighbour of degree two, then either all the
vertices {ur : r = 1, 2, . . . , k} or all the vertices {zt : t = 1, 2, . . . ,m} must
be incident with an edge in M . Similarly, either all of {vr : r = 1, 2, . . . , k}
or all of {ws : s = 1, 2, . . . , l} must be incident with an edge in M , and either
all of {xs : s = 1, 2, . . . , l} or all of {yt : t = 1, 2, . . . ,m} must be incident
with an edge in M . Without loss of generality assume that all the vertices
{ur : r = 1, 2, . . . , k} are met by the matching.

Case 1. Suppose that all the edges of UV are in M . The end vertices
of these edges are not adjacent to any of the vertices {ws : s = 1, 2, . . . , l}
nor the vertices {zt : t = 1, 2, . . . ,m}. Since no pair of vertices in {ws, zt :
s = 1, . . . , l, t = 1, 2, . . . ,m} are adjacent or have a common neighbour, each
vertex in this set requires a unique vertex to dominate it. Furthermore, no
such set of dominating vertices contains an adjacent pair. Hence, another
l + m edges are required and |M | ≥ l + k + m.

This also includes the case where WX ⊆ M or Y Z ⊆ M .

Case 2. Suppose that UV 6⊆ M , WX 6⊆ M and Y Z 6⊆ M . By Lemma 1,
no two edges of M can have adjacent end vertices. Therefore, both ur

and vr are met by M only if urvr is in M . Since all of the vertices {ur :
r = 1, 2, . . . , k} are met by M and UV 6⊆ M , then some vr is not met by
the matching. Therefore, all of {ws : s = 1, 2, . . . , l} must be met by the
matching. Since WX 6⊆ M , then by Lemma 1 there is some xs not met by
the matching. Therefore, all of {yt : t = 1, 2, . . . ,m} must be met by the
matching. This gives us a total of k + l + m vertices all of which must be
met by the matching, but none of which are adjacent. Therefore, at least
k + l + m edges are required and |M | ≥ l + k + m.

So, at least (l+k+m) edges are required in any matching, M , where V (M)
is a paired-dominating set. Therefore, γp ≥ 2(k + l + m). But we know
the edge set {urvr, wsxs, ytzt : r = 1, . . . , k, s = 1, 2, . . . , l, t = 1, . . . ,m} is
a maximal matching of size k + l + m. Hence, γp = 2(k + l + m), and the
vertex set of this maximal matching is a γp-set. Therefore, any graph in F
must also be in G.

It has been shown that for any graph in F , the vertex set of the associated
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matching is a γp-set. In fact, for every graph in F , other than the 9-cycle,
the associated matching is the only maximal matching with this property.
This can be easily verified using Lemma 1 and Lemma 4 from the previous
section.

We now wish to show that the converse of Theorem 1 is true.

Theorem 2. If G is a graph in G, then G is also in F .

Proof. We proceed by induction on γp. Suppose G is a graph in G and
γp = 6. Then G has a maximal matching, say M , such that |M | = 3 and
V (M) is a paired-dominating set. By Lemma 2, we know that G contains
a 9-cycle, say C = {a, b, c, d, e, f, g, h, i}. If G = C then we are done since
C is obviously in F . Suppose G 6= C. Since M is maximal and C has
odd length, according to Lemma 1 there must be at least one edge of the
matching which lies on C. Without loss of generality, let ab be that edge.
Due to Lemma 1, the vertex c is not incident with any edge in M . Hence, d

must be incident with an edge in M , since M is maximal. Similarly, h must
be incident with an edge in M . If de is not in M , then the vertex f must
be incident with an edge in M . This, however, is impossible since |M | = 3.
Hence, de and, similarly, gh are in M . Hence V (M) = {a, b, d, e, g, h} is a
paired-dominating set in G. Since G 6= C there is some vertex, say v, which
is not on C. This vertex must be adjacent to at least one of {a, b, d, e, g, h}.
Without loss of generality, we can assume that v is adjacent to a. Since G is
leafless, v has another neighbour, say w, which must also be adjacent to one
of {a, b, d, e, g, h}. This, however, results in a cycle of length at most seven.
This is a contradiction due to the girth restriction together with Lemma 4.
Hence, the only graph in G with γp = 6 is the 9-cycle.

Let M be a maximal matching in G such that V (M) is a γp-set and
|V (M)| = 2n > 6. Choose any edge, say uv, in M . Let N(u) = {v, u1,

u2, . . . , uk} and let N(v) = {u, v1, v2, . . . , vl}. We know from Lemma 1 that
no ui, i = 1, . . . , k, or vj , j = 1, . . . , l, is incident with an edge in M . Hence,
by Lemma 5, each ui and vj must have degree two. Let wi be adjacent
to ui for each i = 1, 2, . . . , k. Similarly, let xj be adjacent to vj for each
j = 1, 2, . . . , l. Note that each wi and xj must be incident with an edge in M ,
since M is maximal. Let {wiyi : i = 1, . . . , k}, and {xjzj : j = 1, 2, . . . , l},
be the edges in M . Now, by Lemma 2, it must be the case that yi and zj

have a common neighbour, say qij, for all i = 1, 2, . . . , k and j = 1, 2, . . . , l.
Let S = {u, v, ui, wi, yi, vj , xj , zj , qij : i = 1, 2, . . . , k, j = 1, 2, . . . , l}. Note
that due to girth restrictions and Lemma 4, all the vertices in S must be
distinct.
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Case 1. Suppose that at least one of the wi’s or xj ’s has a neighbour
not in S. Without loss of generality assume that w1 has a neighbour, say a,
not in S. By Lemma 1 and Lemma 5, a has degree two and is not incident
with an edge in M . In addition, a is not adjacent to any vertex in S due to
girth restrictions, Lemma 3 and Lemma 4. Hence, a has another neighbour,
say b, where b is incident with an edge in M . Let bc be that edge.

For all j = 1, 2, . . . , l, we have the path {xj , zj , q1j , y1, w1, a, b, c} where
xjzj , y1w1 and bc are in M . Hence, by Lemma 2, xj and c have a common
neighbour, say rj , for all i = 1, 2, . . . , l. Furthermore, for all i = 1, 2, . . . , k,
we have the path {wi, yi, qi1, z1, x1, r1, c, b}. Hence, by Lemma 2, wi and b

have a common neighbour, say si, for all i = 1, 2, . . . , k. Note that each rj

and si has degree two, due to Lemma 1 and Lemma 5, and that deg(u) ≤
deg(b) and deg(v) ≤ deg(c). Now we wish to show that equality holds for
both of these inequalities.

Suppose this is not the case, and that c has another neighbour, say d.
Since M is maximal, d has a neighbour, say e, which is incident with an edge
in M . Note that neither d nor e is in S ∪ {a, b, c} ∪ {si, rj : i = 1, . . . , k, j =
1, 2, . . . , l} due to girth restrictions. Now, let ef be the edge in M . By
Lemma 2, the path {f, e, d, c, b, a, w1 , y1} implies that f and y1 must have
a common neighbour, say g. This gives us the path {e, f, g, y1, w1, u1, u, v}
which, by Lemma 2, implies that e and v have a common neighbour. Hence,
e is adjacent to vj for some j = 1, 2, . . . , l. Without loss of generality, assume
that e is adjacent to v1. However, we now have the 6-cycle {e, d, c, r1, x1, v1},
which is impossible due to the girth restriction. Hence deg(v) = deg(c). It
can be similarly shown that deg(u) = deg(b).

Let us now consider the graph, H = G \ (N(u) ∪ N(v)). This graph is
connected, leafless, and has girth at least seven. Furthermore, the matching
M ′ = M \ {uv} is a maximal matching in H such that V (M ′) is a γp-set
in H. Hence, H is in G where γp(H) = 2n − 2. Then, by the induction
hypothesis, H must be in F and M ′ is its associated matching. The edges
of the associated matching of H can be partitioned into three sets of parallel
edges, since H is in F . The graph G is obtained from H by adding one more
edge, uv, to the set of parallel edges containing bc. Therefore, G is also in F .

Case 2. Suppose that all of the neighbours of the wi’s and xj’s lie in S.
Hence, the only vertices which may be adjacent to some vertex not in S are
the yi’s and zj ’s. Suppose y1 has a neighbour which is not in S. Let a be that
neighbour. Since G is leafless a has another neighbour, say b. Note that b is
neither in nor adjacent to any vertex in S due to Lemma 3, Lemma 4 and the
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girth restriction. Since M is maximal, b must be incident with some edge in
M . Let bc be the edge in M . Now we have the path {v, u, u1, w1, y1, a, b, c}
where vu, w1y1 and bc are in M . Hence, by Lemma 2, the vertices v and c

have a common neighbour. Since N(v) = {u, v1, v2, . . . , vl}, we can assume,
without loss of generality, that v1 is adjacent to both v and c. This is
impossible, however, since the only neighbours of v1 are v and x1 which are
both in S. Hence, y1 has no neighbours other than those in S. Similarly, no
yi or zj has a neighbour outside of S. Hence, V (G) = S.

Obviously, if both u and v have degree 2 then G = C9 and γp = 6.
Therefore, at least one of u and v must have degree at least three. Without
loss of generality, assume that u has degree at least three. Let H = G \
{u1, w1, y1, q1j : j = 1, . . . , l}. Then H is connected, leafless, and in G.
Furthermore, the edge w1y1 is parallel to w2y2, which is contained in the
associated matching of H. By the induction hypothesis, H is in F , and,
therefore, the graph G is also in F .

Hence, Theorem 1 and Theorem 2 together tell us that the graphs in G are
precisely those graphs in F .
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Figure 2. The graph P18
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Corollary 2. If G belongs to G and contains an 8-cycle, then G contains

the graph P18, shown in Figure 2, as an induced subgraph.

Proof. Suppose G ∈ G and P18 is not a subgraph of G. Then at least
two of k, l and m are equal to one. Such graphs clearly do not contain any
8-cycles.

References

[1] T.W. Haynes and P.J. Slater, Paired-domination in graphs, submitted for
publication.

[2] T.W. Haynes and P.J. Slater, Paired-domination and the paired-domatic num-

ber, Congressus Numerantium 109 (1995) 65–72.

Received 18 February 1997
Revised 12 September 1997

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

