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Abstract

The leafage l(G) of a chordal graph G is the minimum number
of leaves of a tree in which G has an intersection representation by
subtrees. We obtain upper and lower bounds on l(G) and compute it
on special classes. The maximum of l(G) on n-vertex graphs is n −
lg n− 1

2
lg lg n+O(1). The proper leafage l∗(G) is the minimum number

of leaves when no subtree may contain another; we obtain upper and
lower bounds on l∗(G). Leafage equals proper leafage on claw-free
chordal graphs. We use asteroidal sets and structural properties of
chordal graphs.

Keywords: chordal graph, subtree intersection representation, leafage.

1991 Mathematics Subject Classification: 05C75, 05C05, 05C35.

1. Introduction

A simple graph is chordal (or triangulated) if every cycle of length exceeding
3 has a chord. The intersection graph of a family of sets is the graph defined
by assigning one vertex for each set and joining two vertices by an edge if
and only if the corresponding sets intersect. A graph is chordal if and only
if it is the intersection graph of a family of subtrees of a host tree [3, 8, 23];
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such a family is a subtree representation of the graph. The interval graphs

are the chordal graphs having subtree representations in which the host tree
is a path; this allows the subtrees to be viewed as intervals on the real line.
Given the many applications of interval graphs and the ease of computation
on interval graphs, it is natural to ask for measures of how far a chordal
graph is from being an interval graph.

The leafage l(G) of a chordal graph G is the minimum number of leaves
of the host tree in a subtree representation of G. Interval graphs are the
chordal graphs with leafage at most two. We derive bounds on leafage and
study classes in which equality holds, including k-trees, block graphs, and
chordal graphs having a dominating clique. We prove that the maximum
leafage of a chordal graph on n vertices is the maximum k such that k ≤
( n−k
b(n−k)/2c

)

; this is n− lg n− 1
2 lg lg n + O(1). Our proofs provide algorithms

for computing leafage in some special classes.
Among the interval graphs are the proper interval graphs, which are

those representable using a family of intervals in which no interval properly
contains another. As observed in [8], every chordal graph has a subtree
representation in which no subtree properly contains another; call this a
proper subtree representation. By analogy with leafage, the proper leafage

l∗(G) of a chordal graph G is the minimum number of leaves in a proper
subtree representationof G. We extend a characterization of proper interval
graphs by Roberts [19] to obtain a lower bound on proper leafage: l∗(G) is
at least the maximum number of “modified extreme points” occurring in an
induced subgraph of G. We present examples where the bound is arbitrarily
bad, but the bound is sharp for k-trees, where it equals the number of
simplicial vertices.

A notion analogous to leafage has already been characterized for a rep-
resentation model based on containment. Leclerc [14] proved that a graph is
the comparability graph of a partial order of dimension at most d if and only
if it is the containment poset of a family of subtrees of a tree with at most
d leaves. Our notion of leafage has been applied in [17], and the analogue
of leafage for directed graphs is studied in [16].

We use well-known properties of chordal graphs from [3, 6, 11, 20, 23].
A simplicial vertex in a graph is a vertex v whose neighborhood N(v) induces
a clique. A cutset (also called separating set or vertex cut) is a set of vertices
whose deletion leaves a disconnected subgraph. Every cutset of a chordal
graph induces a clique, and thus by induction every non-clique chordal graph
has a nonadjacent pair of simplicial vertices [6]. The neighborhood of a
simplicial vertex is a simplicial neighborhood. The subgraph of G induced
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by the set S(G) of simplicial vertices is a disjoint union of cliques. We use
S(G) to denote this subgraph in the same way that Q may denote a clique
or its set of vertices. The deletion of a simplicial vertex cannot affect the
existence of chordless cycles. Hence another characterization of a chordal
graph [7, 20] is the existence of a perfect elimination ordering, meaning a
vertex ordering vn, . . . , v1 in which the vertices can be deleted such that for
each i, N(vi) ∩ {vi, . . . , v1} induces a clique.

Given a chordal graph G, the derived graph G′ is the induced subgraph
obtained by deleting all the simplicial vertices of G. As an induced subgraph
of a chordal graph, G′ also is a chordal graph. We describe a subtree of a
tree by the set of vertices inducing it, and with this understanding we write
f(v) for the subtree representing v in a subtree representation f . We use
m(T ) for the number of leaves of a tree T .

Every pairwise intersecting family of subtrees of a tree has a common
vertex [11, p. 92]. Hence if Q is a clique in G, any subtree representation
f of G assigns some host vertex to all of Q. If distinct vertices q, q ′ are
assigned to cliques Q,Q′ with Q ⊂ Q′, then for v ∈ Q the entire q, q′-path
in the host belongs to f(v). The first edge on this path can be contracted
to obtain a smaller representation without changing the number of leaves.
Therefore, we may restrict our attention to minimal representations, which
are those subtree representations having a bijection between the maximal
cliques of G and the vertices of the host tree. This restriction is not valid

for proper leafage. We use the term optimal representation to refer to a
subtree representation having the minimum number of host leaves (subject
to appropriate conditions).

Gavril [9] and Shibata [22] proved that minimal representations corre-
spond to maximum weight spanning trees in the weighted clique graph of G,
where the weighted clique graph has a vertex for each maximal clique of G,
and the weight of the edge QQ′ is |Q ∩ Q′|. Thus l(G) equals the minimum
number of leaves in a maximum weight spanning tree of the weighted clique
graph of G. This observation does not seem to simplify the problem.

2. Asteroidal Sets and Special Classes

Our first lower bound for l(G) generalizes the notion of asteroidal triple. We
prove constructively that this bound is exact for trees and more generally
for k-trees.

An asteroidal triple in a graph is a triple of distinct vertices such that
each pair is connected by some path avoiding the neighborhood of the third
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vertex. Interval graphs are the chordal graphs without asteroidal triples ([10,
15]). A set S ⊆ V (G) is an asteroidal set if every triple of vertices in S is an
asteroidal triple. This concept arises also in [18, 23]. Let a(G) denote the
maximum size of an asteroidal set in G. This parameter has subsequently
been named the asteroidal number in [1, 2, 12, 13]; these papers explore
further properties of asteroidal sets, asteroidal number, and leafage.

We define a notion like asteroidal sets for subtrees. If Ti, Tj , Tk are sub-
trees of a tree, then Tk is between Ti and Tj if Ti and Tj are disjoint and the
unique path connecting them intersects Tk. A collection of pairwise disjoint
subtrees such that none is between two others is an asteroidal collection of
subtrees.

Lemma 1. If T1, . . . , Tn is an asteroidal collection of subtrees of a tree T ,

then T has at least n leaves.

Proof. For each leaf v of T , we assign to v the first subtree in {Ti} encoun-
tered on the path from v to the nearest vertex of degree at least 3. Such a
subtree exists, else we could delete the edges of that path to reduce m(T )
without affecting {Ti}. If m(T ) < n, then some subtree Tk in our list is
assigned to no leaf. Let x be a vertex of Tk, and let P be a maximal path in
T containing x. The endpoints of P are leaves of the tree, and Tk is between
the subtrees assigned to those leaves. The contradiction yields m(T ) ≥ n.

Theorem 1. In a subtree representation of a chordal graph G, the subtrees

corresponding to an asteroidal set of vertices form an asteroidal collection,

and l(G) ≥ a(G).

Proof. Let f be a subtree representation of G in T . Every asteroidal
triple of vertices is an independent set, and thus every asteroidal set is an
independent set. Hence the subtrees corresponding to an asteroidal set in
a subtree representation of G are pairwise disjoint. If none is between two
others, then the subtrees form an asteroidal collection in T , and Lemma 1
yields the bound.

Suppose that f(w) is between f(u) and f(v). Let P be a u, v-path in
G containing no neighbor of w. Because every two successive vertices in P
are adjacent, the corresponding subtrees in T have a common point, and
hence the union

⋃

x∈P f(x) of the subtrees representing these vertices is a
connected subgraph T− of T . Since P contains no neighbor of w, T − must
be disjoint from f(w), but this contradicts the assumption that the unique
path between f(u) and f(v) in T contains a vertex of f(w).
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Corollary 1. If G is a tree other than a star, then l(G) is the number of

leaves in the derived tree G′.

Proof. Suppose that G′ has k leaves. For the lower bound, we obtain a
asteroidal set. For each leaf of G′, select a leaf of G adjacent to it. This
yields an asteroidal set S of size k, because for x, y ∈ S, the unique x, y-
path in G consists of x, y, and a path between leaves of G′ that are adjacent
to x and y. This path contains no other leaf of G or G′, so it avoids the
neighborhoods of other vertices in S.

For the upper bound, we construct a subtree representation. For the
host tree T , begin with the tree obtained from G′ by subdividing each edge
once. Next, for each v′ ∈ V (G′), choose one edge incident to v′ in the current
host and subdivide it k times, where k is the number of leaves of G incident
to v′. Use each of these new vertices to represent one leaf of G incident
to v′, and let f(v′) consist of the vertex v′ in T together with the vertices
introduced by subdividing edges incident to v ′. This yields a representation
of G. Since G is not a star, G′ has at least two leaves, and T and G′ have
the same number of leaves.

A k-tree is a chordal graph that can be constructed from Kk by a sequence
of vertex additions in which the neighborhood of each new vertex is a k-
clique of the current graph. With additional lemmas, we can generalize the
construction of Corollary 1 to k-trees.

Lemma 2. In a non-clique k-tree, the simplicial vertices are the vertices of

degree k and form an independent set.

Proof. The smallest non-clique k-tree has k + 2 vertices and satisfies the
claim. When a vertex receives a new neighbor, its degree exceeds k, and
its old neighborhood cannot be contained among the other k − 1 neighbors
of the new simplicial vertex. Hence vertices of degree exceeding k (and
neighbors of simplicial vertices) are not simplicial.

Every minimal cutset of a k-tree induces a k-clique (Rose [20]). Indeed, non-
clique k-trees are precisely the connected graphs in which the largest clique
has k + 1 vertices and every minimal cutset induces a k-clique. Since delet-
ing a simplicial vertex of a k-tree leaves a smaller k-tree, the construction
procedure defining a k-tree can begin from any k-clique. These proper-
ties yields the following statement, which does not hold for general chordal
graphs (it fails for the interval graph 2P4 ∨ K1). (The join G ∨ H of two
graphs G and H is obtained from the disjoint union G + H by adding as
edges {uv : u ∈ V (G), v ∈ V (H)}.)
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Lemma 3. If G is a non-clique k-tree having distinct simplicial neigh-

borhoods, then G has distinct simplicial neighborhoods that are not cutsets

of G′.

Proof. By Lemma 2, every simplicial neighborhood in G is contained in
V (G′). We call a simplicial vertex v good in G if G′ − N(v) is connected.

If G is a non-clique k-tree, then G has only one simplicial neighborhood
if and only if G′ = Kk. If G′ 6= Kk, then G has a simplicial vertex x such
that G−x has distinct simplicial neighborhoods unless G has k +3 vertices
and G′ = Kk+1. There is one such k-tree, and its two simplicial vertices are
good. This serves as the basis for induction.

For the induction step, choose x ∈ S(G). The induction hypothesis
implies that G− x has two good simplicial vertices u, v with distinct neigh-
borhoods. If G′ = (G − x)′, then every simplicial vertex of G − x is also
simplicial in G. In this case, u, v are good for G.

Hence we may assume that G′ 6= (G − x)′, which means that some
simplicial vertex of G − x is not simplicial in G. Such a vertex y must be
a neighbor of x. Applied to G − x, Lemma 2 implies both that y is unique
and that (G − x)′ = G′ − y.

If y /∈ N(v), then (G − x)′ − N(v) = [G′ − N(v)] − y. Hence v remains
good for G unless y is isolated in G′ − N(v) (similarly for u). Since y and
v each have degree k in G − x, this requires NG−x(y) = NG−x(v), so we
may assume that y = v and that u is good in G. Also, u, x have distinct
neighborhoods in G, since y ∈ N(x) and y = v is simplicial in G − x. Thus
it suffices to prove that x is good in G.

Let z be the unique member of N(y) − N(x). Since y is good in G − x
and (G−x)′−N(y) = [G′−N(x)]−z, it suffices to show that z is not isolated
in G′ − N(x). If so, then z has exactly k neighbors in G′. By Lemma 2,
z ∈ S(G′), but G′ cannot have adjacent simplicial vertices.

Theorem 2. If G is a non-clique k-tree, then l(G) = max{2, r(G)}, where

r(G) is the number of distinct simplicial neighborhoods of G that are not

cutsets in G′.

Proof. When G is a non-clique k-tree, G has distinct simplicial neighbor-
hoods unless G′ is a nonempty clique, which occurs if and only if G is the
join of a k-clique and an independent set. Such a k-tree is an interval graph.

When G has distinct simplicial neighborhoods, Lemma 3 implies that
r(G) ≥ 2. Let R(G) be the set of simplicial neighborhoods of G that are
not cutsets of G′. For the lower bound, we construct an asteroidal set of
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size r(G) by selecting one simplicial neighbor of each R ∈ R(G). Given
three such vertices x, y, z, there is a y, z-path in G avoiding N(x) because
G′ − N(x) is connected.

For the upper bound, we use induction to construct a subtree represen-
tation with the desired number of leaves, in which for each R ∈ R(G), the
maximal cliques containing the simplicial verties {v ∈ S(G) : N(v) = R}
occur at a pendant path in the host tree T , in any specified order. We begin
with the case where G′ = Kk. Here G is the join of Kk and j simplicial
vertices, and T = Pj , with each vertex of G′ assigned all of T and each
vertex of S(G) assigned one vertex of T .

For the induction step, we may assume that G′ has more than one
maximal clique and that r(G) ≥ 2. By Lemma 3, we may choose x ∈ S(G)
such that G′ − N(x) is connected. The graph G − x is a smaller k-tree,
and we apply the induction hypothesis. Let f be a subtree representation of
G−x in a host tree T− that has the specified properties. If N(x) = N(y) for
some y ∈ S(G), then r(G−x) = r(G); here we obtain T by inserting another
vertex in the pendant path in T− that corresponds to N(x), assigning the
new vertex to N(x) ∪ {x}. If N(x) 6= N(y) for all y ∈ S(G) − {x}, and no
neighbor of x is simplicial in G−x, then R(G−x) = R(G)−{N(x)}, and we
are permitted to add a leaf in expanding f to a subtree representation of G.
Since N(x) is a clique in G − x, its corresponding subtrees have a common
vertex in T−, and we can append a new leaf to that vertex, assigned to
N(x) ∪ {x}.

In the remaining case, some neighbor z of x is simplicial in G − x. By
Lemma 2, z is unique. Let Q = NG−x(z), and let q be the vertex assigned
by f to the maximal clique Q ∪ {z}. If Q is not a cutset of (G − x)′, then
by the induction hypothesis we may assume that q is a leaf of T −. In this
case Q is a cutset of G′ (it isolates z), so r(G) = r(G − x) even if Q is a
simplicial neighborhood in G. On the other hand, if Q is a cutset of (G−x)′,
then r(G) = r(G − x) + 1. In either case, we expand T − by adding a leaf
adjacent to q and assign it to N(x) ∪ {x}. The resulting T has r(G) leaves.
Furthermore, since N(x) is not the neighborhood of any simplicial vertex
other than x, the claim about arbitrarily ordering the cliques involving a
given simplicial neighborhood also holds.

We prove that l(G) = a(G) for one more class of chordal graphs. The blocks

of a graph are its maximal subgraphs that have no cut-vertex. A block graph

is a graph in which every block is a clique (equivalently, a graph is a block
graph if and only if it is the intersection graph of the blocks in some graph).
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Block graphs have no chordless cycles. A leaf block of G is a block containing
only one cut-vertex of G.

Theorem 3. If G is a block graph that is not a clique, then l(G) =
max{2, r′(G)}, where r′(G) is the number of cut vertices of G that are sim-

plicial vertices in G′.

Proof. In G, each maximal clique is a block, and a vertex belongs to G′ if
and only if it is a cut-vertex of G. Also, if a cut vertex of G is a simplicial
vertex of G′, then it belongs to a leaf block of G. We form an asteroidal set
by selecting, for each simplicial vertex v of G′, one simplicial vertex from
one leaf block of G containing v. This set has size r ′(G). When r′(G) = 1,
G consists of two cliques sharing one vertex and is an interval graph.

For the upper bound, we build by induction on r ′(G) a subtree rep-
resentation such that the cliques that are leaf blocks containing a partic-
ular simplicial vertex of G′ appear on a pendant path of the host tree. If
r′(G) ≤ 2, then G′ is a path v1, . . . , vp. To form the subtree representation,
first form a path u0, . . . , u2p+2 with f(vi) = {u2i−2, u2i−1, u2i, u2i+1}. This
assigns an edge to each complete subgraph of G′. Now subdivide edges as
needed to insert a vertex for each component of S(G) in the path assigned
to its neighborhood in G′.

When r′(G) > 2, we choose a simplicial vertex v of G′. Letting U be
the set of neighbors of v in leaf blocks of G, we have r ′(G − U) < r′(G).
The induction hypothesis provides a representation for G−U ; to any vertex
of the host assigned to clique containing v, we append a path having one
vertex for each leaf block of G containing v. These cliques appear at those
vertices, and the entire path is added to the subtree representing v.

Consider the chordal graph G in Figure 1 formed by adding one simplicial
vertex adjacent to each edge of G′ = 2K2∨K1. Here a(G) = 3 but l(G) = 4,
as we will see.

t t

t t

tt t

t t

t

t

Figure 1. A graph with leafage 4 but no asteroidal 4-set
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3. Dominators and a General Upper Bound

As observed in the introduction, when studying l(G) we may assume a
bijection between the maximal cliques of G and the vertices of the host.
There is a natural order on the maximal cliques. If vn, . . . , v1 is a perfect
elimination ordering of G, then the reverse ordering v1, . . . , vn constructs
G by iteratively adding a vertex adjacent to a clique. With respect to (the
reverse of) a given perfect elimination ordering, we say that a maximal clique
is created whenever the vertex being added increases the number of maximal
cliques in the graph that has been built. Each additional vertex enlarges one
maximal clique or creates one new maximal clique. This defines a creation

ordering Q1, . . . , Qm of the maximal cliques of G (with respect to a given
perfect elimination ordering).

Lemma 4. Let Q1, . . . , Qm be the creation ordering of the maximal cliques

of a connected chordal graph G with respect to some perfect elimination

ordering. For each i with 2 ≤ i ≤ m, there is an index j < i such that

Qi ∩Qk ⊆ Qi ∩Qj for all k < i. We call Qj the dominator of Qi and write

j = ρ(i).

Proof. By induction on n, the order of G; the claim is vacuous for n = 1.
For n > 1, apply the induction hypothesis to G − vn, where vn is the first
vertex of the perfect elimination ordering. When vn is added, it belongs to
only one maximal clique.

Either vn enlarges a previous maximal clique, or it creates a new max-
imal clique. If vn enlarges a maximal clique Qi, then the intersection con-
dition holds with the same choice of dominators as for G − vn, because vn

belongs to no other maximal clique. If vn creates a new maximal clique Qm,
then N(vn) is a proper subset of some earlier clique Qj; set j = ρ(m) (this
choice need not be unique). Since N(vn) contains the intersection of Qm

with each other clique, the dominator condition holds.

Lemma 5. Let Q1, . . . , Qm be the creation ordering of the maximal cliques

of G associated with some perfect elimination ordering. Let T be the tree

with vertices q1, . . . , qm and edges qiqj such that j = ρ(i). Assigning qi to

all vertices of Qi yields a subtree representation of G in T . Furthermore,

each clique of G corresponding to a leaf of T contains a vertex appearing in

no other maximal clique of G.

Proof. By induction on n, the order of G; the claim is trivial for n = 1. For
n > 1, apply the induction hypothesis to G− vn, where vn is the first vertex
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in the perfect elimination ordering. If adding vn enlarges a maximal clique
Qi, then it suffies to enlarge the representation f by setting f(vn) = qi. If
adding vn creates a new maximal clique Qm with dominator Qj , then T
gains the pendant edge qmqj and is still a tree. Leaves still contain unique
representatives, since we let f(vn) = qm. Finally, since Qj contains N(vn),
the subtrees assigned to the vertices of N(vn) can be extended from qj to
include qm. Hence we obtain the desired subtree representation of G.

To obtain an upper bound on l(G), we consider a partial order associated
with G. An antichain in a partial order is a set of pairwise incomparable
elements, and the width w(P ) of a partial order P is the maximum size of
its antichains. Dilworth’s Theorem [4] states that the elements of a finite
partial order of width k can be partitioned into k chains (totally ordered
subsets). Such a set of chains is a Dilworth decomposition.

For each simplicial neighborhood R in a chordal graph G, we define the
modified simplicial neighborhood to be R′ = R − S(G). Let R′(G) denote
the set of modified simplicial neighborhoods in G. For v ∈ S(G), we also
define N ′(v) = N(v) − S(G).

Theorem 4. If P (G) is the inclusion order on the collection R′(G) of mod-

ified simplicial neighborhoods in a chordal graph G, then l(G) ≤ w(P (G)).

Proof. Let C1, . . . , Ck be a Dilworth decomposition of P (G), with Cj con-
sisting of Rj1 ⊆ · · · ⊆ Rjrj

. For each chain Cj we create a path Pj to be part
of the host tree in a subtree representation f . If u, v ∈ S(G) are adjacent,
then N ′(u) = N ′(v). For R ∈ R′(G), let m(R) be the number of components
of S(G) for which R is the common modified simplicial neighborhood. We
assign to Rji exactly m(Rji) consecutive vertices on Pj , each of which will
be the entire image for the vertices of one component of S(G). We put the
vertices for Rj1 at one end of the path (the small end, pass through those
for each Rji as i increases, and reach the vertices for Rjrj

at the big end of
the path. Each vertex of the subpath for Rji is assigned to each vertex in
Rji. For each v′ ∈ V (G′), we have assigned to v′ a (possibly empty) subpath
from the big end of each Pj .

The problem is now to add host vertices to hook together the big ends of
these paths so that 1) the only leaves are the small ends of P1, . . . , Pk, 2) the
maximal cliques not containing simplicial vertices of G are represented, and
3) the vertices assigned to each vertex of G′ form a subtree of the resulting
tree.

The maximal cliques of G that do not contain simplicial vertices of G are
maximal cliques of G′. Let f ′ be the subtree representation of G′ generated
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by Lemma 5 in a host tree T ′. In T ′ ∪ {P1, . . . , Pk} all maximal cliques
of G are represented. Each “big end” Rjrj

is contained in (possibly with
equality) a maximal clique Q of G′; add an edge from the big end of Pj to
the vertex for Q in T ′. (If Rjrj

= Q, then this edge can be contracted.)
The result is a tree T . Each v′ ∈ V (G′) was assigned a subtree in T ′; if v′

received additional vertices in Pj , then these have been attached to a vertex
of f ′(v′), so the image f(v′) is still a tree.

Finally, we show that each leaf of T ′ receives an edge from some path
Pj ; thus all leaves in the full tree T are small ends of P1, . . . , Pk. Let q be
a leaf of T ′. By Lemma 5, the clique of G′ corresponding to q contains a
vertex in no other maximal clique of G′. Such a vertex v′ is simplicial in G′.
Since G′ contains no simplicial vertices of G, v ′ has a neighbor v ∈ S(G).
Let Cj be the chain in P (G) containing N(v). The big end of Pj must
be attached to q, because Rjrj

contains v′ and q is the only vertex of T ′

assigned to v′.

4. Characterization of Maximum Asteroidal Sets

The sharpness of the upper bound in Theorem 4 depends on the structure
of G′. When G′ is a single clique, it has no cutset, and Lemma 6 below im-
plies that a(G) = l(G) = w(P (G)). Among such graphs we find the n-vertex
chordal graph with maximum leafage. Lemma 6 is a lower bound on a(G)
in terms of a subposet of P (G). Given a chordal graph G, the restricted

simplicial neighborhood poset P ′(G) is obtained from P (G) by deleting
those modified simplicial neighborhoods that contain cutsets of the derived
graph G′.

Lemma 6. If P ′(G) is the restricted simplicial neighborhood poset of a

chordal graph G, then G has an asteroidal set consisting of w(P ′(G)) sim-

plicial vertices.

Proof. Let R1, . . . , Rr be a maximum antichain in P ′(G). For each Ri,
choose vi ∈ S(G) with N ′(vi) = Ri. Given distinct vertices vi, vj , vk in
the resulting set, we may choose v′

j ∈ Rj − Ri and v′k ∈ Rk − Ri because
R1, . . . , Rr is an antichain. By the definition of P ′(G), G′ −Ri is connected
and contains a v′j, v

′
k-path P . Appending vj and vk yields a vj, vk-path

avoiding N(vi).
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Theorem 5. The maximum leafage of a chordal graph with n vertices is

the maximum k such that k ≤
( n−k
b(n−k)/2c

)

. In terms of n, the value is n −

lg n − 1
2 lg lg n + O(1).

Proof. When k satisfies the inequality, we construct a chordal n-vertex
graph with an asteroidal set of size k. To a clique Q of order n− k, we add
k simplicial vertices whose neighborhoods are distinct b(n − k)/2c-subsets
of G′ = Q. By Lemma 6, S(G) is an asteroidal set of size k, and hence
l(G) ≥ k by Lemma 1.

Let G be an n-vertex chordal graph with maximum leafage. Theorem 4
implies that l(G) ≤ w(P (G)). Let m = |S(G)|. Since the elements of
P (G) are distinct modified simplicial neighborhoods, w(P (G)) ≤ m. Since
elements P (G) are subsets of an n−m-element set, w(P (G)) ≤

( n−m
b(n−m)/2c

)

.

Thus w(P (G)) ≤ min{m,
( n−m
b(n−m)/2c

)

}. Since the second term decreases with

m, the width cannot exceed the maximum k such that k ≤
( n−k
b(n−k)/2c

)

. This
proves the upper bound. To obtain the asymptotic maximum, we apply
Stirling’s approximation to k =

( n−k
b(n−k)/2c

)

.

We can improve the lower bound resulting from Lemma 6 by applying
Lemma 6 to every connected induced subgraph of G.

Theorem 6. If G is a chordal graph, then the maximum size of an asteroidal

set in G is the maximum of w(P ′(H)) over all connected induced subgraphs

H of G.

Proof. Every induced subgraph H of a chordal graph G is chordal. If H
has an x, y-path P avoiding N(z) for some x, y, z ∈ V (H), then P is also
an x, y-path avoiding N(z) in G, since G has no additional edges among
vertices of H. Thus every asteroidal set in H is an asteroidal set in G, and
the lower bound follows from Lemma 6.

For the upper bound we construct, from a maximum asteroidal set A
in G, a connected induced subgraph H of G such that |A| = w(P ′(H)).
For each triple x, y, z ∈ A, there is an x, y-path in G avoiding N(z). We
may assume that each such path is chordless, since shortening the path by
using chords still avoids N(z). Let H be the subgraph of G induced by the
vertices in the union of all these chordless paths. It suffices to show that (1)
S(H) = A, (2) P (H) is an antichain of size |A|, and (3) P ′(H) = P (H).

Since H is an induced subgraph of G, NH(x) ⊆ NG(x), so the vertices
of A are simplicial in H. All members of V (H) − A are internal vertices of
chordless paths between vertices of A. Such a vertex cannot be simplicial in
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H, because its neighbors on such a path are not adjacent; this proves (1).
If NH(x) ⊆ NH(y) for some x, y ∈ A, then every x, z-path intersects N(y);
since A is asteroidal, this proves (2).
It remains only to show that P ′(H) = P (H). First note that N ′

H(x) =
NH(x) for x ∈ S(H) since S(H) = A is an independent set. Thus it suffices
to show that NH(x) does not contain a cutset of H ′ for x ∈ A. Suppose
that Q is a minimal cutset of H ′ contained in NH(x). Since Q is a minimal
cutset of a chordal graph H ′, Q induces a clique, and every component of
H ′ − Q contains a simplicial vertex of H ′. Each such vertex is a neighbor
of a simplicial vertex of H. This yields vertices y, z ∈ A such that every
y, z-path in H intersects Q, which contradicts A being an asteroidal set.

For the graph G in Figure 2, the four simplicial vertices of degree 2 establish
a(G) ≥ 4. Equality holds; these vertices and their neighborhoods together
induce the only connected induced subgraph H such that w(P ′(H)) = 4.
Although w(P ′(H)) is computable from H in polynomial time, the difficulty
of finding H makes the complexity of computing a(G) unclear. For example,
if F is formed by adding a pendant edge to each leaf of the graph in Figure 2,
then w(P ′(F )) = 2 and a(F ) = 4, but F has no simplicial vertex x such
that w(P ′(F − x)) > 2. Thus H cannot be found greedily.

t t t

t

ttt

ttt t t

Figure 2. A graph with a(G) > w(P ′(G))

In the computation of a(G), it may be useful to confine the maximum as-
teroidal set to the set S(G) of simplicial vertices.

Lemma 7. If G is a chordal graph, then S(G) contains a maximum aster-

oidal set of G.

Proof. Let A be a maximum asteroidal set of G. If x ∈ A is not simplicial
in G, then x has nonadjacent neighbors. Hence x belongs to a minimal
cutset of G. Since G is chordal, this cutset induces a clique Q. As in the
proof of Theorem 6, A − x is confined to one component of G − Q. Any
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other component of G−Q contains a simplicial vertex of G that is not in Q.
Choose such a vertex w to replace x in A. To verify that A − x + w is an
asteroidal set, it suffices to note that if y, z ∈ A and P is a y, x-path avoiding
N(z), then P can be extended from x to w to obtain a y, w-path avoiding
N(z).

5. Leafage When G′ Has (at Most) Two Cliques

We have observed that l(G) = a(G) = w(P (G)) when G′ is a clique. Com-
puting leafage in general means determining the savings w(P (G)) − l(G) in
constructing an optimal subtree representation. By studying antichains in
more detail, we will be able to compute leafage when G′ is the union of two
maximal cliques.

An ideal of a poset P is a subposet Q such that all elements below
elements of Q also belong to Q. The inclusion order on the set of ideals
of P is a lattice, because the union and intersection of two ideals is an
ideal. Every antichain in P is associated naturally with the ideal for which
it forms the set of maximal elements. The ordering of the antichains that
corresponds to the inclusion ordering on the ideals has A ≤ B when for
every x ∈ A there exists y ∈ B such that x ≤ y.

Dilworth [5] proved that the set of maximum-sized antichains also forms
a lattice under this ordering. When P is finite, the lattice of maximum-sized
antichains is finite and has a unique minimal element, which we denote by
AP . In an arbitrary poset, a maximum antichain can be found quickly using
network flow methods or bipartite matching. It is well-known that in the
bipartite graph Γ(P ) with partite sets {x− : x ∈ P} and {x+ : x ∈ P} and
edge set {x−y+ : x < y in P}, the maximum size of a matching is |P |−w(P ).
Using this, we can find AP .

Lemma 8. In a finite poset P , the unique minimal maximum antichain AP

can be found in polynomial time.

Proof. Using a bipartite matching algorithm, we find a maximum matching
of Γ(P ). These edges link the elements of P into chains that form a Dil-
worth decomposition C1, . . . , Cw(P ) of P . Every maximum antichain uses
one element from each Ci. If the minimal elements of the chains form an
antichain, then this is AP . Otherwise, there is some relation x > y among
these elements. Since y is below every element of the chain containing x,
no maximum antichain contains y. Since y belongs to no maximum an-
tichain in P , we have w(P − y) = w(P ), and thus the same chain partition
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with y deleted forms a Dilworth decomposition of P − y. Iterating this
procedure with the minimal remaining elements eventually produces an an-
tichain of size w(P ). Since no maximum antichains of P were destroyed, this
set is AP .

Lemma 9. Let C be a Dilworth decomposition of P . If x ∈ AP and C ′ is

the chain consisting of x and the elements above x on its chain in C, then

w(P −C ′) = w(P )− 1. Equivalently, P has a Dilworth decomposition using

C ′ as one chain.

Proof. Let k = w(P ). Since AP −x is an antichain in P −C ′, it suffices to
show that P −C ′ has no antichain of size k. Let C be the chain containing
x in C. If P − C ′ has an antichain A of size k, then A must contain an
element y below x on C, since w(P −C) < k. Also A is an antichain of size
k in P , and hence AP < A. In particular, x is less than some member of A,
which creates a forbidden relation between y and another member of A.

Lemma 10. Let Q1, Q2 be distinct maximal cliques of the derived graph

G′ of a chordal graph G. Let P = P (G), and define induced subposets

P1 = {x ∈ P : Q1 ∩ Q2 ⊂ x ⊆ Q1}, P2 = {x ∈ P : Q1 ∩ Q2 ⊂ x ⊆ Q2},
and P̄ = P1 ∪ P2. Suppose that AP has elements a1 ∈ P1 and a2 ∈ P2. If

w(P ) ≥ w(P − P̄ ) + 2, then P (G) has a Dilworth decomposition in which

a1, a2 occur as minimal elements of chains.

Proof. With these hypotheses, Lemma 9 implies that P has a Dilworth
decomposition containing a chain C1 with a1 as its minimal element. Let
P ∗ = P −C1, and let A∗ = AP −{a1}. Since A∗ is a maximum antichain of
P ∗, we have AP ∗ ≤ A∗ in the lattice of maximum antichains of P ∗.

Let Γ be the bipartite graph with partite sets AP ∗ and A∗ (each of size
w(P ) − 1) defined by putting x ∈ AP ∗ adjacent to y ∈ A∗ if x ≤ y in P . If
Γ has a vertex cover with fewer than w(P ∗) vertices, then the vertices not
in the cover form an independent set, and this independent set forms an
antichain of size exceeding w(P ∗) in P ∗. Hence there is no such cover, and
by the König-Egerváry Theorem Γ has a complete matching M .

Let B = AP ∩ P2; note that B ⊆ A∗. For b ∈ B, let b′ be the element
matched to b in M , and let B ′ = {b′ : b ∈ B}. We claim that B ′ ⊆ P2.
For b ∈ B, we have b′ ≤ b in P , so b′ ⊆ b ∈ B ⊆ P2. Thus b′ ⊆ Q2. If
b′ ⊆ Q1 ∩ Q2, then b′ is properly contained in every element of P̄ . Since
b′ ∈ AP ∗ , this implies that AP ∗ is disjoint from P̄ , and we have w(P − P̄ ) ≥
|A∗| = w(P )−1. We assumed that w(P ) ≥ w(P − P̄ )+2, so b′ must intersect
Q2 − Q1. This implies that b′ ∈ P2.
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With B′ ⊆ P2, we next claim that B ′ = B. A set not in P2 that contains
an element of P2 contains Q2. Since a2 ∈ AP ∩P2, no such element is in the
antichain AP . Thus b′ is not below any element of AP − B. Also b′ is not
above any element of AP −B, because b′ ⊆ b and AP is an antichain. Hence
A′ = (AP − B) ∪ B′ is an antichain in P , with size w(P ) since |B| = |B ′|.
Since B′ ≤ B, we have A′ ≤ AP in the lattice. Since AP is the minimal
element of the lattice, this yields A′ = AP and B′ = B.

Since B′ = B, we have proved that all the elements of AP belonging to
P2 also belong to AP ∗ . In particular, a2 ∈ AP ∗ . Applying Lemma 9 again,
we obtain a Dilworth decomposition of P ∗ containing a chain C2 with a2

as its minimal element. Together with C1, this is the desired Dilworth
decomposition of P .

Recall that P ′(G) is the subposet of P (G) obtained by discarding the modi-
fied simplicial neighborhoods that contain cutsets of G′. When the modified
simplicial neighborhoods contained in a particular maximal clique Qi of G′

form a chain under inclusion, we say that Qi is degenerate.

Theorem 7. Let G be a chordal graph such that G′ is the union of two

maximal cliques Q1, Q2. With P = P (G), P ′ = P ′(G), and Q = Q1 ∩ Q2,

l(G) has the following value:

1) l(G) = w(P )−α if w(P ′) ≤ w(P )− 2 and α of the cliques Q1, Q2 are

nondegenerate and contain distinct elements of AP − P ′.

2) l(G) = w(P ) if w(P ′) = w(P ) − 1 and every element of AP − P ′

belongs to a degenerat Qi.

3) l(G) = w(P ′) otherwise.

Proof. Lemma 6 and Theorem 4 imply that w(P ′) ≤ l(G) ≤ w(P ), so we
may assume that w(P ′) < w(P ). The only minimal cutset of G′ is Q, so
the elements of P discarded to form P ′ are those containing Q. Also, every
element of P is contained in Q1 or in Q2.

We first consider improvements to the upper bound. If w(P ′) ≤
w(P ) − 1, then AP has an element x outside P ′, which means Q ⊆ x.
We may assume that x ⊆ Q1; we can improve the upper bound if Q1 is
nondegenerate. By Lemma 9, we can find a Dilworth decomposition of P
such that one chain has x as its bottom element. Each chain consists of
subsets of Q1 or consists of subsets of Q2. Using the construction in the
proof of Theorem 4, we produce two host subtrees, with a total of w(P )
leaves together (if Q2 is also nondegenerate), one of which has vertices for
simplicial neighborhoods contained in Q1, the other for Q2. Furthermore,
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x appears at a leaf in the tree for Q1. Since x contains Q, we can add an
edge between the vertex for x and the vertex representing Q2 in the other
tree. This yields a subtree representation of G with w(P )− 1 leaves. (If Q2

is degenerate, then the initial pair of subtrees has a total of w(P )+1 leaves,
but the tree for subsets of Q2 is a path with the vertex for Q2 as a leaf, and
the added edge eliminates two leaves.)

If w(P ′) ≤ w(P ) − 2 and Q1, Q2 contain distinct elements of AP − P ′,
then we may be able to save another leaf. The hypotheses of Lemma 10 hold
(with P ′ = P − P̄ ), and Lemma 10 guarantees a Dilworth decomposition of
P having chains with bottom elements x, y such that x, y ∈ P ′, Q ⊆ x ⊆ Q1,
and Q ⊆ y ⊆ Q2. As above, we use the construction in the proof of Theorem
4 to produce representations in two host subtrees, one having x at a leaf and
the other having y at a leaf. The two subtrees have a total of w(P ) + 2− α
leaves (each of Q1, Q2 that is degenerate increases the number of leaves in
the initial pair of trees by one). By adding the edge xy, we produce a subtree
representation of G with w(P ) − α leaves.

We next prove that w(P )−α is a lower bound when w(P ′) ≤ w(P )− 2.
The latter inequality implies that no element of AP is contained in Q. Hence
m1 + m2 = w(P ), where AP consists of m1 subsets of Q1 and m2 subsets
of Q2. Suppose first that m1,m2 > 0. By the argument in Lemma 6, the
simplicial vertices of G corresponding to the elements of AP contained in
Qi yield an asteroidal set Ui of size mi. Consider an optimal representation
of G. Since the host has a vertex for each maximal clique of G and sim-
plicial vertices of G appear in exactly one maximal clique, each vertex of
Ui is assigned one host vertex. Let Ti be the subtree of the host consisting
of all paths between vertices represesenting Ui. Since Ui is an asteroidal
set, Theorem 1 implies that the corresponding subtrees form an asteroidal
collection. Since these trees are single vertices, the leaves of Ti are precisely
the mi vertices assigned to elements of Ui.

If the vertex assigned to u ∈ Ui lies between the vertices assigned to
v, w ∈ U3−i, then every v, w-path in G contains a neighbor of u. On the
other hand, the vertices v, w have neighbors v ′, w′ ∈ Q3−i−Qi, and the path
v, v′, w′, w avoids N(u). This contradiction implies that the trees T1, T2 are
disjoint. We now have a total of w(P ) leaves in two disjoint subtrees, except
that this total increases by one for each Qi that is degenerate or contains
no element of AP − P ′. The host contains a unique path between these
subtrees, which reduces the number of leaves by at most two. Hence the
host has a subtree with w(P ) − α leaves, and l(G) ≥ w(P ) − α.

When w(P ′) = w(P ) − 1 and every element of AP − P ′ belongs to a
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degenerate Qi, a similar argument shows that l(G) = w(P ) − 1.

Perhaps these ideas can be combined with the “dominator tree” to obtain a
polynomial-time algorithm in general. The condition that G′ has at most two
cliques is a recognizable, since the algorithm of Rose, Tarjan, and Leuker
[21] finds a perfect elimination ordering (if one exists) in time linear in
the number of vertices plus edges, and from this the maximal cliques and
simplicial vertices are available. An algorithm for recognizing chordal graphs
with leafage at most 3 can be obtained from the material in [18].

6. Proper Leafage and Extreme Points

We now consider proper leafage. The graphs with proper leafage 2 are the
proper interval graphs, which Roberts [19] proved are precisely the unit
interval graphs. Less well-known is a structural characterization proved by
Roberts; we generalize this to obtain bounds on proper leafage.

The closed neighborhood of a vertex a is the set N [a] = N(a) ∪ {a}.
Vertices with the same closed neighborhood are equivalent in G; this defines
an equivalence relation on V (G). Each equivalence class induces a clique,
and vertices x, y from distinct classes are adjacent if and only if every vertex
equivalent to x is adjacent to every vertex equivalent to y. The reduction

G∗ of a graph G is the subgraph induced by selecting one vertex from each
equivalence class. A graph is reduced if its has no pair of distinct equivalent
vertices.

A vertex a ∈ V (G) is an extreme point (EP) in G if (1) a is simplicial
and (2) every pair of vertices in N(a) that are not equivalent to a have a
common neighbor outside N [a]. The simplicial vertices in K4−e are extreme
points, but K4−e is not reduced since the three-valent vertices have the same
closed neighborhood. Roberts used extreme points and reduced subgraphs
to characterize proper interval graphs.

Theorem 8 (Roberts [19]). A graph G is a proper interval graph if and only

if every connected reduced induced subgraph of G has at most two extreme

points.

Roberts also proved that this statement holds when “extreme points” is
replaced by “modified extreme points”. If H is a component of G − N [a],
let ∂H = {x ∈ N [a] : x has a neighbor in H}. We say that a simplicial
vertex a is a modified extreme point (MEP) if ∂H1 = ∂H2 for every pair of
components H1,H2 of G − N [a].
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Lemma 11. If a is an MEP in a connected chordal graph G that is not

a clique, and S is the set vertices of N [a] not equivalent to a, then S is a

minimal cutset of G.

Proof. Every vertex of S has a neighbor in some component of G − N [a].
If a is an MEP, then the vertices of S with neighbors in each component
of G − N [a] are the same. Hence deleting any proper subset of S does not
separate G.

As observed by Gavril [8], every chordal graph has a subtree representa-
tion by a proper family of subtrees in a host tree, meaning that no subtree
properly contains another. Roberts’ characterization works because modi-
fied extreme points force leaves in a proper subtree representationmuch as
asteroidal sets force leaves in a subtree representation. This does not hold
for extreme points. Roberts observed that the concepts of EP and MEP are
equivalent on claw-free connected chordal graphs. The following structural
lemma implies that MEP’s in chordal graphs are EP’s, but we will see that
the converse need not hold.

Lemma 12. If G is a chordal graph, and S is a minimal cutset of G, then

every component of G − S contains a vertex adjacent to every vertex of S.

Proof. Let H be a component of G−S, and let x be a vertex of H having
the maximum number of neighbors in S. If there exists v ∈ S − N(x),
then v must have a neighbor in V (H), since S is a minimal cutset of G.
Choose y ∈ N(v) ∩ V (H) with minimal distance from x in H, and let P
be a shortest x, y-path in H. Since G is chordal, S induces a clique, and
hence every vertex of S ∩ N(x) completes a cycle with P and v. This
leads to a chordless cycle unless S ∩ N(x) ⊂ N(y), which contradicts the
choice of x.

Corollary 2. If G is a connected chordal graph other than a clique, then

every MEP in G is an EP in G.

Proof. Suppose a is an MEP of a G; note that both MEP’s and EP’s must
be simplicial. By Lemma 11, the set S of vertices of N [a] not equivalent to
a is a minimal cutset. By Lemma 12, every component of G−S has a vertex
adjacent to all of S. Hence any two vertices of S have a common neighbor
outside S, and a is an EP.

We next explore the role of MEP’s in proper subtree representations.
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Lemma 13. Let G be a non-clique chordal graph with a proper subtree

representation f in a host tree T . If v is an MEP of G and f(v) does not

contain a leaf of T , then T −f(v) has a component disjoint from all subtrees

representing vertices outside N [v].

Proof. Let H be a component of G − N [v]. The subtrees for V (H) are
confined to a single component of T − f(v), since their union is connected
and shares no vertex with f(v). If w is a neighbor of v not equivalent to v,
then w has a neighbor in H, by Lemma 12. Hence f(w) contains the edge
between f(v) and the component of T − f(v) containing the subtrees for
V (H). If each component of T − f(v) contains a subtree for some vertex
outside N [v], then f(w) properly contains f(v).

Theorem 9. If G is a connected non-clique chordal, and H is a connected

reduced induced subgraph of G, then l∗(G) is at least the number of MEP’s

in H.

Proof. A proper subtree representation of G must contain a proper subtree
representation of H. It suffices to show that every proper subtree represen-
tation f of H has a distinct leaf for each MEP of H. Let v be an MEP of
H. If f(v) contains a leaf of T , associate this leaf with v. For example, if
T −f(v) is connected, then there is only one edge from f(v) to the rest of T ,
and f(v) contains a leaf of T . If T −f(v) has more than one component and
f(v) contains no leaf, then Lemma 13 yields a component T (v) of T − f(v)
that is disjoint from the trees associated with the vertices of G − N [v]. In
this case, assign a leaf of T (v) to v.

It suffices to show that the leaves associated with distinct MEP’s are
distinct. In a reduced graph, the simplicial vertices form an independent
set. Hence MEP’s u, v are non-adjacent, which implies that f(u), f(v) are
disjoint. Furthermore, f(u) also cannot intersect a component T (v) of T −
f(v) whose vertices belong to subtrees in f only for neighbors of v. These
two statements imply that no leaf of T belonging to f(u) is associated with v.
Finally, suppose that neither f(u) nor f(v) contains a leaf of T . In addition
to f(u)∩f(v) = ∅, we have observed that f(u)∩T (v) = ∅ and f(v)∩T (u) = ∅.
Since the subtrees T (u) and T (v) are obtained from T by deleting an edge
incident to f(u) and to f(v), respectively, we conclude that they cannot
have a common leaf.

Lemma 14. Every connected reduced chordal graph G has an optimal proper

subtree representation in which each MEP is assigned a leaf of the host tree

that is assigned to no other vertex.
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Proof. Let v be an MEP in G. If f(v) contains a leaf, we may extend f(v)
by adding a new neighbor of the leaf and the leaf has the desired property.
If f(v) does not contain a leaf, then there is a component T (v) of T − f(v)
whose vertices are assigned only to neighbors of v. Since G is reduced,
each neighbor of v has neighbors outside N [v]; hence its subtree extends to
another component of T − f(v). We may therefore extend f(v) to a leaf of
T (v) and to one added vertex beyond it while maintaining a proper subtree
representation.

To obtain the best lower bound from Lemma 14, we may need to consider
proper induced subgraphs. The graph P5∨K1 has two simplicial vertices, two
MEP’s, and two EP’s, but it has an induced K1,3 (which has three MEP’s)
and hence is not a proper interval graph. Nevertheless, MEP’s provide the
right answer for block graphs (compare this result with Theorem 3 and
Corollary 1). Note the contrast between this result and the fact that the
leafage of a tree G is the number of leaves in G′.

Theorem 10. The proper leafage of a block graph that is not a clique is

the number of leaf blocks. In particular, the proper leafage of a tree is the

number of leaves. (The proper leafage of a clique is 2.)

Proof. In the reduction G∗ of a block graph G, each leaf block becomes
an edge containing a simplicial vertex v. This vertex v is an MEP in G∗,
because N(v) is a single vertex, and hence each component obtained by
deleting N [v] has that vertex as its neighborhood in N [v]. This proves the
lower bound; for the upper bound, we construct a representation.

If G is a clique, we form a proper subtree representation for G by using
a collection of pairwise intersecting subpaths of a path, with the initial
vertices appearing before all the terminal vertices and in the same order as
the terminal vertices. We may choose the two vertices represented at the
leaves arbitrarily.

Let m(G) denote the number of leaf blocks in G. By induction on
the number of blocks in G, we build a proper subtree representation with
max{m(G), 2} leaves, having an arbitrary simplicial vertex from each leaf
block appearing at the leaf corresponding to that block (two such vertices
if G is a clique). We have verified this when G is a clique.

If G is choose a leaf block B, and let v be the cut-vertex of G in B. Let
f ′ be the proper representation of B in a path that has v at one leaf and the
arbitrarily specified simplical vertex in B and the other leaf. If v belongs
to at least two blocks other than B, then m(G − (B − v)) = m(G) − 1.
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The induction hypothesis provides a representation f of G − (B − v); we
complete this by adding an edge from the leaf assigned to v in f ′ to a vertex
assigned to v in f . If v belongs to only one block other than B, then this
is a leaf block in G − (B − v), and m(G − (B − v)) = m(G). In this case
the representation f of G − (B − v)) assigns a leaf to v, and we can add an
edge from it to the leaf assigned to v in f ′ without increasing the number
of leaves.

If v is a simplicial vertex of a k-tree, then N(v) is a minimal cutset, and
Lemma 12 then implies that v is an MEP. Hence the proper leafage of a
k-tree is at least the number of simplicial vertices. The 2-tree P5∨K1 shows
that this bound need not be sharp.

Lemma 15. Let v be a cut vertex of a connected chordal graph G such that

G− v has two components. If G1, G2 are the subgraphs obtained by deleting

the vertices of one of these components, then l∗(G) ≥ l∗(G1) + l∗(G2) − 2.
If G1 or G2 has proper leafage 2 and is not a clique, then l∗(G) ≥ l∗(G1) +
l∗(G2) − 1.

Proof. Let f be an optimal proper subtree representation of G. Since each
Gi is a connected subgraph, the union of the subtrees assigned to vertices
of Gi is a subtree of the host; call these T1, T2. Furthermore, vertices of
T1∩T2 can only be assigned to v. If v appears alone at a leaf, then we could
delete that leaf without losing the property of proper representation. Thus
we may assume that each leaf of T is a leaf of exactly one of T1 or T2. If
we delete vertices assigned to any vertex outside Gi, we still have a subtree
representation of Gi; we can guarantee that it is a proper representation
by growing a leaf from a vertex assigned to v. Hence we have proved that
l∗(G1) + l∗(G2) ≤ l∗(G) + 2.

If l∗(G2) = 2 and G2 is not a clique, then we can obtain a proper subtree
representation of G2 with two leaves instead of growing an extra leaf from
T2 in the construction above. Hence in this case we can improve the bound
to l∗(G1) + l∗(G2) ≤ l∗(G) + 1.

We can now present a class of examples where the gap between the proper
leafage and the maximum number of MEP’s in induced subgraphs becomes
arbitrarily large. The n-kite Gn is the graph with 3n + 1 vertices consisting
of a path P on successive vertices v0, . . . , vn, plus vertices {u1, . . . , un} and
{w1, . . . , wn} such that N(ui) = N(wi) = {vi−1, vi}. Although no induced
subgraph has more than four MEP’s, l∗(Gn) = n + 2 for n ≥ 2. Note first
that l∗(G1) = 2. For n = 2, the vertices {u1, w1, v1, u2, w2} induce K1,4, a
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subgraph in which the four leaves are MEP’s. Hence l∗(G2) ≥ 4. For n > 2,
we form Gn by identifying vn−1 from Gn−1 with v0 from G1. By the second
part of Lemma 15, we thus have l∗(Gn) ≥ l∗(Gn−1)+1, so l∗(Gn) ≥ n+2 by
induction. Figure 3 illustrates a construction that achieves equality. Note
that all 2n simplicial vertices are EP’s, but we have leaves in the proper
subtree representation for only half of them.

w1 w2 w3 w4

u1 u2 u3 u4

v0 v1 v2 v3

Figure 3. Optimal proper subtree representation of G4

Finally, we show that proper leafage equals leafage for K1,3-free chordal
graphs.

Theorem 11. If G is a K1,3-free non-clique chordal graph, then l(G), l∗(G),
a(G), and the number of inequivalent MEP’s in G are equal.

Proof. Recall that a(G) denotes the maximum size of an asteroidal set
in G, and let m(G) be the number of inequivalent MEP’s in G. If any of
a(G),m(G), l(G) is 2, then G is an interval graph. Being K1,3-free, such a
graph G is also a unit-interval graph, and hence all the parameters equal 2.
Hence we may assume the values exceed 2. We prove that m(G) = a(G) ≤
l(G) ≤ l∗(G) ≤ a(G). By Theorem 1 and the definition of proper leafage,
we need only prove the first equality and the last inequality.

In proving that m(G) = a(G), we may assume that G is reduced. Let
X be the set of MEP’s in G. To prove that m(G) ≤ a(G), we prove that X
is an asteroidal set. It suffices to show that G − N [x] is connected for each
x ∈ X. If not, then by the definition of MEP, G−N [x] has two components
H1,H2 such that U1 = U2, where Ui = {y ∈ N(x) : N(y) ∩ V (Hi) 6= ∅}.
Choose w ∈ U1, y ∈ N(w) ∩ V (H1), and z ∈ N(y) ∩ V (H2); now w, x, y, z
induce the forbidden K1,3.

We next prove that a(G) ≤ m(G). Among all maximum-sized asteroidal
sets, let X be one that maximizes the sum σ(X) of the pairwise distances
between the elements. By the argument in Lemma 7, we may assume that
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X ⊆ S(G). Consider x ∈ X. In order to prove that x is an MEP, it suffices
to prove that G−N [x] has only one component. Since vertices of X −x are
linked by paths avoiding N [x], all of X − x belongs to the same component
H1 of G − N [x]. If there is another component H2 of G − N [x], a common
neighbor of H1 and H2 in N(x) would create an induced K1,3. Hence we
could replace x in X by a vertex of H2 to obtain a maximum asteroidal set
with greater distance sum.

For the last inequality, we build a proper subtree representation of G
with a(G) leaves, by induction on n(G), in which the vertices of a maximum
asteroidal set X maximizing σ(X) appear at the leaves of the host tree.
Again we may assume that G is reduced. As proved above, each x ∈ X
is an MEP. Since G is K1,3-free, distinct components of G − N [x] cannot
have common neighbors in N(x). By Lemma 11, the vertices of N(x) form
a minimal cutset. Hence G−N [x] is connected. Thus G−N [x] cannot have
an asteroidal set of size a(G), since x would augment it to a larger asteroidal
set in G.

Now the induction hypothesis guarantees a proper subtree representa-
tion of G−x with a(G−x) leaves. If a(G−x) = a(G), then every maximum
asteroidal set in G− x has a vertex y ∈ N(x), including sets that maximize
σ and have all elements simplicial. In such a representation, we have y at a
leaf q of the host. We add a leaf adjacent to q, and to x we assign the mini-
mal subtree containing q and at least one vertex of the subtree representing
each vertex of N(x). Since x is simplicial, NG(x) ⊆ NG−x[y]. Since the rep-
resentation of G − x is proper, the result is a proper subtree representation
of G.

Finally, if a(G − x) < a(G), then we take the proper subtree represen-
tation of G− x guaranteed by induction for X − x, find a vertex of the host
at which all of N(x) appear, extend those subtrees from that vertex to a
new leaf q, and add another edge from q to another new vertex q ′, assigning
f(x) = {q, q′}.
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