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Abstract

Let G be a simple graph of order n and size e(G). It is well known
that if e(G) ≤ n−2, then there is an embedding G into its complement
G. In this note, we consider a problem concerning the uniqueness of
such an embedding.
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1. Result

We shall use the standard graph theory notation. We consider only finite,
undirected graphs of order n = |V (G)| and size e(G) = |E(G)|. All graphs
will be assumed to have neither loops nor multiple edges.

We shall need some additional definitions in order to formulate the re-
sults. If a graph G has order n and size m, we say that G is an (n,m)
graph.

Assume now that G1 and G2 are two graphs with disjoint vertex sets.
The union G = G1 ∪ G2 has V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪
E(G2). If a graph is the union of n (≥ 2) disjoint copies of a graph H, then
we write G = nH.

For our next operation, the conditions are quite different. Let now G1

and G2 be graphs with V (G1) = V (G2) and E(G1)∩E(G2) = Ø. The edge

sum G1 ⊕ G2 has V (G) = V (G1) = V (G2) and E(G) = E(G1) ∪ E(G2).
An embedding of G (in its complement G) is a permutation σ on V (G)

such that if an edge xy belongs to E(G), then σ(x)σ(y) does not belong to
E(G). In others words, an embedding is an (edge-disjoint) placement (or
packing) of two copies of G into a complete graph Kn.

The following theorem was proved, independently, in [1], [2] and [5].
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Theorem 1. Let G = (V,E) be a graph of order n. If |E(G)| ≤ n− 2, then

G can be embedded in its complement G.

The example of the star K1,n−1 shows that Theorem 1 cannot be improved
by raising the size of G.

This result has been improved in many ways but as far as we know
the problem of the uniqueness has not been considered (see e.g., the survey
paper [7]).

First, we have to precise what we mean by distinct embeddings.

Let σ be an embedding of the graph G = (V,E). We denote by σ(G) the
graph with the vertex set V and the edge set σ∗(E) where the map σ∗ is
induced by σ. Since, by definition of an embedding, the sets E and σ∗(E)
are disjoint we may form the graph G ⊕ σ(G).

Two embeddings σ1, σ1 of a graph G are said to be distinct if the graphs
G⊕ σ1(G) and G⊕ σ2(G) are not isomorphic. A graph G is called uniquely

embeddable if for all embeddings σ of G, all graphs G⊕σ(G) are isomorphic.

Our purpose is to characterize all (n, n − 2) graphs that are uniquely em-
beddable.

Theorem 2. Let G be a graph of order n and size e(G) = n − 2. Then

either G is not uniquely embeddable or G is isomorphic to one of the seven

following graphs (see also Figure 1) : K2∪K1, 2K2, K3∪2K1, K3∪K2∪K1,

C4 ∪ 2K1, K3 ∪ 2K2, 2K3 ∪ 2K1.

The proof is given in the next section.

In the case where G is a non-star tree, we have the following result. The
proof, analogous to the proof of Theorem 2, is omitted.

Theorem 3. Let T be a non-star tree of order n. Then either T is not

uniquely embeddable or T is isomorphic to the tree S ′

n obtained by subdivid-

ing one edge of the star Sn−1 or else T is the balanced double-star on six

vertices.

We shall need the following theorem which completely characterizes those
graphs with n vertices and n − 1 edges which are embeddable ([3], [4])

Theorem 4. Let G = (V,E) be a graph of order n. If |E(G)| ≤ n− 1, then

either G is embeddable or G is isomorphic to one of the following graphs:

K1,n−1, K1,n−4 ∪K3 for n ≥ 8, K1 ∪ 2K3, K1 ∪C4, K1 ∪K3, and K2 ∪K3.
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We shall use also the following version of Theorem 1 [6]:

Theorem 5. Let G = (V,E) be a graph of order n. If |E(G)| ≤ n− 2, then

there exists an embedding σ of G such that σ is a cyclic permutation.

2. Proof of Theorem 2

Let G be a graph of order n and size e(G) = n− 2. We shall consider three
main cases.

Case 1. G has an isolated vertex v and the (n−1, n−2) graph G′ = G−v
is embeddable in its complement.
Let σ be an embedding of G′. We define an embedding of G, σ1 : V (G) 7→
V (G) by putting σ1(x) = σ(x) for x ∈ V (G′) and σ1(v) = v. Note that the
graph G⊕ σ1(G) has at least one isolated vertex, namely v. Now, let a and
b be two vertices of G′ such that d(a) 6= 0, d(b) 6= 0 and σ(a) = b. If we
change slightly the permutation σ1 by putting the vertex a on v and v on b,
we obtain a permutation σ2 with one isolated vertex in G⊕σ2(G) less than
in G⊕σ1(G). So, the graphs G⊕σ1(G) and G⊕σ2(G) cannot be isomorphic.
Suppose now that σ is such that for all vertices a with d(a) 6= 0, σ(a) is
isolated in G. Denote by B the set of isolated vertices of G and by A the set
of nonisolated vertices. Let A = {a1, a2, . . . , ap} and B = {b1, b2, . . . , br}.

Since v is an isolated vertex of G we have, of course, r > p. It is easy to
see that the permutation σ1 consisting of p transpositions (ai, bi) and r − p
fixed points bp+1, . . . , br defines an embedding of G.

Observe that the graph G⊕σ1(G) has exactly r−p isolated vertices. The
second embedding is defined as follows: We put σ2(a1) = a1, σ2(b1) = b1,
and σ2(x) = σ1(x) for other vertices. Observe that the graph G⊕σ2(G) has
one isolated vertex more than the graph G⊕σ1(G).

Case 2. G has an isolated vertex v but G − v is not embeddable.
By Theorem 4, G is one of the following six graphs: K1,n−2 ∪ K1, K3 ∪
K1,n−5 ∪K1 with n ≥ 9, K3∪K2∪K1, C4 ∪2K1, K3 ∪2K1, and 2K3 ∪2K1.
If G =K1,n−2 ∪ K1, then for n = 3 we have an exceptional graph. In order
to obtain two different packings for n ≥ 4 we proceed as follows: First we
map the center of the star on the isolated vertex and the leaves on the leaves
and we get a graph with two vertices of degree n − 2 and n − 2 vertices of
degree two.

In the second packing we map the center of the star on a leaf. We get
a graph with one vertex of degree one.
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Also in the case where G = K3∪K1,n−5∪K1, n ≥ 9, two distinct embeddings
are easy to find. The details are left to the reader. Note that the remaining
cases lead to exceptional graphs.

Case 3. G has no isolated vertex.

We shall consider three subcases.

Subcase 3a. G has no isolated edge.

Denote by X the set of end-vertices of G and by Y the set V (G) \ X. Let
G′ = G \ X. The graph G′ is a (k, k − 2) graph, so, by Theorem 5 there
exists a cyclic permutation σ which embeds G′ into G′. This permutation
can be easily extended to an embedding σ1 of G by adding |X| fixed points
corresponding to |X| end-vertices of G. Observe that the graph G ⊕ σ1(G)
has exactly |X| vertices of degree two because all vertices of Y are of degree
at least four (in G⊕σ1(G)). The permutation σ2 is defined in an analogous
way but this time we do not remove all end-vertices of G but all but one,
say x. Now, the permutation σ2 has |X| − 1 fixed points which generate the
vertices of degree two in the graph G ⊕ σ2(G). Since in the set Y we have
only one end-vertex of G, all vertices of Y are of degree at least three in
G ⊕ σ2(G). Hence, the packing σ2 is different from σ1.

Subcase 3b. G has only one isolated edge x1y1.

The argument is similar as in Case 3a. We assign to the set X all end-
vertices except for y1. We put G′ = G \ X and Y = V (G) \ X. Let
σ′ = (y1,y2, . . . , yr) be a cyclic permutation which embeds G′ into G′. As
previously, this permutation can be easily extended to an embedding σ1 of
G, by adding |X| fixed points corresponding to end-vertices belonging to X.
Since Y contains only one vertex of degree one (in G), all vertices of Y are of
degree at least three (in G⊕σ1(G)). Hence, the graph G⊕σ1(G) has exactly
|X| vertices of degree two. In order to define the permutation σ2 we proceed
as follows. Let x2 be an end-vertex of G, x2 6= x1, x2 6= y1. Consider the
graph G′′ = G \ (X \ {x1}). Suppose that x2 is adjacent to yi. Observe that
if yiyi−1 /∈ E, then the cyclic permutation (y1,y2, . . . , yi, x2, yi+1, . . . , yr)
is an embedding of G′′, and if yiyi+1 /∈ E, then the cyclic permutation
(y1,y2, . . . , yi−1, x2, yi, . . . , yr) is an embedding of G′′.

As previously, we extend this permutation by considering other vertices
as fixed points. We obtain an embedding of G, say σ2. Moreover, since yiy1

is not in E, this embedding can be chosen in such a way that neither the
vertex x2 is mapped on y1 nor y1 is mapped on x2. So, the graph G⊕σ2(G)
has exactly |X| − 1 vertices of degree two.
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Subcase 3c. G has two isolated edges x1y1 and x2y2.

Recall that G has exactly n− 2 edges. The reader may check easily that for
n ≤ 7 we have necessarily n = 4 or n = 7 and G is an exceptional graph.
So, let n ≥ 8. Denote by z1, z2 two nonadjacent vertices of G of degree at
least two, if they exist. Consider the graph G′ = G \ {x1, x2, y1, y2, z1, z2}.
By Theorem 1, there exists an embedding σ ′ of G′. We shall extend σ′ by
two ways. We put:

σ1 = σ′(x1y1z1x2y2z2), σ2 = σ′(x1z1y1x2y2z2).

It is easy to see that σ1 and σ2 are embeddings of G. Observe that in both
cases the graphs G ⊕ σi(G), i = 1, 2, have the same number of vertices of
degree two. However, in the first case the maximum number of independent
vertices of degree two is greater than in the second case. Thus G⊕ σ2(G) is
not isomorphic to G ⊕ σ2(G).

There remains the case where every two vertices of degree greater than
one are adjacent. Then G is of the form G = pK2 ∪ H where H is either a
complete graph, say Kk or a graph obtained from Kk by adding some vertices
of degree one connected by an edge to V (Kk). Observe that p = 1

2
k(k−3)+2.

Consider first the other possibility and let a′ be one of such vertices
of degree one adjacent to the vertex a ∈ V (Kk). We define G′ = G \
{x1, y1, a, a′}. As above, by Theorem 1, there exists an embedding σ ′ of G′.
We extend it by two ways by putting:

σ1 = σ′(aa′x1y1), σ2 = σ′(x1a).

By a similar argument as above, it is easy to see that σ1 and σ2 are embed-
dings of G but G ⊕ σ2(G) is not isomorphic to G ⊕ σ2(G).

The case where H = Kk, k ≥ 4, is straightforward and is left to the
reader.
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