LONG CYCLES AND NEIGHBORHOOD UNION IN 1-TOUGH GRAPHS WITH LARGE DEGREE SUMS

Vu Dinh Hoa
Wundtstr. 7/4L1
01217 Dresden, Germany

Abstract

For a 1-tough graph G we define $\sigma_{3}(G)=\min \{d(u)+d(v)+$ $d(w):\{u, v, w\}$ is an independent set of vertices $\}$ and $N C_{\sigma_{3}-n+5}(G)$ $=\max \left\{\bigcup_{i=1}^{\sigma_{3}-n+5} N\left(v_{i}\right):\left\{v_{1}, \ldots, v_{\sigma_{3}-n+5}\right\}\right.$ is an independent set of vertices $\}$. We show that every 1 -tough graph with $\sigma_{3}(G) \geq n$ contains a cycle of length at least $\min \left\{n, 2 N C_{\sigma_{3}-n+5}(G)+2\right\}$. This result implies some well-known results of Faßbender [2] and of Flandrin, Jung \& Li [6]. The main result of this paper also implies that $c(G) \geq \min \left\{n, 2 N C_{2}(G)+2\right\}$ where $N C_{2}(G)=\min \{|N(u) \cup N(v)|:$ $d(u, v)=2\}$. This strengthens a result that $c(G) \geq \min \left\{n, 2 N C_{2}(G)\right\}$ of Bauer, Fan and Veldman [3].

Keywords: graphs, neighborhood, toughness, cycles.
1991 Mathematics Subject Classification: 05C38, 05C45.

Introduction

We consider only a finite undirected graph without loops and multiple edges. For undefined terms we refer to [3]. Let $\omega(G)$ denote the number of components of a graph G. A graph G is 1-tough if for every nonempty proper subset S of the vertex set $\mathrm{V}(\mathrm{G})$ of G we have $\omega(G-S) \leq|S|$. We use α to denote the cardinality of a maximum independent set of vertices of G. A cycle C in G is called a dominating cycle if the vertices of the graph $G-C$ are independent. The length $\ell(\mathrm{C})$ of a longest cycle C of G is denoted by $c(G)$. For $k \leq \alpha$ we denote by σ_{k} the minimum value of the degree sum of any k pairwise nonadjacent vertices and by $N C_{k}(G)$ the minimum cardinality of the neighborhood union of any k such vertices. For $k>\alpha$ we set $\sigma_{k}=k(n-\alpha(G))$ and $N C_{k}=n-\alpha(G)$. Instead of σ_{1} and $N C_{1}$ we use the more common notation $\delta(G)$. If no ambiguity can arise, we sometimes write α instead of $\alpha(G)$, etc.

A number of results have been established concerning long cycles in graphs with large degree sums. For details we refer to a survey [4] and [7]. Since, clearly, $N C_{t}(G)$ is a non decreasing function of t and $N C_{t}(G) \geq$ $\frac{1}{t} \sigma_{t}(G)$, analogous results in terms of $N C_{t}$ would extend well-known previous results [5].

Let $d(u, v)$ denote the distance between u and v. Our main result in the present paper is Lemma 9 and its consequence.

Theorem 1. If G is a 1-tough nonhamiltonian graph of order $n \geq 3$ with $\sigma_{3} \geq n$, then there exists in G an independent set of $\sigma_{3}-n+5$ vertices $\left\{v_{0}, . ., v_{\sigma_{3}-n+4}\right\}$ such that $d\left(v_{0}, v_{i}\right)=2(i \geq 1)$ and $c(G) \geq 2 \mid \bigcup_{i=0}^{\sigma_{3}-n+4}$ $N\left(v_{i}\right) \mid+2$.
Clearly, Theorem 1 strengthens the result of Bauer et al. (Theorem 26 in [5]) that under the same hypothesis $c(G) \geq 2 N C_{2}(G)$. Theorem 1 also implies the next result.

Theorem 2. If G is a 1 -tough graph of order $n \geq 3$ with $\sigma_{3} \geq n$, then $c(G) \geq \min \left\{n, 2 N C_{\sigma_{3}-n+5}+2\right\}$.
Theorem 1 and Theorem 2 are strongly related to other results of Broersma, Van den Heuvel \& Veldman [7] and in Van den Heuvel [8].

Theorem 3 (Corollary 6 in [7]). If G is a 1-tough graph of order $n \geq 3$ with $\sigma_{3} \geq n$, then $c(G) \geq \min \left\{n, 2 N C_{3 \bar{\delta}-n+5}\right\}$, where $\bar{\delta}=\left\lceil\frac{\sigma_{3}}{3}\right\rceil$.

Theorem 4 (Theorem 11 in [7]). If G is a 1-tough graph of order $n \geq 3$ with $\sigma_{3} \geq n+r \geq n$ and $n \geq 8 t-6 r-17$, then $c(G) \geq \min \left\{n, 2 N C_{t}\right\}$.

Theorem 5 (Corollary 7.12 in [8]). If G is a 1 -tough graph on $n \geq 3$ vertices, then $c(G) \geq \min \left\{n, 2 N C_{\left\lfloor\frac{1}{2}(4 \bar{\delta}-n+3)\right\rfloor}\right\}$.

Theorem 2 is in a sense best possible. This can be seen from the construction by Bauer et al. [3] of a 1 -tough graph G_{n} for odd $n \geq 15$. The graph G_{n} is obtained from $\bar{K}_{(n-1) / 2} \cup K_{3} \cup K_{(n-5) / 2}$ by joining every vertex of $K_{(n-5) / 2}$ to all vertices in $\bar{K}_{(n-1) / 2} \cup K_{3}$ and by adding a matching between the vertices of K_{3} and three vertices in $\bar{K}_{(n-1) / 2}$. A variation of the graph G_{n}, with $K_{(n-5) / 2}$ replaced by $\bar{K}_{(n-5) / 2}$, has already appeared in [1].

But we do not know of the existence of 1-tough graphs G on $n \geq 3$ vertices with $\sigma_{3} \geq n$ and $c(G)<n-1$ for which Theorem 2 is best possible. Moreover, we cannot conclude Theorem 2 from Theorem 3, Theorem 4
and Theorem 5. Let $G_{(n, p)}$ denote the graph $\left(F_{p} \cup \bar{K}_{(n-1) / 2-(2 p+1)}\right)+$ $K_{(n+1) / 2-(2 p+1)}$ for odd $n \geq 12 p+3 \geq 27$, where F_{p} denotes the unique graph with a degree sequence $\left(d_{1}=1, d_{2}=1, \ldots, d_{2 p+1}=1, d_{2 p+2}=2 p+1\right.$, $\left.\ldots, d_{4 p+2}=2 p+1\right)$. Then $G_{(n, p)}$ is a 1-tough graph on $n \geq 27$ vertices with $\sigma_{3} \geq n$. By Theorem $2, c\left(G_{(n, p)}\right) \geq n+1-4 p$ which cannot be deduced from Theorem 3, Theorem 4 and Theorem 5.

Theorem 2 implies a recent result of Faßbender [2], conjectured in [3].
Corollary 6. If G is a 1 -tough graph of order $n \geq 13$ with $\sigma_{3} \geq \frac{3 n-14}{2}$, then G is hamiltonian.

Proof. Clearly, $\sigma_{3} \geq n$ for $n \geq 13$ and $\sigma_{3}-n+5 \geq \frac{n-4}{2}$ if $\sigma_{3} \geq \frac{3 n-14}{2}$. Since G is a 1 -tough graph, $N C_{\left\lceil\frac{n-4}{2}\right\rceil} \geq \frac{n-2}{2}$. Hence, $2 N C_{\sigma_{3}-n+5}+2 \geq$ $2 \frac{n-2}{2}+2=n$. By Theorem $2, c(G) \geq \min \left\{n, 2 N C_{\sigma_{3}-n+5}+2\right\}=n$. Thus, G is hamiltonian.

Theorem 2 immediately implies a result of Flandrin, Jung \& Li [6].
Corollary 7. If G is a 2-connected graph of order n such that $d(u)+d(v)+$ $d(w) \geq n+|N(u) \cap N(v) \cap N(w)|$ for every independent set $\{u, v, w\}$, then G is hamiltonian.

Proof. Let G satisfy the stated conditions. Then G is 1-tough [4] and $n \leq 2 N C_{3}$ [7]. The proof is completed by applying Theorem 2 (note that $\left.N C_{\sigma_{3}-n+5} \geq N C_{3}\right)$.

Proofs

Let C be a cycle in G with an assigned orientation. If x and y are two vertices of C then $x \overrightarrow{\mathbf{C}} y$ denotes the path on C from x to y, inclusively x and y, following the assigned orientation. The same vertices in a reverse order are given by $y_{\mathbf{C}}^{\overleftarrow{C}} x$. We will consider $x \underset{\mathbf{C}}{ } y$ and $y_{\mathbf{C}} \overleftarrow{x}$ both as a path and as a vertex set. If c is a vertex on C, then c^{+}and c^{-}are its successor and predecessor on C, respectively, according to the assigned orientation. If X is a set of vertices on C let $X^{+}:=\left\{x^{+}: x \in X\right\}$ and $X^{-}:=\left\{x^{-}: x \in X\right\}$. If $v \in V(G)$ and $H \subset V(G)$ then $N_{H}(v)$ is the set of all vertices in H adjacent to v. We denote $\left|N_{H}(v)\right|$ by $d_{H}(v)$. If G is a nonhamiltonian graph, we set $\mu(C)=\max \{d(v): v \in V(G)-V(C)\}$ and $\mu(G)=\max \{\mu(C): C$ is a longest cycle in $G\}$.

The following lemmas are already proved in [3].

Lemma 1 (Theorem $5[3]$). Let G be a 1 -tough graph with $\sigma_{3} \geq n$. Then every longest cycle in G is a dominating cycle.

Lemma 2 (see proof of Theorem 9 [3]). Let G be a 1-tough graph with $\sigma_{3} \geq n$. If G is nonhamiltonian, then G has a longest cycle C such that C avoids a vertex v_{0} with $d\left(v_{0}\right) \geq \frac{\sigma_{3}}{3}$ in G.

Lemma 3 (Lemma $8[3]$). Let G be a 1 -tough graph with $\sigma_{3} \geq n$. Suppose C is a longest cycle in G. If $v_{0} \in V(G)-V(C)$ and $A=N\left(v_{0}\right)$, then $(V(G)-V(C)) \cup A^{+}$is an independent set of vertices.
Assume G is nonhamiltonian. Let C be a cycle in G with an assigned orientation, $v \in V(G)-V(C)$ and v_{1}, \ldots, v_{k} be the elements of $N(v)$, occurring on C in a consecutive order. For $i=1,2, \ldots, \mathrm{k}$ set $u_{i}=v_{i}^{+}$and $w_{i}=v_{i+1}^{-}$(indices modulo k). We set, for convenience, $\Im=\{\mathrm{i}$: there exists some $j \neq i$ such that $\left.u_{i} w_{j} \in E(G)\right\}$.

The set $u_{i} \overrightarrow{\mathbf{C}} w_{i}$ will be called a segment; $u_{i} \overrightarrow{\mathbf{C}} w_{i}$ is a p-segment if $\left|u_{i} \overrightarrow{\mathbf{C}} w_{i}\right|=p$. Let S denote the set of 1 -segments. The following lemma is observation (1) in the proof of Theorem 4 in Broersma et al. [7].

Lemma 4. $(V(G)-V(C)) \cup N(v)^{+} \cup N(S)^{+}$is an independent set of vertices.

If $d(v)=\mu(G)$ then $d(v) \geq n / 3$ because of Lemma 2 and therefore $S \neq \emptyset$. Let $u_{i_{1}}, u_{i_{2}}, \ldots, u_{i_{s}}$ be the vertices of the 1 -segments and assume, without loss of generality, that $i_{1}=1$ and $d\left(u_{1}\right) \geq d\left(u_{i_{2}}\right) \geq \ldots \geq d\left(u_{i_{s}}\right)$. Since $C^{\prime}: v v_{2} \overrightarrow{\mathbf{C}} v_{1} v$ is a longest cycle, $\mu(G) \geq d\left(u_{1}\right)$.

Lemma 5. If $\mu(G)=d(v) \leq \frac{\sigma_{3}+2}{3}$, then $d(v)=d\left(u_{1}\right)$.
Proof. Suppose to the contrary that $d\left(u_{1}\right) \leq d(v)-1$. Let $t_{C}(v)=\mid V(C)-$ $\left(N(v) \cup N(v)^{+} \cup N(v)^{-}\right) \mid$. By $n-1 \geq \ell(C)=3 d(v)-s+t_{C}(v), n-1+s-$ $3 d(v) \geq t_{C}(v)\left({ }^{*}\right)$. We distinguish 3 cases:

Case 1. $s=1$.
By $\left({ }^{*}\right)$ and by Lemma 2, in fact, $\ell(C)=n-1, d(v)=\frac{n}{3}$ and $t_{C}(v)=0$. Since G is a 1-tough graph, $G-N(v)$ contains at most $d(v)$ components. Hence, there is $i_{0} \neq j_{0}$ and some edge joining $u_{i_{0}}$ with $w_{j_{0}}$. Now, $C^{\prime}: v v_{j_{0}+1} \overrightarrow{\mathbf{C}} u_{i_{0}} w_{j_{0}} \stackrel{\leftarrow}{\mathbf{C}} v_{i_{0}+1} v$ is also a longest cycle which avoids $w_{i_{0}}$. Thus, $d\left(w_{i_{0}}\right) \leq d(v)$ by the maximality of $d(v)$, and therefore $d\left(u_{1}\right)+d\left(w_{i_{0}}\right)+d(v) \leq$ $3 d(v)-1=n-1$, a contradiction.

Case 2. $s=2$.
By $\left(^{*}\right), \frac{(n+1)}{3} \geq d(v)$ and therefore $d\left(u_{1}\right)+d\left(u_{i_{2}}\right)+d(v) \leq 3 d(v)-2 \leq n-1$, a contradiction.

Case 3. $s \geq 3$.
In this case we have $d\left(u_{1}\right)+d\left(u_{i_{2}}\right)+d\left(u_{i_{3}}\right) \leq 3 d(v)-3 \leq \sigma_{3}-1$, a contradiction. Thus, Lemma 5 is true.

Lemma 6. If C contains only p-segments with $p \leq 3$, then $\Im \neq \emptyset$.
Proof. Suppose to the contrary that $\Im=\emptyset$. We consider $G-\left(N(v) \cup\left\{u_{i}^{+}\right.\right.$: $u_{i} \overrightarrow{\mathbf{C}} w_{i}$ is a 3 -segment and $\left.\left.u_{i} w_{i} \notin E(G)\right\}\right)$. Since G is a 1-tough graph there exists $i \neq j$ and some arc \mathbf{B} joining a vertex p in $u_{i} \overrightarrow{\mathbf{C}} w_{i}$ with a vertex q in $u_{j} \overrightarrow{\mathbf{C}} w_{j}$. By Lemma 3 and since $\Im=\emptyset, p=u_{i}^{+}=w_{i}^{-}$or $q=u_{j}^{+}=w_{j}^{-}$, say $p=u_{i}^{+}=w_{i}^{-}$and therefore $u_{i} w_{i} \in E(G)$. We distinguish two cases:

Case 1. $q=u_{j}$ (similar for the case $q=w_{j}$).
In this case $C^{\prime}: v v_{j} \overleftarrow{\mathbf{C}} w_{i} u_{i} p \mathbf{B} u_{j} \overrightarrow{\mathbf{C}} v_{i} v$ would be a cycle longer than C, a contradiction.

Case 2. $q=u_{j}^{+}=w_{j}^{-}$.
In this case $C^{\prime}: v v_{j} \overleftarrow{\mathbf{C}} w_{i} u_{i} p \mathbf{B} q u_{j} w_{j} \overrightarrow{\mathbf{C}} v_{i} v$ would be a cycle longer than C, a contradiction. Thus Lemma 6 is true.

Lemma 7. Suppose that $\Im \neq \emptyset$. Let $i_{0}=\max \Im$ and $j_{0} \neq i_{0}$ such that $u_{i 0} w_{j_{0}} \in E(G)$. Suppose that $v_{i_{0}} u_{1} \in E(G)$ or $\left\{u_{1} v_{j_{0}+1}, u_{1} v_{j_{0}}\right\} \subset E(G)$. Then $d\left(u_{j_{0}}\right)+2 d(v) \leq \ell(C)+x$, where x is the number of vertices $u_{i}=w_{i}$ such that $v_{i_{0}} u_{i} \notin E(G)$ and $\left\{u_{i} v_{j_{0}+1}, u_{i} v_{j_{0}}\right\} \nsubseteq E(G)$.
Proof. To prove this lemma we start with a trivial observation.
$\left.{ }^{*}\right)$ If $u_{i} v_{i_{0}} \in E(G)$ or $u_{i} v_{j_{0}+1} \in E(G)$ then $u_{i} \in w_{j_{0}} \overrightarrow{\mathbf{c}} u_{i_{0}}$.
For $i=1,2, \ldots, \mathrm{k}$ we set $L_{i}:=u_{i} \overrightarrow{\mathbf{C}} v_{i+1}$. Then $d_{L_{i}}\left(u_{j_{0}}\right) \leq\left|L_{i}\right|-1$ because of $u_{i} u_{j_{0}} \notin E(G)$ by Lemma 3. Since $d\left(u_{j_{0}}\right)=\sum_{i=1}^{k} d_{L_{i}}\left(u_{j_{0}}\right)$ it suffices to show that $d_{L_{i}}\left(u_{j_{0}}\right) \leq\left|L_{i}\right|-2$ (i.e. there exists on L_{i} some $z \neq u_{i}$ such that $\left.z u_{j_{0}} \notin E(G)\right)$ for $u_{i} \neq w_{i}$ and for $u_{i}=w_{i}$ with $v_{i_{0}} u_{i} \in E(G)$ or $\left\{u_{i} v_{j_{0}+1}, u_{i} v_{j_{0}}\right\} \subseteq E(G)$.

Note that $j_{0}>i_{0}$ and $v_{j_{0}+1} \neq v_{i_{0}}$ by $\left(^{*}\right)($ for $i=1)$. Thus $w_{i} u_{j_{0}} \notin E(G)$ if $w_{i} \neq u_{i}$ and $i \neq j_{0}$ because of the maximality of i_{0}. If $i=j_{0}$, then $v_{j_{0}+1} u_{j_{0}} \notin E(G)$ by $\left({ }^{*}\right)$. If $u_{i}=w_{i}$ with $v_{i_{0}} u_{i} \in E(G)$ or $\left\{u_{i} v_{j_{0}+1}, u_{i} v_{j_{0}}\right\} \subseteq$ $E(G)$ then $u_{i} \in w_{j_{0}} \overrightarrow{\mathbf{C}} u_{i_{0}}$ by $\left(^{*}\right)$ and therefore $v_{i+1} u_{j_{0}} \notin E(G)$. Otherwise, $C^{\prime}: v v_{j_{0}+1} \overrightarrow{\mathbf{C}} u_{i} v_{i_{0}} \stackrel{\leftarrow}{\mathbf{C}} v_{i+1} u_{j_{0}} \overrightarrow{\mathbf{C}} w_{j_{0}} u_{i_{0}} \overrightarrow{\mathbf{C}} v_{j_{0}} v$, when $u_{i} v_{i_{0}} \in E(G)$,
and $C^{\prime}: v v_{i} \overleftarrow{\mathbf{C}} v_{j_{0}+1} u_{i} v_{j_{0}} \overleftarrow{\mathbf{C}} u_{i_{0}} w_{j_{0}} \stackrel{\leftarrow}{\mathbf{C}} u_{j_{0}} v_{i+1} \overrightarrow{\mathbf{C}} v_{i_{0}} v$ when $\left\{u_{i} v_{j_{0}+1}, u_{i} v_{j_{0}}\right\} \subseteq$ $E(G)$ would be a cycle longer than C, a contradiction. Thus Lemma 7 is true.

Theorem 1 is obviously established by the next two lemmas.
Lemma 8. Let $X=N(v) \bigcup\left\{N\left(u_{i}\right): u_{i} \in S\right\}$. Then $\ell(C) \geq 2|X|+2$.
Proof. Let x_{1}, \ldots, x_{y} be the vertices of X, occurring on C in a consecutive order. By Lemma $4, X \cap X^{+}=\emptyset$. Since G is a 1 -tough graph, there exist some $i \neq j$ and some arc joining a vertex y on $x_{i}^{+} \overrightarrow{\mathrm{C}} x_{i+1}^{-}$with a vertex z on $x_{j}^{+} \overrightarrow{\mathbf{C}} x_{j+1}^{-}$. Without loss of generality, assume that $\left|x_{i}^{+} \overrightarrow{\mathbf{C}} x_{j+1}^{-}\right| \leq\left|x_{j}^{+} \overrightarrow{\mathbf{C}} x_{j+1}^{-}\right|$. Then by Lemma $4, z \notin\left\{x_{j}^{+}, x_{j+1}^{-}\right\}$if $x_{i}^{+}=x_{i+1}^{-}$. Thus, $\ell(C) \geq 2|X|+2$.
Following Broersma et al. [7], we say that a property \mathbf{P} holds by the longest cycle argument, denoted by $\mathbf{P}\left(\mathrm{C}^{\prime}\right)$, if the contrary implies the existence of a cycle C^{\prime} longer than C.

Now, we give and prove a lower bound of so called 1 -segments. Theorem 1 is established by the last lemma.

Lemma 9. Let G be a 1-tough nonhamiltonian graph on $n \geq 3$ vertices with $\sigma_{3} \geq n$. Then G contains a longest cycle C avoiding a vertex v with $d(v)=\mu(G)$ and $s \geq \sigma_{3}-n+4$.
Proof. Assume to the contrary that $s \leq \sigma_{3}-n+3$ for any longest cycle C avoiding a vertex v with $d(v)=\mu(G)$. Let $t_{C}(v)=\mid V(C)-\left(N(v) \cup N(v)^{+} \cup\right.$ $\left.N(v)^{-}\right)$|.

Claim 1. If C is a longest cycle in G avoiding a vertex v with $d(v)=\mu(G)$, then $d(v) \leq \frac{\sigma_{3}+2}{3}$ and $t_{C}(v) \leq 2$ with strict inequality if $\mu(G) \neq \frac{\sigma_{3}}{3}$ or $\ell(C) \neq n-1$.

Proof. Counting the vertices on C we get $n-1 \geq \ell(C)=3 d(v)-s+t_{C}(v)$. Thus, $\sigma_{3}+2-t_{C}(v) \geq 3 d(v)$ and $\sigma_{3}-3 d(v)+2 \geq t_{C}(v)$, establishing Claim 1.

Claim 2. If C is a longest cycle avoiding a vertex v with $d(v)=\mu(G)$, then $\Im=\emptyset$.
Proof. Supposing that $\Im \neq \emptyset$, we determine $i_{0}=\max \Im$ and $j_{0} \neq i_{0}$ such that $u_{i_{0}} w_{j_{0}} \in E(G)$. First note that if $u_{i}=w_{i}$ and $d\left(u_{i}\right)=d(v)$, then by $P\left(C^{\prime}\right) u_{i} u_{i_{0}}^{+} \notin E(G)\left(C^{\prime}: v v_{i} \stackrel{\leftarrow}{\mathbf{C}} u_{i_{0}}^{+} u_{i} \overrightarrow{\mathbf{C}} w_{j_{0}} u_{i_{0}} \stackrel{\leftarrow}{\mathbf{C}} v_{j_{0}+1} v\right.$ when $u_{i} \in u_{i_{0}} \overrightarrow{\mathbf{C}} w_{j_{0}}$ and $C^{\prime}: v v_{i+1} \overrightarrow{\mathbf{C}} u_{i_{0}} w_{j_{0}} \stackrel{\leftarrow}{\mathbf{C}} u_{i_{0}}^{+} u_{i} \stackrel{\leftarrow}{\mathbf{C}} v_{j_{0}+1} v$ when $\left.u_{i} \in w_{j_{0}} \stackrel{\leftarrow}{\mathbf{C}} u_{i_{0}}\right)$. Similarly,
$u_{i} w_{j_{0}}^{-} \notin E(G)$. Consequently, $u_{i} v_{i_{0}} \in E(G)$ or $\left\{u_{i} v_{j_{0}+1}, u_{i} v_{j_{0}}\right\} \subset E(G)$ since, otherwise, $t_{C^{\prime}}\left(u_{i}\right) \geq 3$ where $C^{\prime}: v v_{i} \overleftarrow{\leftarrow} v_{i+1} v$, which contradicts Claim 1. By Lemma 5 and by Claim $1, d\left(u_{1}\right)=d(v)$. Now using Lemma 7 we have $d\left(u_{1}\right)+d(v)+d\left(u_{j_{0}}\right)=2 d(v)+d\left(u_{j_{0}}\right) \leq \ell(C)+x$, where x is the number of vertices $u_{i}=w_{i}$ such that $d\left(u_{i}\right) \leq d(v)-1$. By $\sigma_{3} \geq n, x \geq 1$. Hence, $d(v)+d\left(u_{i_{s}}\right)+d\left(u_{j_{0}}\right) \leq \ell(C)+x-1$ and, by similar argument, $x \geq 2$. Note that by $\frac{\sigma_{3}+2}{3} \geq d(v), x \leq 2$ by $d\left(u_{i_{s}}\right)+d\left(u_{i_{s-1}}\right)+d\left(u_{i_{s-2}}\right) \geq \sigma_{3}$ and, by $x \geq 2$, in fact, $x=2$. Now we get $d\left(u_{i_{s-1}}\right)+d\left(u_{i_{s}}\right)+d\left(u_{j_{0}}\right) \leq \ell(C)<n$, a contradiction.
The next claim is obviously established by Lemma 6, Claim 2 and Claim 1.
Claim 3. If C is a longest cycle and $v \in V(G)-V(C)$ such that $d(v)=$ $\mu(G)$, then $t_{C}(v)=2$ and C contains a 4 -segment.
By Claim 1, we get $\ell(C)=n-1$ and $d(v)=\sigma_{3} / 3$. Using the inequality $n-1 \geq 3 d(v)-s+t_{C}(v)$ and $t_{C}(v)=2$ by Claim 3 , we get $s \geq \sigma_{3}-n+3 \geq 3$. By $d\left(u_{i}\right)+d\left(u_{1}\right)+d(v) \geq \sigma_{3}$, we easily get:

Claim 4. If C is a longest cycle avoiding a vertex v with $d(v)=\mu(G)$, then $d\left(u_{i}\right) \geq d(v)=\frac{\sigma_{3}}{3}$ and $d\left(w_{i}\right) \geq d(v)$ with equality if $u_{i}=w_{i}$.

Claim 5. If C is a longest cycle avoiding a vertex v with $d(v)=\mu(G)$, then $N\left(u_{i}\right)=N(v)$ for any $u_{i}=w_{i}$.
Proof. Suppose that there exists some $u_{i}=w_{i}$ such that $N\left(u_{i}\right) \neq N(v)$. By Claim 4, either $u_{t}^{+} u_{i} \in E(G)$ or $w_{t}^{-} u_{i} \in E(G)$, say $u_{t}^{+} u_{i} \in E(G)$. Note that $u_{t} w_{t} \notin E(G)\left(C^{\prime}: v v_{i+1} \overrightarrow{\mathbf{C}} u_{t} w_{t} \overleftarrow{\mathbf{C}} u_{t}^{+} u_{i} \overleftarrow{\mathbf{C}} v_{t+1} v\right)$ and $u_{t} w_{t}^{-} \notin E(G)$ $\left(C^{\prime}: v v_{i} \stackrel{\overleftarrow{\mathbf{C}}}{ } w_{t}^{-} u_{t} u_{t}^{+} u_{i} \overrightarrow{\mathbf{C}} v_{t} v\right)$. Therefore there exits some j such that either $w_{t}^{-} w_{j} \in E(G)$ or $w_{t}^{-} u_{j} \in E(G)$ since $\omega\left(G-N(v)-\left\{u_{t}^{+}\right\}\right) \leq d(v)+1$ by the toughness of G and by Claim 2. But $w_{t}^{-} u_{j} \notin E(G)\left(C^{\prime}: v v_{i+1} \overrightarrow{\mathbf{C}} u_{t}^{+} u_{i}\right.$ $\stackrel{\leftarrow}{\mathbf{C}} u_{j} w_{t}^{-} \overrightarrow{\mathbf{C}} v_{j} v$ when $u_{j} \in u_{t}^{+} \overrightarrow{\mathbf{C}} u_{i}$ and $C^{\prime}: v v_{j} \overleftarrow{\mathbf{C}} u_{i} u_{t}^{+} \overleftarrow{\mathbf{C}} u_{j} w_{t}^{-} \overrightarrow{\mathbf{C}} v_{i} v$ when $\left.u_{j} \notin u_{t}^{+} \overrightarrow{\mathbf{C}} u_{i}\right)$ and therefore $w_{t}^{-} w_{j} \in E(G)$. Moreover, $w_{j} \in u_{t} \overrightarrow{\mathbf{C}} u_{i}^{-}$ $\left(C^{\prime}: v v_{j+1} \overrightarrow{\mathbf{C}} u_{t}^{+} u_{i} \overrightarrow{\mathbf{C}} w_{j} w_{t}^{-} \overrightarrow{\mathbf{C}} v_{i} v\right)$. By Claim $2, d\left(w_{t}\right) \leq d(v)-1$ since $w_{t} v_{i+1} \notin E(G)\left(C^{\prime}: v v_{j+1} \overrightarrow{\mathbf{C}} u_{i} u_{t}^{+} \overleftarrow{\mathbf{C}} v_{i+1} w_{t} w_{t}^{-} w_{j} \stackrel{\leftarrow}{\mathbf{C}} v_{t+1} v\right), w_{t} v_{j+1} \notin E(G)$ $\left(C^{\prime}: v v_{i+1} \underset{\mathbf{C}}{\overrightarrow{\mathbf{C}}} u_{t}^{+} u_{i} \stackrel{\leftarrow}{\mathbf{C}} v_{j+1} w_{t} w_{t}^{-} w_{j} \underset{\mathbf{C}}{\overleftarrow{C}} v_{t+1} v\right)$ and $w_{t} u_{t}^{+} \notin E(G)\left(C^{\prime}: v v_{j+1}\right.$ $\left.\overrightarrow{\mathbf{C}} u_{t}^{+} w_{t} w_{t}^{-} w_{j}^{\leftarrow} \stackrel{\leftarrow}{\mathbf{C}} v_{t+1} v\right)$ (note that $u_{t} w_{t} \notin E(G)$), which contradicts Claim 4. Thus Claim 5 is true.

Now, a longest cycle C and a vertex $v_{0} \in V(G)-V(C)$ with $d\left(v_{0}\right)=\mu(G)$ are fixed. Then there exists one t such that $\left|u_{t} \overrightarrow{\mathbf{C}} w_{t}\right|=4$ and $\left|u_{i} \overrightarrow{\mathbf{C}} w_{i}\right| \leq 2$ for any $i \neq t$.

Since G is a 1-tough graph, $\omega\left(G-N\left(v_{0}\right)\right) \leq d\left(v_{0}\right)$ and therefore there exist $i \neq j$ and some $y \in u_{i} \overrightarrow{\mathbf{C}} w_{i}, z \in u_{j} \overrightarrow{\mathbf{C}} w_{j}$ such that $y z \in E(G)$. Since $\Im=\emptyset$ by Claim 2, either $i=t$ or $j=t$, say $j=t$ and assume, without loss of generality, that $y=u_{i}$. We distinguish two cases.

Case 1. $u_{i} u_{t}^{+} \in E(G)$.
We consider the pair u_{t} and $C^{\prime}: v_{0} v_{i} \stackrel{\leftarrow}{\mathbf{C}} u_{t}^{+} u_{i} \overrightarrow{\mathbf{C}} v_{t} v_{0}$. By the maximality of $d\left(v_{0}\right)$, Claim 4 for v_{0} and C yields $\mu\left(C^{\prime}\right)=d\left(u_{t}\right)=\mu(G)$. Now, Claim 3, 4 and 5 can be applied to u_{t} and C^{\prime}. If $v_{i} u_{t} \notin E(G)$, then $v_{i-1}^{+} \overrightarrow{\mathbf{C}} v_{i} v_{0}$ is the 4 -segment of u_{t} and C^{\prime}, consequently $u_{i-1} \neq w_{i-1}$. If $v_{j} u_{t} \notin E(G)$ for some $v_{j} \neq v_{i}, v_{t}$ then $v_{j-1}^{+} \overrightarrow{\mathbf{C}} v_{j+1}^{-}$is the 4 -segment of u_{t} and C^{\prime}, therefore either $u_{i} \overrightarrow{\mathbf{C}} w_{i}$ or $u_{i-1} \overrightarrow{\mathbf{C}} w_{i-1}$ is a 2 -segment of v_{0} and C. It follows by $s \geq 3$ that some 1 -segment of v_{0} and C is also a 1 -segment of u_{t} and C^{\prime}. But this contradicts $N\left(u_{t}\right) \neq N(v)$ and Claim 5 (applied to both pairs v_{0}, C and $\left.u_{t}, C^{\prime}\right)$. This rejects Case 1.

Case 2. $u_{i} w_{t}^{-} \in E(G)$.
In this Case $N\left(u_{t}^{+}\right) \cap N\left(v_{0}\right)^{+}=\left\{u_{t}\right\}$ by Case 1. Since G is 1 -tough and $u_{t} w_{t} \notin E(G)\left(C^{\prime}: v_{0} v_{t} \stackrel{\leftarrow}{\mathbf{C}} u_{i} w_{t}^{-} \stackrel{\leftarrow}{\mathbf{C}} u_{t} w_{t} \overrightarrow{\mathbf{C}} v_{i} v_{0}\right)$ it follows that u_{t}^{+}has a neighbor w_{j}. Clearly w_{j} is on $w_{t} \overrightarrow{\mathbf{C}} v_{i}\left(C^{\prime}: v_{0} v_{j+1} \overrightarrow{\mathbf{C}} u_{t}^{+} w_{j} \stackrel{\leftarrow}{\mathbf{C}} u_{i} w_{t}^{-} \overrightarrow{\mathbf{C}} v_{i} v_{0}\right)$. Now consider the pair w_{i} and $C^{\prime}: v_{0} v_{i+1} \overrightarrow{\mathbf{C}} u_{t}^{+} w_{j} \stackrel{\leftarrow}{\mathbf{C}} w_{t}^{-} u_{i} \stackrel{\leftarrow}{\mathbf{C}} v_{j+1} v_{0}$ to obtain a contradiction as in Case 1.

Conjecture

The lower bound on the number of so called 1 -segments on a longest cycle in Lemma 9 is best possible only for $c(G)=n-1$.

Conjecture. Let G be a 1-tough nonhamiltonian graph on $n \geq 3$ vertices with $\sigma_{3} \geq n$. Then G contains a longest cycle C (with an assigned orientation) avoiding a vertex v with $d(v)=\mu(G)$ and $\left|N_{C}(v)^{+} \cap N_{C}(v)^{-}\right| \geq$ $\sigma_{3}-n+3 \omega(G-C)+1$.

The graphs $G_{(n, p)}$ show that our Conjecture, if true, is best possible, also in case $c(G)<n-1$.

Acknowledgement

The author would like to thank the referees for their comments and many helpful suggestions to improve the proofs in the paper.

References

[1] A. Bigalke and H.A. Jung, Über Hamiltonsche Kreise und unabhängige Ecken in Graphen, Monatsh. Mathematics 88 (1979) 195-210.
[2] B. Faßbender, A sufficient condition on degree sums of independent triples for hamiltonian cycles in 1-tough graphs, Ars Combinatoria 33 (1992) 300-304.
[3] D. Bauer, A. Morgana, E. Schmeichel and H.J. Veldman, Long cycles in graphs with large degree sums, Discrete Mathematics 79 (1989/90) 59-70.
[4] D. Bauer, H.J. Broersma and H.J. Veldman, Around three lemmas in hamiltonian graph theory, in: R. Bodendiek and R. Henn, eds., Topics in Combinatorics and Graph Theory. Festschrift in honour of Gerhard Ringel, PhysicaVerlag, Heidelberg (1990) 101-110.
[5] D. Bauer, G. Fan and H.J. Veldman, Hamiltonian properties of graphs with large neighborhood unions, Discrete Mathematics 96 (1991) 33-49.
[6] E. Flandrin, H.A. Jung and H. Li, Hamiltonism, degree sum and neighborhood intersections, Discrete Mathematics 90 (1991) 41-52.
[7] H.J. Broersma, J. Van den Heuvel and H.J. Veldman, Long Cycles, Degree sums and Neighborhood Unions, Discrete Mathematics 121 (1993) 25-35.
[8] J. Van den Heuvel, Degree and Toughness Condition for Cycles in Graphs, Thesis (1994) University of Twente, Enschede Niederland.

