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Abstract

For a 1-tough graph G we define σ3(G) = min{d(u) + d(v)+
d(w) : {u, v, w} is an independent set of vertices} and NCσ3−n+5(G)

= max{
⋃

σ3−n+5

i=1
N(vi) : {v1, ..., vσ3−n+5} is an independent set of

vertices}. We show that every 1-tough graph with σ3(G) ≥ n con-
tains a cycle of length at least min{n, 2NCσ3−n+5(G) + 2}. This re-
sult implies some well-known results of Faßbender [2] and of Flan-
drin, Jung & Li [6]. The main result of this paper also implies that
c(G) ≥ min{n, 2NC2(G) + 2} where NC2(G) = min{|N(u) ∪ N(v)| :
d(u, v) = 2}. This strengthens a result that c(G) ≥ min{n, 2NC2(G)}
of Bauer, Fan and Veldman [3].
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Introduction

We consider only a finite undirected graph without loops and multiple edges.
For undefined terms we refer to [3]. Let ω(G) denote the number of com-
ponents of a graph G. A graph G is 1-tough if for every nonempty proper
subset S of the vertex set V(G) of G we have ω(G − S) ≤ |S|. We use α
to denote the cardinality of a maximum independent set of vertices of G.
A cycle C in G is called a dominating cycle if the vertices of the graph
G−C are independent. The length `(C) of a longest cycle C of G is denoted
by c(G). For k ≤ α we denote by σk the minimum value of the degree
sum of any k pairwise nonadjacent vertices and by NCk(G) the minimum
cardinality of the neighborhood union of any k such vertices. For k > α we
set σk = k(n − α(G)) and NCk = n − α(G). Instead of σ1 and NC1 we use
the more common notation δ(G). If no ambiguity can arise, we sometimes
write α instead of α(G), etc.
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A number of results have been established concerning long cycles in graphs
with large degree sums. For details we refer to a survey [4] and [7].
Since, clearly, NCt(G) is a non decreasing function of t and NCt(G) ≥
1
t σt(G), analogous results in terms of NCt would extend well-known previous
results [5].

Let d(u, v) denote the distance between u and v. Our main result in the
present paper is Lemma 9 and its consequence.

Theorem 1. If G is a 1-tough nonhamiltonian graph of order n ≥ 3 with
σ3 ≥ n, then there exists in G an independent set of σ3 − n + 5 vertices
{v0, .., vσ3−n+4} such that d(v0, vi) = 2 (i ≥ 1) and c(G) ≥ 2|

⋃σ3−n+4
i=0

N(vi)| + 2.

Clearly, Theorem 1 strengthens the result of Bauer et al. (Theorem 26 in [5])
that under the same hypothesis c(G) ≥ 2NC2(G). Theorem 1 also implies
the next result.

Theorem 2. If G is a 1-tough graph of order n ≥ 3 with σ3 ≥ n, then
c(G) ≥ min{n, 2NCσ3−n+5 + 2}.

Theorem 1 and Theorem 2 are strongly related to other results of Broersma,
Van den Heuvel & Veldman [7] and in Van den Heuvel [8].

Theorem 3 (Corollary 6 in [7]). If G is a 1-tough graph of order n ≥ 3
with σ3 ≥ n, then c(G) ≥ min{n, 2NC3δ̄−n+5}, where δ̄ = dσ3

3 e.

Theorem 4 (Theorem 11 in [7]). If G is a 1-tough graph of order n ≥ 3
with σ3 ≥ n + r ≥ n and n ≥ 8t − 6r − 17, then c(G) ≥ min{n, 2NCt}.

Theorem 5 (Corollary 7.12 in [8]). If G is a 1-tough graph on n ≥ 3
vertices, then c(G) ≥ min{n, 2NCb 1

2
(4δ̄−n+3)c}.

Theorem 2 is in a sense best possible. This can be seen from the construction
by Bauer et al. [3] of a 1-tough graph Gn for odd n ≥ 15. The graph Gn is
obtained from K̄(n−1)/2∪K3∪K(n−5)/2 by joining every vertex of K(n−5)/2 to
all vertices in K̄(n−1)/2 ∪K3 and by adding a matching between the vertices
of K3 and three vertices in K̄(n−1)/2. A variation of the graph Gn, with
K(n−5)/2 replaced by K̄(n−5)/2, has already appeared in [1].

But we do not know of the existence of 1-tough graphs G on n ≥ 3
vertices with σ3 ≥ n and c(G) < n − 1 for which Theorem 2 is best possi-
ble. Moreover, we cannot conclude Theorem 2 from Theorem 3, Theorem 4
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and Theorem 5. Let G(n,p) denote the graph (Fp ∪ K̄(n−1)/2−(2p+1)) +
K(n+1)/2−(2p+1) for odd n ≥ 12p + 3 ≥ 27, where Fp denotes the unique
graph with a degree sequence (d1 = 1, d2 = 1, ..., d2p+1 = 1, d2p+2 = 2p+1,
..., d4p+2 = 2p + 1). Then G(n,p) is a 1-tough graph on n ≥ 27 vertices with
σ3 ≥ n. By Theorem 2, c(G(n,p)) ≥ n + 1 − 4p which cannot be deduced
from Theorem 3, Theorem 4 and Theorem 5.

Theorem 2 implies a recent result of Faßbender [2], conjectured in [3].

Corollary 6. If G is a 1-tough graph of order n ≥ 13 with σ3 ≥ 3n−14
2 , then

G is hamiltonian.

Proof. Clearly, σ3 ≥ n for n ≥ 13 and σ3 − n + 5 ≥ n−4
2 if σ3 ≥ 3n−14

2 .
Since G is a 1-tough graph, NCdn−4

2
e ≥ n−2

2 . Hence, 2NCσ3−n+5 + 2 ≥

2n−2
2 + 2 = n. By Theorem 2, c(G) ≥ min{n, 2NCσ3−n+5 + 2} = n. Thus,

G is hamiltonian.

Theorem 2 immediately implies a result of Flandrin, Jung & Li [6].

Corollary 7. If G is a 2-connected graph of order n such that d(u)+d(v)+
d(w) ≥ n + |N(u) ∩ N(v) ∩ N(w)| for every independent set {u, v, w}, then
G is hamiltonian.

Proof. Let G satisfy the stated conditions. Then G is 1-tough [4] and
n ≤ 2NC3 [7]. The proof is completed by applying Theorem 2 (note that
NCσ3−n+5 ≥ NC3).

Proofs

Let C be a cycle in G with an assigned orientation. If x and y are two
vertices of C then x→

C
y denotes the path on C from x to y, inclusively x

and y, following the assigned orientation. The same vertices in a reverse
order are given by y←

C
x. We will consider x→

C
y and y←

C
x both as a path

and as a vertex set. If c is a vertex on C, then c+ and c− are its successor and
predecessor on C, respectively, according to the assigned orientation. If X is
a set of vertices on C let X+ := {x+ : x ∈ X} and X− := {x− : x ∈ X}. If
v ∈ V (G) and H ⊂ V (G) then NH(v) is the set of all vertices in H adjacent
to v. We denote |NH(v)| by dH(v). If G is a nonhamiltonian graph, we
set µ(C) = max{d(v) : v ∈ V (G) − V (C)} and µ(G) = max{µ(C) : C is a
longest cycle in G}.

The following lemmas are already proved in [3].
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Lemma 1 (Theorem 5 [3]). Let G be a 1-tough graph with σ3 ≥ n. Then
every longest cycle in G is a dominating cycle.

Lemma 2 (see proof of Theorem 9 [3]). Let G be a 1-tough graph with
σ3 ≥ n. If G is nonhamiltonian, then G has a longest cycle C such that C
avoids a vertex v0 with d(v0) ≥

σ3

3 in G.

Lemma 3 (Lemma 8 [3]). Let G be a 1-tough graph with σ3 ≥ n. Suppose
C is a longest cycle in G. If v0 ∈ V (G) − V (C) and A = N(v0), then
(V (G) − V (C)) ∪ A+ is an independent set of vertices.

Assume G is nonhamiltonian. Let C be a cycle in G with an assigned
orientation, v ∈ V (G) − V (C) and v1 ,..., vk be the elements of N(v),
occurring on C in a consecutive order. For i = 1, 2, ..., k set ui = v+

i and
wi = v−i+1 (indices modulo k). We set, for convenience, = = { i : there exists
some j 6= i such that uiwj ∈ E(G)}.

The set ui
→
C

wi will be called a segment; ui
→
C

wi is a p-segment if
|ui
→
C

wi| = p. Let S denote the set of 1-segments. The following lemma is
observation (1) in the proof of Theorem 4 in Broersma et al. [7].

Lemma 4. (V (G) − V (C)) ∪ N(v)+ ∪ N(S)+ is an independent set of
vertices.

If d(v) = µ(G) then d(v) ≥ n/3 because of Lemma 2 and therefore S 6= ∅.
Let ui1 , ui2 , ..., uis be the vertices of the 1-segments and assume, without
loss of generality, that i1 = 1 and d(u1) ≥ d(ui2) ≥ ... ≥ d(uis). Since
C ′ : vv2

→
C

v1v is a longest cycle, µ(G) ≥ d(u1).

Lemma 5. If µ(G) = d(v) ≤ σ3+2
3 , then d(v) = d(u1).

Proof. Suppose to the contrary that d(u1) ≤ d(v)−1. Let tC(v) = |V (C)−
(N(v)∪N(v)+ ∪N(v)−)|. By n− 1 ≥ `(C) = 3d(v)− s+ tC(v), n− 1 + s−
3d(v) ≥ tC(v) (*). We distinguish 3 cases:

Case 1. s = 1.
By (*) and by Lemma 2, in fact, `(C) = n − 1, d(v) = n

3 and tC(v) = 0.
Since G is a 1-tough graph, G − N(v) contains at most d(v) compo-
nents. Hence, there is i0 6= j0 and some edge joining ui0 with wj0 . Now,
C ′ : vvj0+1

→
C

ui0wj0
←
C

vi0+1v is also a longest cycle which avoids wi0 . Thus,
d(wi0) ≤ d(v) by the maximality of d(v), and therefore d(u1)+d(wi0 )+d(v) ≤
3d(v) − 1 = n − 1, a contradiction.
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Case 2. s = 2.
By (*), (n+1)

3 ≥ d(v) and therefore d(u1)+d(ui2)+d(v) ≤ 3d(v)−2 ≤ n−1,
a contradiction.

Case 3. s ≥ 3.
In this case we have d(u1) + d(ui2) + d(ui3) ≤ 3d(v) − 3 ≤ σ3 − 1, a contra-
diction. Thus, Lemma 5 is true.

Lemma 6. If C contains only p-segments with p ≤ 3, then = 6= ∅.

Proof. Suppose to the contrary that = = ∅. We consider G−(N(v)∪{u+
i :

ui
→
C

wi is a 3-segment and uiwi /∈ E(G)}). Since G is a 1-tough graph there
exists i 6= j and some arc B joining a vertex p in ui

→
C

wi with a vertex q in
uj
→
C

wj . By Lemma 3 and since = = ∅, p = u+
i = w−i or q = u+

j = w−j , say

p = u+
i = w−i and therefore uiwi ∈ E(G). We distinguish two cases:

Case 1. q = uj (similar for the case q = wj).
In this case C ′ : vvj

←
C

wiuipBuj
→
C

viv would be a cycle longer than C,
a contradiction.

Case 2. q = u+
j = w−j .

In this case C ′ : vvj
←
C

wiuipBqujwj
→
C

viv would be a cycle longer than C,
a contradiction. Thus Lemma 6 is true.

Lemma 7. Suppose that = 6= ∅. Let i0 = max= and j0 6= i0 such that
ui0wj0 ∈ E(G). Suppose that vi0u1 ∈ E(G) or {u1vj0+1, u1vj0} ⊂ E(G).
Then d(uj0) + 2d(v) ≤ `(C) + x, where x is the number of vertices ui = wi

such that vi0ui /∈ E(G) and {uivj0+1, uivj0} 6⊆ E(G).

Proof. To prove this lemma we start with a trivial observation.
(*) If uivi0 ∈ E(G) or uivj0+1 ∈ E(G) then ui ∈ wj0

→
C

ui0 .
For i = 1, 2, ..., k we set Li := ui

→
C

vi+1. Then dLi
(uj0) ≤ |Li| − 1

because of uiuj0 /∈ E(G) by Lemma 3. Since d(uj0) =
∑k

i=1 dLi
(uj0) it

suffices to show that dLi
(uj0) ≤ |Li| − 2 (i.e. there exists on Li some z 6= ui

such that zuj0 /∈ E(G)) for ui 6= wi and for ui = wi with vi0ui ∈ E(G) or
{uivj0+1, uivj0} ⊆ E(G).

Note that j0 > i0 and vj0+1 6= vi0 by (*) (for i = 1). Thus wiuj0 /∈ E(G)
if wi 6= ui and i 6= j0 because of the maximality of i0. If i = j0, then
vj0+1uj0 /∈ E(G) by (*). If ui = wi with vi0ui ∈ E(G) or {uivj0+1, uivj0} ⊆
E(G) then ui ∈ wj0

→
C

ui0 by (*) and therefore vi+1uj0 /∈ E(G). Other-
wise, C ′ : v vj0+1

→
C

ui vi0
←
C

vi+1 uj0
→
C

wj0 ui0
→
C

vj0v, when uivi0 ∈ E(G),
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and C ′ : vvi
←
C

vj0+1ui vj0
←
C

ui0wj0
←
C

uj0vi+1
→
C

vi0v when {uivj0+1, uivj0} ⊆
E(G) would be a cycle longer than C, a contradiction. Thus Lemma 7
is true.

Theorem 1 is obviously established by the next two lemmas.

Lemma 8. Let X = N(v)
⋃
{N(ui) : ui ∈ S}. Then `(C) ≥ 2|X| + 2.

Proof. Let x1, ..., xy be the vertices of X, occurring on C in a consecutive
order. By Lemma 4, X ∩ X+ = ∅. Since G is a 1-tough graph, there exist
some i 6= j and some arc joining a vertex y on x+

i
→
C

x−i+1 with a vertex z on
x+

j
→
C

x−j+1. Without loss of generality, assume that |x+
i
→
C

x−j+1| ≤ |x+
j
→
C

x−j+1|.

Then by Lemma 4, z /∈ {x+
j , x−j+1} if x+

i = x−i+1. Thus, `(C) ≥ 2|X| + 2.

Following Broersma et al. [7], we say that a property P holds by the longest
cycle argument, denoted by P(C’), if the contrary implies the existence of a
cycle C ′ longer than C.

Now, we give and prove a lower bound of so called 1-segments. Theo-
rem 1 is established by the last lemma.

Lemma 9. Let G be a 1-tough nonhamiltonian graph on n ≥ 3 vertices
with σ3 ≥ n. Then G contains a longest cycle C avoiding a vertex v with
d(v) = µ(G) and s ≥ σ3 − n + 4.

Proof. Assume to the contrary that s ≤ σ3 −n+3 for any longest cycle C
avoiding a vertex v with d(v) = µ(G). Let tC(v) = |V (C)−(N(v)∪N(v)+∪
N(v)−)|.

Claim 1. If C is a longest cycle in G avoiding a vertex v with d(v) = µ(G),
then d(v) ≤ σ3+2

3 and tC(v) ≤ 2 with strict inequality if µ(G) 6= σ3

3 or
`(C) 6= n − 1.

Proof. Counting the vertices on C we get n−1 ≥ `(C) = 3d(v)−s+ tC(v).
Thus, σ3 + 2 − tC(v) ≥ 3d(v) and σ3 − 3d(v) + 2 ≥ tC(v), establishing
Claim 1.

Claim 2. If C is a longest cycle avoiding a vertex v with d(v) = µ(G), then
= = ∅.

Proof. Supposing that = 6= ∅, we determine i0 = max= and j0 6= i0 such
that ui0wj0 ∈ E(G). First note that if ui = wi and d(ui) = d(v), then by
P (C ′) uiu

+
i0

/∈ E(G) (C ′ : vvi
←
C

u+
i0

ui
→
C

wj0ui0
←
C

vj0+1v when ui ∈ ui0
→
C

wj0

and C ′ : vvi+1
→
C

ui0wj0
←
C

u+
i0

ui
←
C

vj0+1v when ui ∈ wj0
←
C

ui0). Similarly,
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uiw
−
j0

/∈ E(G). Consequently, uivi0 ∈ E(G) or {uivj0+1, uivj0} ⊂ E(G) since,
otherwise, tC′(ui) ≥ 3 where C ′ : vvi

←
C

vi+1v, which contradicts Claim 1. By
Lemma 5 and by Claim 1, d(u1) = d(v). Now using Lemma 7 we have
d(u1) + d(v) + d(uj0) = 2d(v) + d(uj0) ≤ `(C) + x, where x is the number
of vertices ui = wi such that d(ui) ≤ d(v) − 1. By σ3 ≥ n, x ≥ 1. Hence,
d(v) +d(uis)+ d(uj0) ≤ `(C)+x− 1 and, by similar argument, x ≥ 2. Note
that by σ3+2

3 ≥ d(v), x ≤ 2 by d(uis) + d(uis−1
) + d(uis−2

) ≥ σ3 and, by
x ≥ 2, in fact, x = 2. Now we get d(uis−1

) + d(uis) + d(uj0) ≤ `(C) < n,
a contradiction.

The next claim is obviously established by Lemma 6, Claim 2 and Claim 1.

Claim 3. If C is a longest cycle and v ∈ V (G) − V (C) such that d(v) =
µ(G), then tC(v) = 2 and C contains a 4-segment.

By Claim 1, we get `(C) = n − 1 and d(v) = σ3/3. Using the inequality
n−1 ≥ 3d(v)−s+tC (v) and tC(v) = 2 by Claim 3, we get s ≥ σ3−n+3 ≥ 3.
By d(ui) + d(u1) + d(v) ≥ σ3, we easily get:

Claim 4. If C is a longest cycle avoiding a vertex v with d(v) = µ(G), then
d(ui) ≥ d(v) = σ3

3 and d(wi) ≥ d(v) with equality if ui = wi.

Claim 5. If C is a longest cycle avoiding a vertex v with d(v) = µ(G), then
N(ui) = N(v) for any ui = wi.

Proof. Suppose that there exists some ui = wi such that N(ui) 6= N(v).
By Claim 4, either u+

t ui ∈ E(G) or w−t ui ∈ E(G), say u+
t ui ∈ E(G).

Note that utwt /∈ E(G) (C ′ : vvi+1
→
C

utwt
←
C

u+
t ui

←
C

vt+1v) and utw
−
t /∈ E(G)

(C ′ : vvi
←
C

w−t utu
+
t ui

→
C

vtv). Therefore there exits some j such that either
w−t wj ∈ E(G) or w−t uj ∈ E(G) since ω(G − N(v) − {u+

t }) ≤ d(v) + 1 by
the toughness of G and by Claim 2. But w−t uj /∈ E(G) ( C ′ : vvi+1

→
C

u+
t ui

←
C

uj w−t
→
C

vjv when uj ∈ u+
t
→
C

ui and C ′ : vvj
←
C

uiu
+
t
←
C

uj w−t
→
C

viv when
uj /∈ u+

t
→
C

ui) and therefore w−t wj ∈ E(G). Moreover, wj ∈ ut
→
C

u−i
(C ′ : vvj+1

→
C

u+
t ui

→
C

wjw
−
t
→
C

viv). By Claim 2, d(wt) ≤ d(v) − 1 since
wtvi+1 /∈ E(G) (C ′ : vvj+1

→
C

uiu
+
t
←
C

vi+1wtw
−
t wj

←
C

vt+1v), wtvj+1 /∈ E(G)
(C ′ : vvi+1

→
C

u+
t ui

←
C

vj+1wtw
−
t wj

←
C

vt+1v) and wtu
+
t /∈ E(G) (C ′ : vvj+1

→
C

u+
t wtw

−
t wj

←
C

vt+1v) (note that utwt /∈ E(G)), which contradicts Claim 4.
Thus Claim 5 is true.

Now, a longest cycle C and a vertex v0 ∈ V (G) − V (C) with d(v0) = µ(G)
are fixed. Then there exists one t such that |ut

→
C

wt| = 4 and |ui
→
C

wi| ≤ 2
for any i 6= t.
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Since G is a 1-tough graph, ω(G−N(v0)) ≤ d(v0) and therefore there exist
i 6= j and some y ∈ ui

→
C

wi, z ∈ uj
→
C

wj such that yz ∈ E(G). Since = = ∅
by Claim 2, either i = t or j = t, say j = t and assume, without loss of
generality, that y = ui. We distinguish two cases.

Case 1. uiu
+
t ∈ E(G).

We consider the pair ut and C ′:v0vi
←
C

u+
t ui

→
C

vtv0. By the maximality of
d(v0), Claim 4 for v0 and C yields µ(C ′) = d(ut) = µ(G). Now, Claim 3,
4 and 5 can be applied to ut and C ′. If viut /∈ E(G), then v+

i−1
→
C

viv0 is
the 4-segment of ut and C ′, consequently ui−1 6= wi−1. If vjut /∈ E(G) for
some vj 6= vi, vt then v+

j−1
→
C

v−j+1 is the 4-segment of ut and C ′, therefore
either ui

→
C

wi or ui−1
→
C

wi−1 is a 2-segment of v0 and C. It follows by s ≥ 3
that some 1-segment of v0 and C is also a 1-segment of ut and C ′. But
this contradicts N(ut) 6= N(v) and Claim 5 (applied to both pairs v0, C and
ut, C

′). This rejects Case 1.

Case 2. uiw
−
t ∈ E(G).

In this Case N(u+
t ) ∩ N(v0)

+ = {ut} by Case 1. Since G is 1-tough and
utwt /∈ E(G) (C ′ : v0vt

←
C

uiw
−
t
←
C

utwt
→
C

viv0) it follows that u+
t has a neigh-

bor wj . Clearly wj is on wt
→
C

vi (C ′ : v0vj+1
→
C

u+
t wj

←
C

uiw
−
t
→
C

viv0). Now
consider the pair wi and C ′ : v0 vi+1

→
C

u+
t wj

←
C

w−t ui
←
C

vj+1 v0 to obtain
a contradiction as in Case 1.

Conjecture

The lower bound on the number of so called 1-segments on a longest cycle
in Lemma 9 is best possible only for c(G) = n − 1.

Conjecture. Let G be a 1-tough nonhamiltonian graph on n ≥ 3 ver-
tices with σ3 ≥ n. Then G contains a longest cycle C (with an assigned
orientation) avoiding a vertex v with d(v) = µ(G) and |NC(v)+∩NC(v)−| ≥
σ3 − n + 3ω(G − C) + 1.

The graphs G(n,p) show that our Conjecture, if true, is best possible,
also in case c(G) < n − 1.
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