PROBLEMS COLUMN

Discussiones Mathematicae Graph Theory 17 (1997) 311–313

PARTITION PROBLEMS AND KERNELS OF GRAPHS

IZAK BROERE

Department of Mathematics, Rand Afrikaans University P.O. Box 524, Auckland Park, 2006 South Africa email: ib@rau3.rau.ac.za

Péter Hajnal*

Bolyai Intézet, University of Szeged Aradi Vértanúk tere 1., Szeged, Hungary 6720 email: hajnal@inf.u-szeged.hu

Peter Mihók

Mathematical Institute, Slovak Academy of Sciences Grešákova 6, 040 01 Košice email: mihok@kosice.upjs.sk

1. INTRODUCTION

The graphs we consider are finite, simple and undirected. The number of vertices in a longest path in a graph G is denoted by $\tau(G)$. For positive integers k_1 and k_2 a graph G is (τ, k_1, k_2) -partitionable if there exists a partition $\{V_1, V_2\}$ of V(G) such that $\tau(G[V_1]) \leq k_1$ and $\tau(G[V_2]) \leq k_2$. If this can be done for every pair of positive integers (k_1, k_2) satisfying $k_1 + k_2 = \tau(G)$, we say that G is τ -partitionable.

Let H_v denote the fact that the graph H is rooted at v. The set $S \subseteq V(G)$ is an H_v -kernel if

- (i) there is no subgraph of G[S] isomorphic to H and
- (ii) for every $x \in V(G) S$ there is a subgraph of $G[S \cup \{x\}]$ isomorphic to H_v with its root v at x.

^{*}Partially supported by OTKA T016349 and F021271.

Similarly, a graph is H_v -saturated if it has a subset $S \subseteq V(G)$ such that

- (i) H is not a subgraph of G[S] and
- (ii) for every $x \in V(G) S$ which is adjacent to some vertex of S the graph H is a subgraph of $G[S \cup \{x\}]$ with its root v at x.

A graph G is called *decomposable* if it is the join of two graphs.

2. The problems

We start with a problem which is formulated as a conjecture in [3] and [1] (see also in [2]).

Conjecture 1. Every graph is τ -partitionable.

In [1] it is shown amongst others that every decomposable graph is τ -partitionable.

For a given (rooted) graph H_v , the question whether every graph G has an H_v -kernel is discussed in [2], [4] and [5]. It is shown amongst others that

- (a) Every graph has an H_v -kernel if and only if every graph is H_v -saturated.
- (b) Every graph has a P_v -kernel where P_v is a path of order at most six and v is an endvertex of P.
- (c) Every graph has an S_v -kernel where S_v is a star and v is the center of the star or v is an endvertex of the star.

Clearly, if H_v is a vertex transitive graph, then every graph has an H_v -kernel (any maximal set of vertices inducing an H_v -free graph is an H_v -kernel). The fact that there are graphs H_v and G for which G has no H_v -kernel is illustrated in [2] and [4]. The general problem therefore is

Problem. Describe the rooted graphs H_v for which every graph G has an H_v -kernel.

Let the path P_v of order n be rooted at an endvertex. If every graph G has a P_v -kernel for every n then Conjecture 1 is true: If $\tau(G) = k_1 + k_2$, let V_1 be a Q_v -kernel where Q_v is a path (rooted at an endvertex) of order $k_1 + 1$ and let $V_2 = V(G) - S$. From (b) we immediately obtain that every graph is (τ, k_1, k_2) -partitionable if min $\{k_1, k_2\} \leq 5$.

We are inclined to think that the following conjecture is also true for every path P_v rooted at an endvertex v.

Conjecture 2. Every graph has a P_v -kernel.

References

- I. Broere, M. Dorfling J. Dunbar and M. Frick, A path(ological) partition problem (submitted).
- [2] P. Hajnal, Graph partitions (in Hungarian) (Thesis, supervised by L. Lovász, J.A. University, Szeged, 1984).
- [3] J.M. Laborde, C. Payan and N.H. Xuong, Independent sets and longest directed paths in digraphs, in: Graphs and other combinatorial topics (Prague, 1982), (Teubner-Texte Math., 59, 1983), 173–177.
- [4] P. Mihók, Problem 4, p. 86, in: Graphs, Hypergraphs and Matroids (M. Borowiecki and Z. Skupień, eds., Zielona Góra 1985).
- [5] J. Vronka, Vertex sets of graphs with prescribed properties (in Slovak) (Thesis, supervised by P. Mihók, P.J. Šafárik University, Košice, 1986).

Received 17 September 1997