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Abstract

Weichsel (Proc. Amer. Math. Soc. 13 (1962) 47–52) proved that
the Kronecker product of two connected bipartite graphs consists of
two connected components. A condition on the factor graphs is pre-
sented which ensures that such components are isomorphic. It is
demonstrated that several familiar and easily constructible graphs are
amenable to that condition. A partial converse is proved for the above
condition and it is conjectured that the converse is true in general.
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1. Introduction

The Kronecker product is one of the (four) most important graph products,
and can be viewed as the product in the category of graphs, cf. Hell [4]. The
product was used by Greenwell and Lovász [2] to demonstrate that for all
n ≥ 3, there is a uniquely n-colorable graph without odd cycles shorter
than a given number s. Every graph is an induced subgraph of a Kronecker

∗This work was supported in part by the Ministry of Science and Technology of Slovenia

under the grants P1-0206-101 and J1-7036.



302 P.K. Jha, S. Klavžar and B. Zmazek

product of certain complete graphs, see Nešeťril [11]. Graph retracts, see
for instance Pesch [12], form another area where the Kronecker product
construction turned out to be useful. The product has several other appli-
cations, for instance in modelling concurrency in multiprocessor systems [10]
and in automata theory. (For example, closure of regular sets, or closure
of context-free sets with a regular set, under intersection may be proved by
taking a Kronecker product of the respective machines.)

Weichsel [14] proved that the Kronecker product of two nontrivial graphs
is connected if and only if both factors are connected and at least one of
them possesses an odd cycle. If both factors are connected and bipartite,
then their Kronecker product consists of two connected components. When
are these components isomorphic? This natural question plays the central
role in our paper.

The Kronecker product G×H of graphsG andH is the graph with vertex
set V (G)× V (H) and edge set {{(u, x), (v, y)} | {u, v} ∈ E(G) and {x, y} ∈
E(H)}. The terminology is justified by the fact that the adjacency matrix of
a Kronecker graph product is given by the Kronecker matrix product of the
adjacency matrices of the factor graphs; see [14] for details. However, this
product is also known under several different names including categorical

product, tensor product, direct product, weak direct product, cardinal product

and graph conjunction.
The Kronecker product is commutative and associative in an obvious

way. It is also distributive with respect to edge-disjoint union of graphs.
In particular, if G and H are bipartite graphs which respectively appear
as subgraphs of (not necessarily bipartite) graphs G1 and H1, then the
two components of G ×H appear as vertex-disjoint subgraphs of G1 ×H1.
This lends some structure to the graph G1 ×H1. In fact, this view has been
effectively used in Hamiltonian decompositions of certain Kronecker-product
graphs [8].

The rest of the paper is organized as follows. In the next section, we
give some more definitions, recall Weichsel’s result and give an alternative
proof of it. In Section 3, we prove that a certain condition on factor graphs
is sufficient for the existence of an isomorphism between components of the
Kronecker product of two bipartite graphs. It is also shown that several
familiar and easily constructible graphs are amenable to that condition.
A partial converse to the sufficient condition is established in the last section
and it is conjectured that it holds in general. We conclude the paper with
some remarks on the algorithmic aspects of related problems.
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2. Preliminaries

By a graph is meant a finite, simple, undirected graph having at least two
vertices. Unless indicated otherwise, graphs are also connected.

Another graph product which is of relevance here is the Cartesian prod-
uct. The Cartesian product G2H of graphsG andH is the graph with vertex
set V (G) × V (H) and {(u, x), (v, y)} ∈ E(G2H) whenever {u, v} ∈ E(G)
and x = y, or u = v and {x, y} ∈ E(H). Note that the Cartesian product
of two (or finitely many) graphs is connected if and only if every factor is.
Observe also that G2H is bipartite if and only if both G and H are bipartite
[13] and that G × H is bipartite if and only if at least one of G and H is
bipartite [3].

We have already mentioned the following result of Weichsel:

Theorem 2.1 [14]. Let G and H be connected graphs. Then G × H is

connected if and only if at least one of G and H contains an odd cycle.

The next result refines a part of Theorem 2.1.

Lemma 2.2 [7]. If G = (V0

⋃
V1, E) and H = (W0

⋃
W1, F ) are bipartite

graphs, then (V0 ×W0)
⋃

(V1 ×W1) and (V0 ×W1)
⋃

(V1 ×W0) are vertex

sets of the two components of G×H.

While Lemma 2.2 is an alternative proof of the “only if” part of Theorem
2.1, the following argument (which is different from Weichsel’s) takes care
of the converse. Recall that ×-product is distributive with respect to the
edge-disjoint union of graphs.

Let G = (V,E) be a non-bipartite graph, and let H = (W,F ) be any
graph. Choose spanning subgraphs G′ and H ′ of G and H, respectively, and
an edge e = {a, b} of G \G′ such that

(i) G′ and H ′ are connected, bipartite graphs and

(ii) G′ + e is a non-bipartite graph.

G′ and H ′ can always be constructed by successively removing edges from
odd cycles. Let V0 and V1 (resp. W0 and W1) be the partite sets of G′ (resp.
H ′). Note that a, b ∈ V0 or a, b ∈ V1. It suffices to show that (G′ + e) ×H ′

is a connected graph.
Without loss of generality, let a, b ∈ V0. By Lemma 2.2, G′×H ′ consists

of two connected components having vertex sets (V0 ×W0)
⋃

(V1 ×W1) and
(V0 × W1)

⋃
(V1 ×W0). Let {c, d} ∈ E(H ′), where c ∈ W0 and d ∈ W1.
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It is clear that (a, c) ∈ V0 × W0, (b, d) ∈ V0 × W1, and {(a, c), (b, d)} is
an edge of (G′ + e) × H ′ which runs between (V0 ×W0)

⋃
(V1 ×W1) and

(V0 ×W1)
⋃

(V1 ×W0). It immediately follows that the graph (G′ + e)×H ′

is connected, and hence the result.

3. Property π

This is our main definition.

Definition 3.1. A bipartite graph G = (V0

⋃
V1, E) is said to have a prop-

erty π if G admits an automorphism ϕ such that x ∈ V0 if and only if

ϕ(x) ∈ V1.

Note that a bipartite graph which satisfies the foregoing definition possesses
a certain symmetry, and has the same number of vertices in each partite
set. Examples of graphs possessing the property π include even paths, even
cycles, complete bipartite graphs with equal-sized partite sets, and the graph
obtained from two copies of a star K1,n by introducing an edge between the
center vertices of the two stars.

Theorem 3.2. If G and H are bipartite graphs one of which has the property

π, then the two components of G×H are isomorphic.

P roof. Let G = (V0

⋃
V1, E) and H = (W0

⋃
W1, F ) be bipartite graphs.

Assume that the graph G possesses the property π with ϕ as an appropriate
automorphism. The sets (V0 × W0)

⋃
(V1 × W1) and (V0 × W1)

⋃
(V1 ×

W0) correspond to vertex sets of the two components of the graph G ×H.
Consider the mapping given by (u, x) 7→ (ϕ(u), x) between vertex sets of
these components. It is straightforward to see that this is a well-defined
bijection which corresponds to a desired isomorphism.

We next show that graphs with the property π enjoy certain interesting
closure properties with respect to the Kronecker product and the Cartesian
product.

Proposition 3.3. If G and H are bipartite graphs having the property π,
then so is each of the following:

(i) ×-product of G and a non-bipartite graph,

(ii) each component of the ×-product of G and H, and

(iii) 2-product of G and a bipartite graph.
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P roof. Let G = (V0

⋃
V1, E) and H = (W0

⋃
W1, F ) be bipartite graphs

which are respectively equipped with automorphisms ϕ and ψ in the sense
of Definition 3.1.

(i) Let K = (X,D) be a non-bipartite graph. The two partite sets of the
connected, bipartite graph G×K are V0×X and V1×X. The mapping given
by (v, x) 7→ (ϕ(v), x) constitutes an automorphism of G×K corresponding
to the property π.

(ii) Consider the component of the (bipartite) graph G ×H on vertex
set (V0 ×W0)

⋃
(V1 ×W1). Note that V0 ×W0 and V1 ×W1 are the two

partite sets of this component. The mapping given by (v,w) 7→ (ϕ(v), ψ(w))
constitutes a desired automorphism of this component.

(iii) Let K = (X0

⋃
X1,D) be a bipartite graph. The two partite sets

of the (connected) bipartite graph G2K are (V0 × X0)
⋃

(V1 × X1) and
(V0 ×X1)

⋃
(V1 ×X0). The mapping given by (v, x) 7→ (ϕ(v), x) constitutes

a desired automorphism of this graph.

It follows from Proposition 3.3 that each of the following graphs has the
property π: (i) the n-cube Qn (Q1 = K2, Qn = K22Qn−1, n ≥ 2), (ii) the
planar grid Pm2Pn, where m or n is even, (iii) the graph Cn1

2 . . .2Cnr
,

where each ni is even, and (iv) each component of the graph Cn1
× . . .×Cnr

,
where at least one ni is even.

The following is a relevant result. It is a generalization of a similar
result from [6] for the graph Cm × Pn.

Proposition 3.4. If m is even, m/2 is odd and G is a bipartite graph, then

each component of the graph Cm ×G is isomorphic to Cm/2 ×G.

P roof. Let m and G = (V0

⋃
V1, E) be as stated. Denote the consecutive

vertices of Cm by 0, 1, . . . , m− 1. Then vertex sets of the two components
of the graph Cm ×G are

({0, 2, . . . ,m− 2} × V0)
⋃

({1, 3, . . . ,m− 1} × V1)

and

({0, 2, . . . ,m− 2} × V1)
⋃

({1, 3, . . . ,m− 1} × V0).

By Theorem 3.2, these two components are isomorphic. Consider the map-
ping from the vertex set of one of these components to that of Cm/2 × G
given by (i, x) 7→ (i mod (m/2), x). That this is a well-defined bijection
corresponding to a desired isomorphism is left to the reader.
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4. A Conjecture

We conjecture that the converse of Theorem 3.2 holds as well:

Conjecture 4.1. Let G and H be bipartite graphs. Then the components

of G × H are isomorphic if and only if at least one of G and H has the

property π.

In the rest of the paper, let G = (V0

⋃
V1, E) and H = (W0

⋃
W1, F ) be

bipartite graphs and let X and Y be the two connected components of G×H
induced by (V0 ×W0)

⋃
(V1 ×W1) and (V0 ×W1)

⋃
(V1 ×W0), respectively.

Note first that if X and Y are isomorphic, then at least one of |V0| = |V1|
or |W0| = |W1| holds. Indeed, since |X| = |Y | we have |V0||W0|+ |V1||W1| =
|V0||W1|+ |V1||W0|. Therefore |V0|(|W0|−|W1|) = |V1|(|W0|−|W1|) and thus
the observation. However, much more is true, but first we need some more
notation.

As usual, for x ∈ V (G), let NG(x) = {y | {x, y} ∈ E(G)} and for Q ⊆
V (G), let NG(Q) =

⋃
x∈QNG(x). We will also write N(Q) if the graph G

will be clear from the context. For a graph G and Q ⊆ V (G) let degG(Q) be
the multiset {degG(v) | v ∈ Q}. Also, for a set Q ⊆ V (G) let N i(Q), i ≥ 1,
be defined by N1(Q) = N(Q) and N i(Q) = N(N i−1(Q)), i ≥ 2.

Theorem 4.2. Let ϕ : X → Y be an isomorphism which maps V ′

0 ×W ′

0

onto V ′

1 ×W ′

0, where V ′

0 ⊆ V0, V
′

1 ⊆ V1 and W ′

0 ⊆ W0. Then for all i ≥ 1,
degG(N i(V ′

0)) = degG(N i(V ′

1)) hold.

P roof. Since ϕ is an isomorphism, we have

ϕ(NG×H(V ′

0 ×W ′

0)) = NG×H(ϕ(V ′

0 ×W ′

0)) = NG×H(V ′

1 ×W ′

0)

and from the definition of the Kronecker product it follows

NG×H(V ′

1 ×W ′

0) = NG(V ′

1) ×NH(W ′

0).

Therefore, ϕ maps NG×H(V ′

0 ×W ′

0) = NG(V ′

0) × NH(W ′

0) onto NG(V ′

1) ×
NH(W ′

0).

Let v0, v1 and w be vertices of maximum degrees in NG(V ′

0), NG(V ′

1)
and NH(W ′

0), respectively. Then (v0, w) ∈ NG(V ′

0)×NH(W ′

0) and (v1, w) ∈
NG(V ′

1) ×NH(W ′

0) have the same (largest) degree and thus v0 and v1 must
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have the same degree in G. It follows that degG×H({v0} × NH(W ′

0)) =
degG×H({v1} ×NH(W ′

0)), and therefore

deg
G×H

((N(V ′

0) \ {v0}) ×N(W ′

0)) = deg
G×H

((N(V ′

1) \ {v1}) ×N(W ′

0)).

Repeating the above argument, we conclude degG(N(V ′

0)) = degG(N(V ′

1)).
This proves the theorem for i = 1.

We have seen above that ϕ maps NG(V ′

0)×NH(W ′

0) isomorphically onto
NG(V ′

1)×NH(W ′

0). But this is just the theorem assumption, hence as above
we obtain degG(N2(V ′

0)) = degG(N2(V ′

1)). Repeating the argument, we
prove the equality for any i ≥ 1.

Corollary 4.3. Let A0, A1, B0 and B1 be the sets of vertices with max-

imum (minimum) degree in V0, V1, W0 and W1, respectively. Then if X
and Y are isomorphic, at least one of degG(N i(A0)) = degG(N i(A1)) or

degG(N i(B0)) = degG(N i(B1)) hold for all i ≥ 1.

P roof. Let ϕ : X → Y be an isomorphism. As X and Y are con-
nected bipartite graphs, ϕ maps V0 × W0 either onto V1 × W0 or onto
V0 ×W1. In the former case ϕ(A0 × B0) = A1 × B0 and by Theorem 4.2,
degG(N i(A0)) = degG(N i(A1)). In the later case ϕ(A0×B0) = A0×B1 and
by Theorem 4.2 and commutativity of the Kronecker product, degG(N i(B0))
= degG(N i(B1)).

Consider for example the graph G in Figure 1. G fulfils the conclusion of
Corollary 4.3. On the other hand, the connected components of G× P3 are
not isomorphic. Indeed, there is a vertex of degree 6 which is adjacent to
vertices of degrees 2, 2, 3, 3, 4 and 4 in one of the components and there is
no such vertex in the other component.
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Figure 1. The graph G

Theorem 4.2 also implies that if X and Y are isomorphic then in at least
one of the factors the partite sets have the same degree sequences.
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Corollary 4.4. If X and Y are isomorphic, then at least one of degG(V0) =
degG(V1) or degH(W0) = degH(W1) holds.

P roof. Let ϕ : X → Y be an isomorphism. As in Corollary 4.3 ϕ maps
V0×W0 either onto V1×W0 or onto V0×W1. Assume the former case and let
A0 and A1 be as in Corollary 4.3. Clearly, for any i ≥ 1, N i(A0) ⊆ N i+2(A0)
and N i(A1) ⊆ N i+2(A1). Furthermore, since G is connected, there must
be some i such that N i(A0) = V0 and N i(A1) = V1. By Corollary 4.3,
degG(V0) = degG(V1).

In the case when ϕ maps V0 ×W0 onto V0 ×W1, we analogously obtain
degH(W0) = degH(W1).

Concluding Algorithmic Remarks

The Kronecker product seems to be interesting also from the algorithmic
point of view. As we learned from Babai (at the Workshop on Cayley Graphs
held in September 1996 in Montréal), Lalonde [9] proved that it is NP-
complete to decide whether a given bipartite graph G has the property π
provided in addition that the corresponding automorphism is of order 2.
However, the problem of deciding whether G has the property π becomes
isomorphism complete, cf. [1, page 1518].

Finally, we mention a recent very interesting algorithmic result of
Imrich [5]. He namely proved that the unique prime factor decomposi-
tion of finite, nonbipartite, connected graphs with or without loops can be
determined in polynomial time.
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