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Abstract

A graph H is obtained from a graph G by an edge rotation if
G contains three distinct vertices u, v, and w such that uv ∈ E(G),
uw 6∈ E(G), and H = G − uv + uw. A graph H is obtained from a
graph G by an edge jump if G contains four distinct vertices u, v, w,
and x such that uv ∈ E(G), wx 6∈ E(G), and H = G − uv + wx. If
a graph H is obtained from a graph G by a sequence of edge jumps,
then G is said to be j-transformed into H . It is shown that for every
two graphs G and H of the same order (at least 5) and same size,
G can be j-transformed into H . For every two graphs G and H of
the same order and same size, the jump distance dj(G, H) between G
and H is defined as the minimum number of edge jumps required to
j-transform G into H . The rotation distance dr(G, H) between two
graphs G and H of the same order and same size is the minimum
number of edge rotations needed to transform G into H . The jump
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and rotation distances of two graphs of the same order and same size
are compared. For a set S of graphs of a fixed order at least 5 and
fixed size, the jump distance graph Dj(S) of S has S as its vertex set
and where G1 and G2 in S are adjacent if and only if dj(G1, G2) = 1.
A graph G is a jump distance graph if there exists a set S of graphs
of the same order and same size with Dj(S) = G. Several graphs
are shown to be jump distance graphs, including all complete graphs,
trees, cycles, and cartesian products of jump distance graphs.

Keywords: edge rotation, rotation distance, edge jump, jump dis-
tance, jump distance graph.
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1. Introduction

Several distances between graphs involve the idea of transformations. In this
paper, we consider two elementary transformations previously introduced,
namely, edge moves and edge rotations, and a new transformation referred
to as an edge jump. We indicate that two graphs G and H are isomorphic
by writing G = H.

Let G and H be two graphs having the same order and the same size.
In [2] H is said to be obtained from G by an edge move if G contains (not
necessarily distinct) vertices u, v,w, and x such that uv ∈ E(G), wx 6∈ E(G),
and H = G − uv + wx. A graph G is m-transformed into a graph H if H
is (isomorphic to the graph) obtained from G by a sequence of edge moves,
i.e., if there is a sequence G = G0, G1, ..., Gn = H (n ≥ 0) of graphs such
that Gi+1 is obtained from Gi by an edge move for i = 0, 1, ..., n − 1. In [4]
H is said to be obtained from G by an edge rotation if G contains distinct
vertices u, v, and w such that uv ∈ E(G), uw 6∈ E(G), and H = G−uv+uw.
More generally, G is r-transformed into H if H is (isomorphic to the graph)
obtained from G by a sequence of edge rotations.

We now say that a graph H is obtained from a graph G by an edge

jump if G contains four distinct vertices u, v,w, and x such that uv ∈ E(G),
wx 6∈ E(G), and H = G−uv+wx. If H is (isomorphic to the graph) obtained
from G by a sequence of edge jumps, we say that G is j-transformed into H.

While an edge move is an unrestricted transfer of an edge uv of a graph
G to an edge wx, where, previously, wx 6∈ E(G), in both an edge rotation
and an edge jump, there is a restricted edge transfer. In an edge move, the
vertices u, v,w, and x may or may not be distinct. With an edge rotation,
the vertices u, v,w, and x are not distinct; while in an edge jump, these
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vertices must be distinct. That is, each edge move is either an edge rotation
or an edge jump, but not both.

For example, the graph H of Figure 1 is obtained from the graph G by
an edge rotation, but H is not obtained from G by an edge jump. On the
other hand, the graph H ′ is obtained from G by an edge jump (as well as by
an r-transformation that is a sequence of two edge rotations). For all three
graphs G,H, and H ′, each is obtained from either of the others by a single
edge move.

h h

h h h h

hh

h h

h
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x u

v w v w

x u x u

G :

H : H ′ :

h
w

Figure 1

Our first result will have some interesting consequences.

Theorem 1. Let G and H be graphs having the same order (at least 5) and

the same size. If H is obtained from G by an edge move, then H is obtained

from G by an edge jump or a sequence of two edge jumps.

P roof. Since H is obtained from G by an edge move, G contains (not
necessarily distinct) vertices u, v,w, and x such that uv ∈ E(G), wx 6∈ E(G),
and H = G − uv + wx. If the vertices u, v,w, and x are distinct, then H is
obtained from G by an edge jump. Suppose, then, that the vertices u, v,w,
and x are not distinct. Without loss of generality, we may assume that
v = x. Hence uv ∈ E(G) and vw 6∈ E(G). Since the order of G is at least 5,
G contains two vertices y and z distinct from u, v, and w. Suppose first that
yz 6∈ E(G). In this case, define F = G−uv+yz and H = F −yz+vw. Then
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H is obtained from F by an edge jump and F is obtained from G by an edge
jump. Next suppose that yz ∈ E(G). Here, we define F = G− yz + vw and
H = F − uv + yz. Once again, H is obtained from F by an edge jump and
F is obtained from G by an edge jump. Hence, in either case, H is obtained
from G by a j-transformation that is a sequence of two edge jumps.

In [2] it was shown that for every two graphs G and H of the same order
and same size, G can be m-transformed into H. This gives us an immediate
corollary of Theorem 1.

Corollary 2. If G and H are two graphs of the same order (at least 5) and

the same size, then G can be j-transformed into H.

In [2] the move distance dm(G,H) between two graphs G and H of the
same order and same size is defined as the minimum number of edge moves
required to m-transform G into H. The rotation distance dr(G,H) is defined
analogously. Both distances are metrics on the space of all graphs of a fixed
order and fixed size.

It is now natural to define the jump distance dj(G,H) between two
graphs G and H of the same order (at least 5) and same size as the minimum
number of edge jumps required to j-transform G into H. By Corollary 2, this
distance is well-defined. It is also straightforward to see that this distance
too is a metric on the space of all graphs of fixed order at least 5 and fixed
size. For the graphs F,G, and H of Figure 2, dj(F,G) = dj(F,H) = 1 and
dj(G,H) = 2.

h h h h h h h h h h h h

h h h h h h h h h

F : G : H :

Figure 2

The Dugundji-Ugi principle of minimum chemical distance provides an in-
teresting illustration of a possible application of the distinction between
rotation and jump distances. In this formalism, the reactants and products
of a chemical reaction are represented as graphs with the possible inclusion
of loops and multiple edges [7, 9]. Two distances are involved. The first, the
”experimental distance”, is the sum over the individual steps of the reaction
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of the number of valence electrons that participate in each step. The sec-
ond, called the chemical distance, can be shown to correspond to the move
distance between the graph of the reactants and the graph of the products.
The principle asserts the equality of the experimental and chemical dis-
tances. Counterexamples are known to exist, however. Such discrepancies
are often attributed to the formation of a bond in a reaction intermediate
that is subsequently cleaved in the course of the reaction [7].

Another way for generating such a discrepancy emerges if it can be as-
sumed that the basic mechanisms of chemical reactions are appropriately
represented by the arrows used to describe electron flow in chemical reac-
tion diagrams. Each of these arrows typically represents the equivalent of
an edge rotation. It follows that whenever the rotation distance between the
reactants and products exceeds the move distance, then the experimental
distance must exceed the chemical distance. It may be that some of the
counterexamples to the principle of minimum chemical distance would cease
to exist if the principle of minimum chemical distance were reformulated in
terms of rotation distance. One such possibility is explored by Kvasnička
and Posṕıchal [2]. An extension of the move distance to all graphs is given
in Johnson [8] along with some applications of the metric to medicinal chem-
istry.

A greatest common subgraph of two graphs G and H is a graph of maxi-
mum size without isolated vertices that is a common subgraph of G and H.
For graphs G and H of the same order and same size q having a greatest
common subgraph of size s, it was shown in [2] that dm(G,H) = q− s. The
following is now a corollary of Theorem 1.

Corollary 3. Let G and H be two graphs of order p ≥ 5 and size q having

a greatest common subgraph of size s. Then dj(G,H) ≤ 2(q − s).

The result presented in Corollary 3 is sharp in the sense that for every two
positive integers q and s with s ≤ q, there exist graphs G and H of size
q containing a greatest common subgraph of size s such that dj(G,H) =
2(q − s). For a positive integer n, let P denote the path v1, v2, ..., v4n−1.
The graph G is constructed by adding a vertex v0 to P together with the
edges v0vi(1 ≤ i ≤ 2n) and then adding an isolated vertex v4n. The graph H
is constructed by adding a vertex v0 to P together with the edges v0v2i−1(1 ≤
i ≤ 2n) and then adding an isolated vertex v4n. Each of the graphs G and
H has size q = 6n − 2. Note that a triangle-free subgraph of G has size at
most 5n − 2. Therefore, the greatest common subgraph of G and H is the
graph F composed of P , the vertex v0, and the edges v0v2i−1(1 ≤ i ≤ n).
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Thus F has size s = 5n− 2; so q − s = n. This construction is illustrated in
Figure 3 for the case n = 3.
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Figure 3

2. Comparisons of the Rotation and Jump Distances

In this section we study the two restricted edge transfer metrics defined on
the space of graphs of a fixed order and fixed size. If two graphs G and
G′ have the same order and same size but have distinct degree sequences,
then certainly dr(G,G′) > 0 and dj(G,G′) > 0. We next describe a lower
bound for these two distances. For the purpose of doing this, it is useful to
introduce a parameter defined on every two such graphs.

Let G and G′ be graphs of the same order p and the same size with degree
sequences d1, d2, ..., dp and d′1, d

′

2, ..., d
′

p, respectively, where we assume that
d1 ≥ d2 ≥ ... ≥ dp and d′1 ≥ d′2 ≥ ... ≥ d′p. Thus Σdi = Σd′i. We define

δ(G,G′) = min
p

∑

i=1

|di − d′f(i)|
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over all permutations f on {1, 2, ..., p}. Indeed, it is straightforward to show
that this minimum is obtained when f is the identity permutation, i.e.,

δ(G,G′) =
p

∑

i=1

|di − d′i|.

Although δ is not a metric since many nonisomorphic graphs with the same
degree sequence exist, it is a pseudometric, that is, δ is symmetric and
satisfies the triangle inequality. There is one other basic characteristic of δ
that is worthy of mention.

Lemma 4. For every two graphs G and G′ (of the same order and same

size), δ(G,G′) is even.

P roof. Let G and G′ have degree sequences s : d1 ≥ d2 ≥ ... ≥ dp and
s′ : d′1 ≥ d′2 ≥ ... ≥ d′p. Since there is an even number of odd terms in each
sequence, it follows that in the sum

∑p
i=1 |di − d′i|, the number of odd terms

in s that are paired with even terms of s′ and the number of odd terms of s′

that are paired with even terms in s are of the same parity. Thus δ(G,G′)
is even.

We are now prepared to present a lower bound for both dr(G,G′) and
dj(G,G′) in terms of δ(G,G′).

Theorem 5. For every two graphs G and G′ of the same order (at least 5)
and same size,

dr(G,G′) ≥ δ(G,G′)/2 and dj(G,G′) ≥ δ(G,G′)/4.

P roof. Suppose that δ(G,G′) = 2n. If H is any graph obtained from G
by an edge rotation, then the degree of some vertex of H is increased by 1
while the degree of another vertex of H is decreased by 1, so δ(G,H) = 2
or δ(G,H) = 0. In any case, at least n edge rotations are required to
r-transform G into a graph with the same degree sequence as G′. Hence

dr(G,G′) ≥ n = δ(G,G′)/2.

In the case of an edge jump, the degrees of four vertices are changed. Thus
at least n/2 edge jumps are required to j-transform G into a graph with the
same degree sequence as G′. So

dj(G,G′) ≥ n/2 = δ(G,G′)/4.
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The next result shows that the bounds presented in Theorem 5 are sharp.

Theorem 6. For every positive integer n, there exist

(a) graphs F and F ′ such that d(F,F ′) = 2n and dr(F,F ′) = n,

(b) graphs G and G′ such that d(G,G′) = 4n and dj(G,G′) = n, and

(c) graphs H and H ′ such that d(H,H ′) = 4n + 2 and dj(H,H ′) = n + 1.

P roof. Define F = K1,n+1 ∪ nK1 and F ′ = (n + 1)K2. (Figure 4 shows F
and F ′ when n = 3.) Here δ(F,F ′) = 2n. Thus dr(F,F ′) ≥ n by Theorem 5.
Certainly F can be r-transformed into F ′ by a sequence of n edge rotations.
Therefore, dr(F,F ′) ≤ n; so dr(F,F ′) = n and (a) is proved.

h h h h h h h h

h h h h h h h h

F : F ′ :

Figure 4

Next, define G = P2n+2 ∪ 2nK1 and G′ = (2n + 1)K2. (Figure 5 shows
G and G′ when n = 2.) Now δ(G,G′) = 4n. Therefore, dj(G,G′) ≥ n by
Theorem 5. Since G can be j-transformed into G′ by a sequence of n edge
jumps, dj(G,G′) ≤ n. Consequently, dj(G,G′) = n and (b) is verified.

h h h h h h h h h h

h h h h h h h h h h

G : G′ :

Figure 5

Finally, define H = P2n+3 ∪ (2n + 1)K1 and H ′ = (2n + 2)K2. In this case,
δ(H,H ′) = 4n+2; so dj(H,H ′) ≥ n+1 by Theorem 5. The graph H can be
j-transformed into H ′ by a sequence of n+1 edge jumps (although some care
must be taken in the order of edge jumps chosen). Thus dj(H,H ′) ≤ n + 1;
so dj(H,H ′) = n + 1 and (c) is proved.

We now compare the rotation distance and jump distance and show that
for two graphs on which both metrics are defined, each distance is at most
twice the other.
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Theorem 7. For any two graphs G and H having the same order at least

5 and the same size,

dr(G,H) ≤ 2dj(G,H) and dj(G,H) ≤ 2dr(G,H).

P roof. According to Theorem 1, if a graph H is obtained from a graph G
by a sequence of dr(G,H) edge rotations, then H is obtained from G by a
sequence of at most 2dr(G,H) edge jumps. Thus dj(G,H) ≤ 2dr(G,H) and
the second inequality is established.

We now verify the first inequality. Suppose that a graph G2 is obtained
from a graph G1 by an edge jump. Then there exist distinct vertices u, v,w,
and x such that uv ∈ E(G1), wx 6∈ E(G1), and G2 = G1 − uv + wx. We
show that G2 can be obtained from G1 by two edge rotations.

Suppose first that ux 6∈ E(G2). Let G3 = G1 − uv + ux. Thus G3

is obtained from G1 by an edge rotation. Then G2 = G3 − ux + wx is
obtained from G3 by an edge rotation. Hence G2 is obtained from G1 by an
r-transformation that is a sequence of two edge rotations.

Suppose next that ux ∈ E(G1). Let G0 = G1 − ux + wx. Then G2 is
obtained from G0 by an edge rotation, and G0 is obtained from G1 by an
edge rotaion. Thus G2 is obtained from G1 by an r-transformation that is
a sequence of two edge rotaions.

Therefore, if H is a graph that is obtained from a graph G by a sequence
of dj(G,H) edge jumps, then H is also obtained form G by a sequence of at
most 2dj(G,H) edge rotations. Hence dr(G,H) ≤ 2dj(G,H).

The inequalities in Theorem 7 can be described below.

Corollary 8. For any two graphs G and H having the same order at least

5 and same size,

1

2
dj(G,H) ≤ dr(G,H) ≤ 2dj(G,H),

or, equivalently,

1

2
dr(G,H) ≤ dj(G,H) ≤ 2dr(G,H).

The bounds provided for each metric in terms of the other are the only
restrictions, as the next result shows.

Theorem 9. For every two positive integers a and b with a/2 ≤ b ≤ 2a,
there exist graphs G and H of the same order and same size such that

dj(G,H) = a and dr(G,H) = b.
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P roof. Assume first that a ≤ b ≤ 2a. Represent the double star with
two vertices of degree 3 by S3,3. Define G = aK2 ∪ bP3 and H = bK1 ∪
(2a − b)K1,3 ∪ (b − a)S3,3. (See Figure 6 for G and H when a = 2 and
b = 3.) Observe that G and H both have order 2a + 3b and size a + 2b. It
is straightforward to see dj(G,H) = a and dr(G,H) = b.
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Figure 6

Next assume that a/2 ≤ b < a. We now construct graphs G and H of order
2a+3 and size

(a+2
2

)

. The graph G = Ka+1 ∪K1,a+1. The graph H consists
of a graph Ka+1 and vertices v, v1, v2, ..., va+1 where v is joined to b vertices
of Ka+1 as well as to the vertices v1, v2, ..., va+1−b. (See Figure 7 for G and
H when a = 4 and b = 3.)

It is clear that dr(G,H) = b. To j-transform G into H, a total of 2b edge
jumps are required for v to be the vertex of H having degree a + 1 and not
belonging to the given Ka+1. If a = 2b, then dj(G,H) = a. Suppose then
that a < 2b. Then we may j-transform G into (a graph isomorphic to) H
using a total of a edge jumps by giving v1, say, degree a + 1. This cannot
be accomplished with fewer than a edge jumps since the degree of v1 must
then be increased by a. In this case, we then have dj(G,H) = a.
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3. Jump Distance Graphs

Let S denote a set of graphs of the same order and same size. In [3] the
rotation distance graph Dr(S) of S is defined as that graph with vertex set
S such that G1 and G2 are adjacent in Dr(S) if and only if dr(G1, G2) = 1.
A graph G is a rotation distance graph if there exists a set S of graphs of
the same order and same size such that G = Dr(S). Many classes of graphs
have been shown to be rotation distance graphs in [3], [5], and [6], including
complete graphs, trees, cycles, complete bipartite graphs and all line graphs,
but no graph has been found that is not a rotation distance graph. Indeed,
it is conjectured in [3] that every graph is a rotation distance graph. We
now turn our attention to the analogous concept for jump distance.

Let S denote a set of graphs of the same order at least 5 and same
size. The jump distance graph Dj(S) of S is that graph whose vertices
are the graphs of S and where G1 and G2 in S are adjacent if and only if
dj(G1, G2) = 1. A graph G is a jump distance graph if there exists a set S
of graphs of the same order at least 5 and same size such that Dj(S) = G.
We now show that several classes of graphs are jump distance graphs.

Theorem 10. Every complete graph is a jump distance graph.

P roof. Let H be a graph isomorphic to P2p ∪ K1 such that V (H) =
{v0, v1, ..., v2p} and E(H) = {vivi+1|1 ≤ i ≤ 2p − 1}. Let e = v2p−1v2p

and Hi = H − e + v0vi, 1 ≤ i ≤ p. (See Figure 8 for the case p = 4.) Then,
dj(Hi,Hk) = 1, for each i 6= k, 1 ≤ i, k ≤ p, and hence

Dj({H1,H2, ...,Hp}) = Kp.
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If G and H are graphs of the same order and same size such that dj(G,H) =
1, then certainly dj(G+ K1,H + K1) = 1. This observation will prove to be
useful to us.

We now recall a few definitions from graph theory. A graph G is n-

connected if the removal of fewer than n vertices from G results in neither
a disconnected graph nor a trivial graph. Similarly, a graph G is n-edge-

connected if the removal of fewer than n edges from G results in neither a
disconnected graph nor a trivial graph. For example, the complete graph
Kp (p ≥ 2) is both k-connected and k-edge-connected for 1 ≤ k ≤ p − 1.
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Lemma 11. Let G be a jump distance graph and n a positive integer. Then

there is a set S of n-connected graphs such that G = Dj(S).

P roof. Let T be a set of graphs with G = Dj(T ). By our earlier observa-
tion, it follows that if S = {H + Kn|H ∈ T }, then G = Dj(S).

Clearly, if a graph G is n-connected, n ≥ 1, then G is n-edge-connected.
This observation will be useful in the following theorem.

Theorem 12. If G and H are jump distance graphs, then the cartesian

product G × H is a jump distance graph.

P roof. By Lemma 11, there exist disjoint sets S and T of 2-connected
graphs such that Dj(S) = G and Dj(T ) = H. Let S = {Gu|u ∈ V (G)}
with dj(Gu, Gw) = 1 if and only if uw ∈ E(G). Similarly, T = {Hv|v ∈
V (H)}. We show that G × H = Dj({Gu ∪ Hv|u ∈ V (G), v ∈ V (H)})
by showing that dj(Gu ∪ Hv, Gw ∪ Hx) = 1 if and only if (1) Gu = Gw

and dj(Hv,Hx) = 1 or (2) dj(Gu, Gw) = 1 and Hv = Hx. Clearly if (1)
Gu = Gw and dj(Hv,Hx) = 1 or (2) dj(Gu, Gw) = 1 and Hv = Hx, then
dj(Gu ∪ Hv, Gw ∪ Hx) = 1.

We now consider the reverse implication. Suppose that dj(Gu ∪ Hv,
Gw ∪Hx) = 1. Then Gw ∪Hx = (Gu ∪Hv)− e + f for edges e and f , where
e ∈ E(Gu ∪ Hv) and f ∈ E(Gw ∪ Hx). Suppose first that e ∈ E(Gu). Since
Gu and Hv are 2-edge-connected for u ∈ V (G) and v ∈ V (H), it follows that
f ∈ E(Gw) or f ∈ E(Hx). If f ∈ E(Gw), then dj(Gu, Gw) = 1 and Hv = Hx.
On the other hand, if f ∈ E(Hx), then dj(Gu,Hx) = 1 and Gw = Hv, which
is impossible since S and T are disjoint. Similarly, if e ∈ E(Hv), then
Gu = Gw and dj(Hv,Hx) = 1. Thus dj(Gu ∪ Hv, Gw ∪ Hx) = 1 if and
only if (1) u = w and vx ∈ E(H) or (2) v = x and uw ∈ E(G). Therefore
G × H = Dj({Gu ∪ Hv|u ∈ V (G), v ∈ V (H)}).

Next, since the graph obtained by identifying a vertex u of a graph G with
a vertex v of a graph H is an induced subgraph of G × H, we have the
following.

Corollary 13. Let G and H be jump distance graphs. Then the graph

obtained by identifying a vertex u of G with a vertex v of H is a jump

distance graph.

Finally, if the blocks of a connected graph G are jump distance graphs, then,
from repeated applications of Corollary 13, G is also a jump distance graph.
Consequently, we have the following corollary.
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Corollary 14. Every tree is a jump distance graph.

Using a construction similar to the one given in [3] which shows that every
cycle is a rotation distance graph, we now show that every cycle is a jump
distance graph.

Theorem 15. Every cycle is a jump distance graph.

P roof. Let n ≥ 3 be a positive integer and let C : v1, v2, ..., v2n+4, v1 be a
(2n + 4)-cycle. For i = 1, 2, ..., n, let Fi = C + viv2i+1. Since Fi (1 ≤ i ≤ n)
contains a cycle of length i + 2, it follows that the graphs F1, F2, ..., Fn are
pairwise nonisomorphic. For n = 4, the graphs F1, F2, F3, F4 are shown in
Figure 9.
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Next, for i = 1, 2, ..., n − 1, let Gi = Fi ∪ Fi+1, and let Gn = Fn ∪ F1.
Clearly, the graphs Gi and Gk(1 ≤ i ≤ k ≤ n) differ in exactly one edge
when k = i + 1 or when i = 1 and k = n, and differ in two edges otherwise.
Thus since dj(Gi, Gi+1) = 1 (1 ≤ i ≤ n − 1) and dj(Gn, G1) = 1, it follows
that Dj({G1, G2, ..., Gn}) = Cn.

Recall that the line graph L(G) of a graph G is that graph whose vertices are
the edges of G and two vertices e and f of L(G) are adjacent if and only if
the edges e and f are adjacent in G. Thus the graph L(G) can be described
as that graph whose vertices are the edges of G and two vertices e and f of
L(G) are adjacent if and only if the edges e and f are not adjacent in G.
We now show that the complement of every line graph is a jump distance
graph.

Theorem 16. For every graph G, the graph L(G) is a jump distance graph.

P roof. Let G be a graph of size q where e1, e2, ..., eq denote the edges of G.
Next for i = 1, 2, ..., q, let Gi = G− ei. Let i and k be positive integers such
that i 6= k and 1 ≤ i, k ≤ q. Now E(Gi)∩E(Gk) = E(G)− ei − ek and thus
dj(Gi, Gk) = 1 if and only if the edges ei and ek are not adjacent. Thus
Dj({G1, G2, ..., Gq}) = L(G).

We have seen many graphs that are jump distance graphs, such as complete
graphs, trees, cycles, cartesian products of jump distance graphs, and com-
plements of line graphs. In fact, we know of no graph that is not a jump
distance graph and thus we conclude with the following.

Conjecture. Every graph is a jump distance graph.
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