MINIMAL VERTEX DEGREE SUM OF A 3-PATH IN PLANE MAPS

O.V. Borodin*
Novosibirsk State University
Novosibirsk, 630090, Russia

Abstract

Let w_{k} be the minimum degree sum of a path on k vertices in a graph. We prove for normal plane maps that: (1) if $w_{2}=6$, then w_{3} may be arbitrarily big, (2) if $w_{2}>6$, then either $w_{3} \leq 18$ or there is a ≤ 15-vertex adjacent to two 3 -vertices, and (3) if $w_{2}>7$, then $w_{3} \leq 17$.

Keywords: planar graph, structure, degree, path, weight.
1991 Mathematics Subject Classification: 05C10.

Let $d(v)$ be the degree of a vertex v in a 3-polytope, i.e. in a 3-connected planar graph. Franklin [5] proves that in each simplicial 3-polytope (whose all faces are triangles) of minimal degree 5 there is a path $u v w$ such that $d(u) \leq 6, d(v)=5$, and $d(w) \leq 6$. Both 6's here are best possible. Kotzig [8] proves that each 3-polytope has an edge $u v$ such that $d(u)+d(v) \leq 13$; the bound is best possible. For a graph G having at least one path consisting of k vertices, called hereafter a k-path, we denote by $w_{k}(G)$, or sometimes w_{k}, the minimal vertex degree sum of a k-path in G. A plane map is normal if its every edge and face is incident with at least three edges. If a plane map is not normal, then as seen from $K_{2, n}$, not only w_{3}, but also w_{2} can be arbitrarily big. It is proved in [1] that each normal plane graph of minimal degree 5 has a face uvw such that $d(u)+d(v)+d(w) \leq 17$, which bound is best possible. If a 3 -polytope is simplicial and no 4 -vertex is adjacent to that of degree ≤ 4, then, as proved in [2], there is a face $u v w$ such that $d(u)+d(v)+d(w) \leq 29$, which bound is also sharp. Jendrol' [6] proves that each 3-polytope has a path $u v w$ such that $\max \{d(u), d(v), d(w)\} \leq 15$ (the bound is precise). Jendrol' [7] further shows that such a path must

[^0]belong to one of ten classes, in which $d(u)+d(v)+d(w)$ varies from 23 to 15. As reported by Enomoto and Ota in [3], Ando, Iwasaki and Kaneko [4] prove $w_{3} \leq 21$ for each 3-polytope, which is best possible due to Jendrol's construction [7].

It is natural to describe the classes of normal plane maps in which w_{3} is bounded above. Consider the following construction with $w_{2}=6$ and w_{3} unbounded: join two vertices by n edges and place two adjacent 3 -vertices inside each 2 -face. It turns out that not all 3,3 -edges are responsible for the unboundedness of w_{3}, but only those lying on 3 -faces. More specifically, the purpose of this note is to prove the following

Theorem 1. Each normal plane map without triangles incident with two 3 -vertices has
(i) either $w_{3} \leq 18$ or a vertex of degree ≤ 15 adjacent to two 3 -vertices, and
(ii) either $w_{3} \leq 17$ or $w_{2}=7$.

Corollary 2. Each normal plane map with $w_{2}>6$ has $w_{3} \leq 21$.
In particular, Theorem 1 immediately implies that Franklin's bound $w_{3} \leq 17$ is valid for all normal plane maps of minimal degree ≥ 4.

Corollary 3. Each normal plane map without 3 -vertices has $w_{3} \leq 17$.
The upper bound in the following statement is also immediate:
Corollary 4. In each 3 -polytope without 3 -vertices there is a path uvw such that $\max \{d(u), d(v), d(w)\} \leq 9$.
To attain the bound in Corollary 4, take the dual of the well-known (3,5,3,5)Archimedean solid, and join every two 5 -vertices lying in a common face by a path consisting of two 4 -vertices. (The former 3 -vertices now have degree 9 , while the former 5 -ones become 10 -vertices.)

Proof of Theorem 1. Suppose that M^{\prime} is a counterexample to (i) or (ii) of Theorem 1. In particular, M^{\prime} has $w_{3}>17$. Let M be a counterexample on the same vertex set with the greatest number of edges.
(A) M is a triangulation.

Suppose there is a >3-face $f=a b c \ldots$.. Further suppose b is a vertex with the minimal degree among all vertices incident with f. Then $M+a c$ is also a counterexample to the same statement (i) or (ii) as M. First observe that
if M has no 4 -vertex adjacent to a 3 -vertex or a ≤ 15-vertex adjacent to two 3 -vertices, then so does $M+a c$. Secondly, suppose $w_{3}(M+a c)<w_{3}(M)$. Then in $M+a c$ there is a path $z a c$ or $a c z$, say $z a c$, such that $z \neq b$ and $d_{M}(z)+d_{M}(a)+1+d_{M}(c)+1<w_{3}(M)$. But since $d_{M}(b) \leq d_{M}(c)$, we have $w_{3}(M) \leq d_{M}(z)+d_{M}(a)+d_{M}(b)<d_{M}(z)+d_{M}(a)+1+d_{M}(c)+1<w_{3}(M)$, which is a contradiction.

The next property follows immediately from (A):
(B) No 3-vertex of M is adjacent to a 3-vertex.

Throughout the paper, we denote the vertices adjacent to a vertex v in a cyclic order by $v_{1}, \ldots, v_{d(v)}$.
Euler's formula $|V|-|E|+|F|=2$ for M may be written as

$$
\begin{equation*}
\sum_{v \in V}(d(v)-6)=-12 . \tag{1}
\end{equation*}
$$

Every ≤ 5-vertex contributes a negative charge $\mu(v)=d(v)-6$ to (1), while the charges of ≥ 6-vertices are non-negative. Using the properties of M as a counterexample to (i) or (ii), we define a local redistribution of μ 's, preserving their sum, such that the new contribution $\mu^{\prime}(v)$ is nonnegative for all $v \in V$. This will contradict the fact that the sum of the new contributions is, by (1), equal to -12 .

Rule 1. Suppose $d(v)=3$. If each v_{i} has $d\left(v_{i}\right) \geq 7$, then each of them gives 1 to v. Suppose $4 \leq d\left(v_{1}\right) \leq 6$. Then each of v_{2}, v_{3} gives $\frac{3}{2}$ to v.
Now $\mu^{\prime}(v)$ is completely determined for $d(v)=3$, and clearly $\mu^{\prime}(v)=\mu(v)+$ $3=0$.

Rule 2. Suppose $d(v)=4$. If v is not adjacent to <7-vertices, it receives $1 / 2$ from each v_{i}. Suppose $5 \leq d\left(v_{1}\right) \leq 6$. Then v receives $2 / 3$ from each of v_{2}, v_{3}, v_{4}. If $d\left(v_{1}\right)=4$, then v_{3} gives $4 / 5$ to v, and each of v_{2}, v_{4} gives $3 / 5$. Finally, if $d\left(v_{1}\right)=3$, then v_{3} gives 1 , while each of v_{2}, v_{4} gives $1 / 2$.
Clearly, each 4-vertex v has $\mu^{\prime}(v)=\mu(v)+2=0$.
Rule 3. Suppose $d(v)=5$. If each of v_{i} has $d\left(v_{i}\right) \geq 6$, then four of v_{i} actually have $d\left(v_{i}\right) \geq 7$, and each ≥ 7-neighbour gives $1 / 4$ to v. Otherwise, if say $3 \leq d\left(v_{1}\right) \leq 5$, then v receives $1 / 2$ from each of v_{3}, v_{4}.
Clearly, $\mu^{\prime}(v) \geq \mu(v)+1 \geq 0$ if $d(v)=5$.

Thus, if v is minor, i.e. has $d(v) \leq 5$, then $\mu^{\prime}(v) \geq 0$. It remains to prove $\mu^{\prime}(v) \geq 0$ for $d(v) \geq 7$, because 6 -vertices do not participate in discharging.

If $7 \leq d(v) \leq 8$, then either v is adjacent to at most one minor vertex, or v is an 8 -vertex with all minor neighbours having degree 5. By Rules $1-3, v$ cannot give >1 to any of its neighbours because $3+6+8<w_{3}$, therefore $\mu^{\prime}(v) \geq 7-6-1=0$ in the first subcase above. In the second, observe that by Rule $3, v$ can give a positive charge to a 5 -vertex y only if there are triangles $v x y$ and $v z y$, where $d(x) \geq 6, d(z) \geq 6$. We thus have $\mu^{\prime}(v) \geq 7-6-3 \times 1 / 4>0$ if $d(v)=7$, and $\mu^{\prime}(v) \geq 8-6-4 \times 1 / 4=0$ if $d(v)=8$.

Suppose $d(v)=9$. If v has a 3 -neighbour, then no other minor neighbour is possible because $9+3+5<w_{3}$, therefore $\mu^{\prime}(v) \geq 9-6-3 / 2>0$. Otherwise, v can do at most four transfers $\left(9+4+4<w_{3}\right)$, each of which is not greater than $2 / 3$, which implies $\mu^{\prime}(v) \geq 9-6-4 \times 2 / 3>0$.

Suppose $d(v)=10$. If v has a 3 -neighbour, then 4 -neighbours are impossible. Since v then can do at most five transfers in total, we have $\mu^{\prime}(v) \geq 10-6-3 / 2-4 \times 1 / 2>0$. Assume v has no 3 -neighbours. By Rule $2, v$ gives $4 / 5$ to single 4 -neighbours, and $3 / 5$ to each of 4 -twins. To estimate the total expenditure of v, undertake the following averaging of transfers from v to its neighbours: If v_{i} receives $4 / 5$, then neither v_{i-1}, nor v_{i+1}, where indices are taken modulo $d(v)$, gets anything from v directly. We may imagine that v actually gives $1 / 5$ to each of v_{i-1}, v_{i+1}, and only $2 / 5$ to v_{i}. Similarly, if v_{i} gets $3 / 5$ from v by Rule 3 , we may imagine that v_{i} actually gets only $2 / 5$, while the remaining $1 / 5$ goes to that of v_{i-1}, v_{i+1} which is not a 4 -vertex. Observe that those vertices which did not receive anything from v directly, now receive at most $2 \times 1 / 5=2 / 5$. Thus, v gives on average $\leq 2 / 5$ to each neighbour, that is $\mu^{\prime}(v) \geq 10-6-10 \times 2 / 5=0$.

Next suppose $d(v)=11$. Still, at most one 3 -neighbour is possible. Besides, no 4 -neighbour of v is adjacent to a 3 -vertex by (i) and (ii), so that no 4 -neighbour of v can receive 1 from v. If v_{i} receives $3 / 2$ from v, then by Rule 1 we may assume that $d\left(v_{i+1}\right) \leq 6$. Observe that v_{i+2} does not receive anything from v, and therefore v may split its donation of $3 / 2$ to v_{i} among v_{i-1}, v_{i}, v_{i+1} and v_{i+2} as follows: $3 / 2=1 / 5+7 / 10+2 / 5+1 / 5$. The argument used for $d(v)=10$ says that after averaging such a v_{i} receives <1 from v, while each of the other ten neighbours receives $\leq 2 / 5$, i.e. $\mu^{\prime}(v) \geq 11-6-1-10 \times 2 / 5=0$. If there does exist a 3 -neighbour receiving 1 , or there is no 3 -neighbours at all, then the argument used for $d(v)=10$ is still valid, because if v_{i} receives t from v where $2 / 5 \leq t \leq 4 / 5$, then v_{i-1} and v_{i+1} receive nothing from v (directly). Hereafter suppose $d(v) \geq 12$.

Case 1. M contradicts (ii).
It follows that if $d\left(v_{i}\right)=3$, then $d\left(v_{i+1}\right)>4$, whenever $1 \leq i \leq d(v)$. By Rule 3, if $d\left(v_{i}\right)=3$, then neither v_{i+1}, nor v_{i-1} receives anything. We employ another averaging of the donations of v to its neighbours. If v_{2} receives $3 / 2$, then assume $d\left(v_{3}\right) \leq 6$ and split this $3 / 2$ amongst v_{1}, \ldots, v_{4} as follows: $1 / 4+1 / 2+1 / 2+1 / 4$, respectively. Otherwise, whenever v_{2} receives $>1 / 2$ from v, it actually receives ≤ 1. We then direct $1 / 4$ to each of v_{1}, v_{3}, and $\leq 1 / 2$ remains for v_{2}. As a result, each neighbour receives $\leq 1 / 2$ from v, which implies $\mu^{\prime}(v) \geq d(v)-6-d(v) / 2=(d(v)-12) / 2 \geq 0$. This completes the proof of (ii).

Case 2. M contradicts (i).
If $d(v) \leq 15$, then v cannot be adjacent to two 3 -vertices, and the $2 / 5$ argument given for $d(v)=11$ is valid. Therefore assume $d(v) \geq 16$. We now employ yet another averaging. Whenever $d\left(v_{i}\right)=3$ and $d\left(v_{i+1}\right)=4$, we redistribute what they receive from v among v_{i-1}, \ldots, v_{i+2} as follows $3 / 2+1 / 2=1 / 3+2 / 3+2 / 3+1 / 3$, respectively.

If $d\left(v_{i}\right)=3$ and $5 \leq d\left(v_{i+1}\right) \leq 6$, i.e. v_{i} receives $3 / 2$ by Rule 1 , while v_{i+1} does nothing, then both v_{i-1} and v_{i+2} still receive nothing from v directly, and we split $3 / 2=1 / 3+1 / 3+1 / 2+1 / 3$, respectively. If v_{i} receives ≤ 1, while each of v_{i-1}, v_{i+1} receives nought, then we instead send $1 / 3$ to each of v_{i-1}, v_{i+1}, so that $\leq 1 / 3$ remains for v_{i}. Observe that in the last two cases v_{i} saves for v at least $1 / 3$ with respect to the normal level $2 / 3$ of donations of v to its neighbours.

Clearly, after this averaging every neighbour of v indirectly receives from v at most $2 / 3$. It follows, $\mu^{\prime}(v) \geq d(v)-6-2 d(v) / 3=2(d(v)-18) \geq 0$, i.e. we are done with $d(v) \geq 18$.

It remains to prove $\mu^{\prime}(v) \geq 0$ if $16 \leq d(v) \leq 17$. Observe that $d(v)-$ $6-2 d(v) / 3$ is $-1 / 3$ and $-2 / 3$ for $d(v)=17$ and $d(v)=16$, respectively. So, it suffices to find one or, respectively, two vertices receiving $\leq 1 / 3$ after averaging to complete the proof in these two cases.

Consider a partition of cycle $C_{v}=v_{1} \ldots v_{d(v)}$ into segments $R_{i, j}=$ $v_{i} \ldots v_{j}$ where $i<j$, called receivers, such that neither v_{i} nor v_{j} receives by Rule 1-3 anything from v, whereas each v_{q} does whenever $i<q<j$. Clearly, $j-i \leq 3$ because in M there are no three minor vertices in a row. If there is $R_{i, j}$ such that $j-i=1$, then each of v_{i}, v_{j} obviously has $\leq 1 / 3$ after averaging, which implies $\mu^{\prime}(v) \geq 0$ as mentioned above. Assume each $R_{i, j}$ is either singular $(j-i=2)$ or double $(j-i=3)$. Due to the residues of 17 and 16 modulo 3 , there should be at least one singular $R_{i, j}$ if $d(v)=17$, and at
least two if $d(v)=16$. But in each singular $R_{i, j}$, vertex v_{i+1} receives $\leq 1 / 3$, i.e. saves $1 / 3$ for v. This completes the proof of $\mu^{\prime}(v) \geq 0$ if $16 \leq d(v) \leq 17$. Thus we have proved $\mu^{\prime}(v) \geq 0$ for every $v \in V$, which contradicts (1):

$$
0 \leq \sum_{v \in V} \mu^{\prime}(v)=\sum_{v \in V} \mu^{\prime}(v)=-12
$$

This completes the proof of Theorem 1.

Acknowledgement

The author thanks the referee for useful comments and pointing out papers [3] and [4].

References

[1] O.V. Borodin, Solution of Kotzig's and Grünbaum's problems on the separability of a cycle in plane graph, (in Russian), Matem. zametki 48 (6) (1989) 9-12.
[2] O.V. Borodin, Triangulated 3-polytopes without faces of low weight, submitted.
[3] H. Enomoto and K. Ota, Properties of 3-connected graphs, preprint (April 21, 1994).
[4] K. Ando, S. Iwasaki and A. Kaneko, Every 3-connected planar graph has a connected subgraph with small degree sum I, II (in Japanese), Annual Meeting of Mathematical Society of Japan, 1993.
[5] Ph. Franklin, The four colour problem, Amer. J. Math. 44 (1922) 225-236.
[6] S. Jendrol', Paths with restricted degrees of their vertices in planar graphs, submitted.
[7] S. Jendrol', A structural property of 3-connected planar graphs, submitted.
[8] A. Kotzig, Contribution to the theory of Eulerian polyhedra, (in Russian), Mat. Čas. 5 (1955) 101-103.

[^0]: *This work was partially supported by the Visiting Fellowship Resesarch Grant GR/K00561 from the Engineering and Physical Sciences Research Council (England) and by grant 96-01-01614 of the Russian Foundation of Fundamental Research.

