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Abstract

Let wk be the minimum degree sum of a path on k vertices in
a graph. We prove for normal plane maps that: (1) if w2 = 6, then
w3 may be arbitrarily big, (2) if w2 > 6, then either w3 ≤ 18 or there
is a ≤ 15-vertex adjacent to two 3-vertices, and (3) if w2 > 7, then
w3 ≤ 17.
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Let d(v) be the degree of a vertex v in a 3-polytope, i.e. in a 3-connected
planar graph. Franklin [5] proves that in each simplicial 3-polytope (whose
all faces are triangles) of minimal degree 5 there is a path uvw such that
d(u) ≤ 6, d(v) = 5, and d(w) ≤ 6. Both 6’s here are best possible. Kotzig [8]
proves that each 3-polytope has an edge uv such that d(u) + d(v) ≤ 13; the
bound is best possible. For a graph G having at least one path consisting of
k vertices, called hereafter a k-path, we denote by wk(G), or sometimes wk,
the minimal vertex degree sum of a k-path in G. A plane map is normal
if its every edge and face is incident with at least three edges. If a plane
map is not normal, then as seen from K2,n, not only w3, but also w2 can be
arbitrarily big. It is proved in [1] that each normal plane graph of minimal
degree 5 has a face uvw such that d(u) + d(v) + d(w) ≤ 17, which bound
is best possible. If a 3-polytope is simplicial and no 4-vertex is adjacent to
that of degree ≤ 4, then, as proved in [2], there is a face uvw such that
d(u) + d(v) + d(w) ≤ 29, which bound is also sharp. Jendrol’ [6] proves
that each 3-polytope has a path uvw such that max{d(u), d(v), d(w)} ≤ 15
(the bound is precise). Jendrol’ [7] further shows that such a path must
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belong to one of ten classes, in which d(u) + d(v) + d(w) varies from 23
to 15. As reported by Enomoto and Ota in [3], Ando, Iwasaki and Kaneko
[4] prove w3 ≤ 21 for each 3-polytope, which is best possible due to Jendrol’s
construction [7].

It is natural to describe the classes of normal plane maps in which w3

is bounded above. Consider the following construction with w2 = 6 and w3

unbounded: join two vertices by n edges and place two adjacent 3-vertices
inside each 2-face. It turns out that not all 3, 3-edges are responsible for the
unboundedness of w3, but only those lying on 3-faces. More specifically, the
purpose of this note is to prove the following

Theorem 1. Each normal plane map without triangles incident with two
3-vertices has
(i) either w3 ≤ 18 or a vertex of degree ≤ 15 adjacent to two 3-vertices,

and
(ii) either w3 ≤ 17 or w2 = 7.

Corollary 2. Each normal plane map with w2 > 6 has w3 ≤ 21.

In particular, Theorem 1 immediately implies that Franklin’s bound w3 ≤ 17
is valid for all normal plane maps of minimal degree ≥ 4.

Corollary 3. Each normal plane map without 3-vertices has w3 ≤ 17.

The upper bound in the following statement is also immediate:

Corollary 4. In each 3-polytope without 3-vertices there is a path uvw such
that max{d(u), d(v), d(w)} ≤ 9.

To attain the bound in Corollary 4, take the dual of the well-known (3,5,3,5)-
Archimedean solid, and join every two 5-vertices lying in a common face by a
path consisting of two 4-vertices. (The former 3-vertices now have degree 9,
while the former 5-ones become 10-vertices.)

Proof of Theorem 1. Suppose that M ′ is a counterexample to (i) or (ii)
of Theorem 1. In particular, M ′ has w3 > 17. Let M be a counterexample
on the same vertex set with the greatest number of edges.

(A) M is a triangulation.

Suppose there is a > 3-face f = abc . . .. Further suppose b is a vertex with
the minimal degree among all vertices incident with f . Then M + ac is also
a counterexample to the same statement (i) or (ii) as M . First observe that
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if M has no 4-vertex adjacent to a 3-vertex or a ≤ 15-vertex adjacent to two
3-vertices, then so does M + ac. Secondly, suppose w3(M + ac) < w3(M).
Then in M + ac there is a path zac or acz, say zac, such that z 6= b and
dM (z)+dM (a)+1+dM (c)+1 < w3(M). But since dM (b) ≤ dM (c), we have
w3(M) ≤ dM (z)+dM (a)+dM (b) < dM (z)+dM (a)+1+dM (c)+1 < w3(M),
which is a contradiction.

The next property follows immediately from (A):

(B) No 3-vertex of M is adjacent to a 3-vertex.

Throughout the paper, we denote the vertices adjacent to a vertex v in
a cyclic order by v1, . . . , vd(v).

Euler’s formula |V | − |E|+ |F | = 2 for M may be written as
∑

v∈V

(d(v)− 6) = −12.(1)

Every ≤ 5-vertex contributes a negative charge µ(v) = d(v) − 6 to (1),
while the charges of ≥ 6-vertices are non-negative. Using the properties
of M as a counterexample to (i) or (ii), we define a local redistribution
of µ’s, preserving their sum, such that the new contribution µ′(v) is non-
negative for all v ∈ V . This will contradict the fact that the sum of the new
contributions is, by (1), equal to -12.

Rule 1. Suppose d(v) = 3. If each vi has d(vi) ≥ 7, then each of them gives
1 to v. Suppose 4 ≤ d(v1) ≤ 6. Then each of v2, v3 gives 3

2 to v.

Now µ′(v) is completely determined for d(v) = 3, and clearly µ′(v) = µ(v)+
3 = 0.

Rule 2. Suppose d(v) = 4. If v is not adjacent to < 7-vertices, it receives
1/2 from each vi. Suppose 5 ≤ d(v1) ≤ 6. Then v receives 2/3 from each of
v2, v3, v4. If d(v1) = 4, then v3 gives 4/5 to v, and each of v2, v4 gives 3/5.
Finally, if d(v1) = 3, then v3 gives 1, while each of v2, v4 gives 1/2.

Clearly, each 4-vertex v has µ′(v) = µ(v) + 2 = 0.

Rule 3. Suppose d(v) = 5. If each of vi has d(vi) ≥ 6, then four of vi

actually have d(vi) ≥ 7, and each ≥ 7-neighbour gives 1/4 to v. Otherwise,
if say 3 ≤ d(v1) ≤ 5, then v receives 1/2 from each of v3, v4.

Clearly, µ′(v) ≥ µ(v) + 1 ≥ 0 if d(v) = 5.
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Thus, if v is minor, i.e. has d(v) ≤ 5, then µ′(v) ≥ 0. It remains to prove
µ′(v) ≥ 0 for d(v) ≥ 7, because 6-vertices do not participate in discharging.

If 7 ≤ d(v) ≤ 8, then either v is adjacent to at most one minor vertex,
or v is an 8-vertex with all minor neighbours having degree 5. By Rules
1-3, v cannot give >1 to any of its neighbours because 3 + 6 + 8 < w3,
therefore µ′(v) ≥ 7 − 6 − 1 = 0 in the first subcase above. In the second,
observe that by Rule 3, v can give a positive charge to a 5-vertex y only if
there are triangles vxy and vzy, where d(x) ≥ 6, d(z) ≥ 6. We thus have
µ′(v) ≥ 7 − 6− 3× 1/4 > 0 if d(v) = 7, and µ′(v) ≥ 8− 6 − 4× 1/4 = 0 if
d(v) = 8.

Suppose d(v) = 9. If v has a 3-neighbour, then no other minor neighbour
is possible because 9 + 3 + 5 < w3, therefore µ′(v) ≥ 9 − 6 − 3/2 > 0.
Otherwise, v can do at most four transfers (9 + 4 + 4 < w3), each of which
is not greater than 2/3, which implies µ′(v) ≥ 9− 6− 4× 2/3 > 0.

Suppose d(v) = 10. If v has a 3-neighbour, then 4-neighbours are
impossible. Since v then can do at most five transfers in total, we have
µ′(v) ≥ 10 − 6 − 3/2 − 4 × 1/2 > 0. Assume v has no 3-neighbours. By
Rule 2, v gives 4/5 to single 4-neighbours, and 3/5 to each of 4-twins. To
estimate the total expenditure of v, undertake the following averaging of
transfers from v to its neighbours: If vi receives 4/5, then neither vi−1, nor
vi+1, where indices are taken modulo d(v), gets anything from v directly.
We may imagine that v actually gives 1/5 to each of vi−1, vi+1, and only
2/5 to vi. Similarly, if vi gets 3/5 from v by Rule 3, we may imagine that
vi actually gets only 2/5, while the remaining 1/5 goes to that of vi−1, vi+1

which is not a 4-vertex. Observe that those vertices which did not receive
anything from v directly, now receive at most 2× 1/5 = 2/5. Thus, v gives
on average ≤ 2/5 to each neighbour, that is µ′(v) ≥ 10− 6− 10× 2/5 = 0.

Next suppose d(v) = 11. Still, at most one 3-neighbour is possible.
Besides, no 4-neighbour of v is adjacent to a 3-vertex by (i) and (ii), so that
no 4-neighbour of v can receive 1 from v. If vi receives 3/2 from v, then
by Rule 1 we may assume that d(vi+1) ≤ 6. Observe that vi+2 does not
receive anything from v, and therefore v may split its donation of 3/2 to
vi among vi−1, vi, vi+1 and vi+2 as follows: 3/2=1/5+7/10+2/5+1/5. The
argument used for d(v) = 10 says that after averaging such a vi receives
< 1 from v, while each of the other ten neighbours receives ≤ 2/5, i.e.
µ′(v) ≥ 11−6−1−10×2/5 = 0. If there does exist a 3-neighbour receiving
1, or there is no 3-neighbours at all, then the argument used for d(v) = 10
is still valid, because if vi receives t from v where 2/5 ≤ t ≤ 4/5, then vi−1

and vi+1 receive nothing from v (directly). Hereafter suppose d(v) ≥ 12.



Minimal Vertex Degree Sum of a 3-Path ... 283

Case 1. M contradicts (ii).
It follows that if d(vi) = 3, then d(vi+1) > 4, whenever 1 ≤ i ≤ d(v). By
Rule 3, if d(vi) = 3, then neither vi+1, nor vi−1 receives anything. We
employ another averaging of the donations of v to its neighbours. If v2

receives 3/2, then assume d(v3) ≤ 6 and split this 3/2 amongst v1, . . . , v4 as
follows: 1/4+1/2+1/2+1/4, respectively. Otherwise, whenever v2 receives
> 1/2 from v, it actually receives ≤ 1. We then direct 1/4 to each of v1,
v3, and ≤ 1/2 remains for v2. As a result, each neighbour receives ≤ 1/2
from v, which implies µ′(v) ≥ d(v) − 6 − d(v)/2 = (d(v) − 12)/2 ≥ 0. This
completes the proof of (ii).

Case 2. M contradicts (i).
If d(v) ≤ 15, then v cannot be adjacent to two 3-vertices, and the 2/5-
argument given for d(v) = 11 is valid. Therefore assume d(v) ≥ 16. We
now employ yet another averaging. Whenever d(vi) = 3 and d(vi+1) = 4,
we redistribute what they receive from v among vi−1, . . . , vi+2 as follows
3/2+1/2=1/3+2/3+2/3+1/3, respectively.

If d(vi) = 3 and 5 ≤ d(vi+1) ≤ 6, i.e. vi receives 3/2 by Rule 1, while vi+1

does nothing, then both vi−1 and vi+2 still receive nothing from v directly,
and we split 3/2=1/3+1/3+1/2+1/3, respectively. If vi receives ≤ 1, while
each of vi−1, vi+1 receives nought, then we instead send 1/3 to each of vi−1,
vi+1, so that ≤ 1/3 remains for vi. Observe that in the last two cases vi

saves for v at least 1/3 with respect to the normal level 2/3 of donations of
v to its neighbours.

Clearly, after this averaging every neighbour of v indirectly receives from
v at most 2/3. It follows, µ′(v) ≥ d(v)− 6− 2d(v)/3 = 2(d(v)− 18) ≥ 0, i.e.
we are done with d(v) ≥ 18.

It remains to prove µ′(v) ≥ 0 if 16 ≤ d(v) ≤ 17. Observe that d(v) −
6 − 2d(v)/3 is -1/3 and -2/3 for d(v) = 17 and d(v) = 16, respectively. So,
it suffices to find one or, respectively, two vertices receiving ≤ 1/3 after
averaging to complete the proof in these two cases.

Consider a partition of cycle Cv = v1 . . . vd(v) into segments Ri,j =
vi . . . vj where i < j, called receivers, such that neither vi nor vj receives by
Rule 1-3 anything from v, whereas each vq does whenever i < q < j. Clearly,
j − i ≤ 3 because in M there are no three minor vertices in a row. If there
is Ri,j such that j − i = 1, then each of vi, vj obviously has ≤ 1/3 after
averaging, which implies µ′(v) ≥ 0 as mentioned above. Assume each Ri,j is
either singular (j−i = 2) or double (j−i = 3). Due to the residues of 17 and
16 modulo 3, there should be at least one singular Ri,j if d(v) = 17, and at
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least two if d(v) = 16. But in each singular Ri,j , vertex vi+1 receives ≤ 1/3,
i.e. saves 1/3 for v. This completes the proof of µ′(v) ≥ 0 if 16 ≤ d(v) ≤ 17.

Thus we have proved µ′(v) ≥ 0 for every v ∈ V , which contradicts (1):

0 ≤
∑

v∈V

µ′(v) =
∑

v∈V

µ′(v) = −12.

This completes the proof of Theorem 1.
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