
Discussiones Mathematicae

Graph Theory 17 (1997) 259–269

SPANNING TREES WITH MANY OR FEW COLORS

IN EDGE-COLORED GRAPHS

Hajo Broersma

Faculty of Applied Mathematics

University of Twente, P.O. Box 217

7500 AE Enschede, The Netherlands

and

Xueliang Li∗

Department of Applied Mathematics

Northwestern Polytechnical University

Xi’an, Shaanxi 710072, P.R. China

Abstract

Given a graph G = (V,E) and a (not necessarily proper) edge-
coloring of G, we consider the complexity of finding a spanning tree
of G with as many different colors as possible, and of finding one with
as few different colors as possible. We show that the first problem is
equivalent to finding a common independent set of maximum cardi-
nality in two matroids, implying that there is a polynomial algorithm.
We use the minimum dominating set problem to show that the second
problem is NP -hard.

Keywords: edge-coloring, spanning tree, matroid (intersection), com-
plexity, NP -complete, NP -hard, polynomial algorithm, (minimum)
dominating set.

1991 Mathematics Subject Classification: 05C05, 05C85, 05B35.

∗This research was carried out while the second author was visiting the Faculty of

Applied Mathematics, University of Twente, supported by the Euler Institute for Discrete

Mathematics and its Applications.

260 H. Broersma and X. Li

1. Introduction

In (real-world) problems that are modeled by graphs, the edges of the graphs
often are assigned certain weights, labels or colors representing certain types
(or costs) of (the) relations between the vertices. In many of these problems
the goal is to find a subgraph in which a function of the weights, labels or
colors of the edges attains some optimum value. Well-known examples are
the minimum spanning tree problem and the traveling salesman problem.
Other examples are problems in which one is interested in (the existence
of) multicolored cycles, i.e. cycles in which all edges have different colors,
or monochromatic cycles, i.e. cycles in which all edges have the same color.
Here we focus on finding spanning trees with many or few different colors
in (not necessarily properly) edge-colored graphs.

All graphs considered are finite and undirected, and contain no multiple
edges or loops. We use [1] for basic graph theoretic terminology and nota-
tion. In describing problems and their complexity the terminology of [2] is
applied.

Let G = (V, E) be a connected graph. By a coloring of G we will mean
a function c : E → N. If G is assigned such a coloring, then we say that G is
a colored graph, and we call c(e) the color of the edge e ∈ E. We note that c

is not necessarily a proper edge-coloring, i.e., two adjacent edges may have
the same color. For a subgraph H of G, we let C(H) =

⋃
e∈E(H) c(e) and

c(H) = |C(H)|. A spanning tree T of G is called a maximum tree if c(T) is
maximum, i.e., if there is no spanning tree T ′ of G such that c(T ′) > c(T).
Similarly we say that T is a minimum tree if c(T) is minimum.

In the sequel we will consider the complexity of finding a maximum tree
in a colored graph G and of finding a minimum tree of G. In Section 2 we
show that the problem of finding a maximum tree is equivalent to finding a
common independent set of maximum cardinality in two matroids, implying
that there is a polynomial algorithm for this problem. In Section 3 we use
the minimum dominating set problem to show that finding a minimum tree
is NP -hard.

2. Maximum Trees

We start this section with a simple observation. But first we need some
additional terminology.

Let F be a (spanning) forest of a connected graph G = (V, E) with a
coloring c : E → N. Then F is said to be an optimal forest if c(F) = |E(F)|
(the edges of F have different colors) and there is no forest F ′ of G such

Spanning Trees with Many or ... 261

that c(F ′) > c(F). A spanning tree T of G is said to correspond with F if
C(T) = C(F) and T can be obtained from F by adding edges of G (with
colors from C(F)).

Lemma 1. T is a maximum tree of a connected colored graph G if and only

if T corresponds with an optimal forest of G.

Proof. Let G be a connected graph with a coloring c : E(G) → N. If T is
a maximum tree with c(T) = k, then clearly T contains a spanning forest F

of G with C(F) = C(T) and |E(F)| = k. Assuming F is not optimal, some
forest F ′ exists such that c(F ′) > k. Since G is connected this implies the
existence of a spanning tree T ′ of G with c(T ′) ≥ c(F ′) > c(T), contradicting
the maximality of T . Hence F is optimal, and T clearly corresponds with F .

Next assume T corresponds with an optimal forest F of G. Then
C(T) = C(F) and c(F) = |E(F)|. Assuming T is not maximum, consider
a spanning tree T ′ of G with c(T ′) > c(T). T ′ contains a spanning forest
F ′ of G with c(F ′) = |E(F ′)| = c(T ′) > c(T) = c(F), contradicting the
optimality of F .

The above lemma shows that finding a maximum tree of a connected colored
graph G is equivalent to finding an optimal forest of G. The latter problem
can easily be described in terms of the so-called cardinality intersection
problem of two matroids. We refer to [3, 4] for terminology and notation
concerning matroids and combinatorial optimization. For convenience we
repeat some of the definitions here.

A matroid M = (S, I) is a structure in which S is a finite set of elements

and I is a family of subsets of S (called independent sets) such that

(1) ∅ ∈ I and all proper subsets of a set I ∈ I are in I.

(2) If U, V ∈ I with |U | = |V | + 1, then there exists an element x ∈ U\V
such that V ∪ {x} ∈ I.

In the sequel we will often use V + x instead of V ∪ {x}, and V + x − y

instead of (V ∪ {x})\{y}, et cetera.

The cardinality intersection problem for two matroids is as follows.
Given two matroids M1 = (S, I1) and M2 = (S, I2) over the same set S, find
a maximum cardinality intersection I ∈ I1∩I2. We note that this definition
in [3] should not be confused with the intersection of two matroids defined in
[4, p. 123]. The latter is a matroid. It is well-known that there exists a poly-
nomial algorithm for the cardinality intersection problem for two matroids.
A description of such an algorithm can be found in [3, p. 313–314]. We will
now define two suitable matroids on the edge set of a graph G = (V, E) with

262 H. Broersma and X. Li

a coloring c : E → N.

Let I1 = {E′ ⊆ E | (V, E′) is a forest} and

I2 = {E′ ⊆ E | c((V, E′)) = |E′|}.

Lemma 2. (E, I1) and (E, I2) are matroids.

Proof. We check that (E, I1) and (E, I2) satisfy (1) and (2). For (E, I1),
clearly every subset, including ∅, of the edge set of a forest of G induces a
forest of G; moreover, if for two forests F1 and F2 of G, |E(F1)| = |E(F2)|+1,
then for some edge e = uv ∈ E(F1), u and v are in different components
of F2, so that F2 + e is a forest of G. For (E, I2), clearly every subset
E′′ ⊆ E′, including ∅, of some edge set E′ ⊆ E with c((V, E′)) = |E′|
satisfies c((V, E′′)) = |E′′|; moreover, if for two subsets E1, E2 ⊆ E,
c((V, E1)) = |E1|, c((V, E2)) = |E2|, and |E1| = |E2| + 1, then there is
an edge e ∈ E1\E2 with c(e) 6∈ C((V, E2)) such that E3 = E2∪{e} ⊆ E and
c((V, E3)) = |E3|.

Remark. (E, I1) is often called the graphic matroid; (E, I2) is a so-called
transversal matroid with respect to the partition of edges in color classes.

Let G = (V, E) be a graph, c : E → N a coloring of G, and let M1 = (E, I1)
and M2 = (E, I2) be two matroids associated with G, where I1 and I2 are
defined as above.

Lemma 3. F is an optimal forest of G if and only if E(F) is a maximum

cardinality intersection of M1 and M2.

Proof. By definition of M1 and M2, any set I ∈ I1 ∩ I2 corresponds to
a forest (V, I) of G such that c((V, I)) = |I| = |E((V, I))| and vice versa.
Clearly |I| is maximum if and only if (V, I) is an optimal forest of G.

Combining Lemma 1 and Lemma 3 we conclude that T is a maximum tree
of a connected colored graph G if and only if T corresponds to a solution I

of the maximum cardinality intersection problem for the two given matroids
defined on E(G). Since the latter problem can be solved in polynomial
time and T can be obtained from (V (G), I) by successively adding edges
of G avoiding cycles, it is clear that we can find a maximum tree of G in
polynomial time. It is just a matter of translation to adapt and extend the
general algorithm for the maximum cardinality intersection problem given
in [3, p. 313–314] to a polynomial algorithm for finding a maximum tree.
Moreover, the same technique can be applied to solve the problem of finding
a base with maximum number of colors in a matroid each element of which

Spanning Trees with Many or ... 263

is colored. However, for the aforementioned maximum tree problem we can
give an explicit discussion which we think is useful and easier to understand.
First we give a characterization of optimal forests in terms of tree operations.

Let G = (V, E) be a graph and c : E → N a coloring of G, and consider
some forest F of G such that c(F) = |E(F)|. We will describe a class FF of
forests containing F in two ways. We start with an informal, more or less
algorithmic description.

First set F = {F}. For every F ′ ∈ F , and for every e ∈ E(G)\E(F ′)
such that c(e) 6∈ C(F ′), consider all forests FC = {F ′ + e − f | F ′ + e − f

is a forest for some f ∈ E(F ′)}. Also, for every forest F ′ ∈ F , consider all
forests F ′ = {F ′′ | E(F ′′) ⊆ E(G), c(F ′′) = |E(F ′′)|, C(F ′′) = C(F ′)}. Now
replace F by F ∪ FC ∪ F ′, and repeat the process for elements of F until
no new forests are found. Let FF denote the final class of forests found by
this process.

Another, formal way of describing the class FF is as follows. Define a
relation R on the set of forests of G by: F1RF2 if and only if F1 and F2 are
forests of G such that c(F1) = |E(F1)| = c(F2) = |E(F2)|, and either

(3) C(F1) = C(F2) or

(4) F2 = F1+e−f for some edges e ∈ E(F2)\E(F1) and f ∈ E(F1)\E(F2).

Clearly R is a reflexive and symmetric relation. Denote by t(R) the transitive
closure of R. Then t(R) is an equivalence relation, and FF is the equivalence
class containing F .

We note here that for two forests F1 and F2 of G with c(F1) = |E(F1)| =
c(F2) = |E(F2)| and C(F1) = C(F2), one cannot always find an edge e ∈
E(F2)\E(F1) and f ∈ E(F1)\E(F2) such that F2 = F1 + e− f . We give an
example.

Example. Let G = (V, E) be a graph with V = {v1, v2, v3, v4} and E =
{v1v2, v1v3, v1v4, v2v3, v3v4} and coloring c : E → N given by c(v1v2) =
c(v3v4) = 1, c(v2v3) = c(v1v4) = 2, and c(v1v3) = 3. Consider two forests
F1 and F2 of G defined by F1 = (V, E1) and F2 = (V, E2), where E1 =
{v1v2, v1v3, v1v4} and E2 = {v2v3, v1v3, v3v4}. Then F1 and F2 satisfy (3),
but not (4). Moreover, if we omit (3) from the definition of R above, then
the equivalence classes induced by the newly defined equivalence relation
t(R) are such that for this example F1 and F2 are in different classes.

Suppose that Fopt is an optimal forest of the colored graph G. Then we can
characterize the optimal forests of G in the following way.

Theorem 4. F is an optimal forest of G if and only if Fopt ∈ FF .

264 H. Broersma and X. Li

Proof. First suppose Fopt ∈ FF . Noting that all elements of FF have the
same number of edges, and all edges have different colors, we easily obtain
that c(F) = c(Fopt) and |E(F)| = |E(Fopt)| = c(Fopt) = c(F). Since Fopt is
an optimal forest, there exists no forest F ′ such that c(F ′) > c(Fopt) = c(F).
Hence F is an optimal forest of G.

Next suppose F is an optimal forest of G. We use induction on k =
|E(Fopt)\E(F)| to prove that Fopt ∈ FF . If k = 0, there is nothing to prove.
Suppose k > 0, and suppose that |E(Fopt)\E(F)| < k implies Fopt ∈ FF . If
C(Fopt) = C(F), then by definition of FF , Fopt ∈ FF . Hence assume there
exists an edge e ∈ E(Fopt)\E(F) with c(e) 6∈ C(F). Then F + e contains
a (unique) cycle C, otherwise F + e is a forest with c(F + e) = c(F) + 1(=
|E(F + e)|), a contradiction. Since Fopt is a forest and e ∈ E(Fopt), C

contains an edge f ∈ E(F)\E(Fopt). Denote F1 = F + e − f . Clearly F1

is an optimal forest of G and F1 ∈ FF . This implies F ∈ FF1
, since FF is

an equivalence class. Now, since |E(Fopt)\E(F1)| < |E(Fopt)\E(F)| = k,
from the induction hypothesis we obtain Fopt ∈ FF1

= FF . This completes
the proof.

The above characterization of optimal forests, and the definition of the equiv-
alence classes FF do not seem to be very useful in developing a polynomial
algorithm for finding an optimal forest. Especially condition (3) — which
could not be omitted — does not seem to make a polynomial algorithm
based on this very likely. To describe such an algorithm we will now turn
our attention to the way one can augment the number of colors of a forest.

For a graph G = (V, E) and a coloring c : E → N of G, let Fi = {F
is a forest of G | c(F) = |E(F)| = i}, i = 0, 1, . . . , c(Fopt), where Fopt is
an optimal forest of G. We first show that Fi = FF for some forest F of
G, and then, more importantly, we show that for every forest F1 ∈ Fi with
0 ≤ i < c(Fopt), there exists a forest F2 ∈ Fi+1 and a sequence of edges
e1, e2, . . . , ek ∈ E(F2)\E(F1) and f1, f2, . . . , fk−1 ∈ E(F1)\E(F2) such that
F2 = F1 + e1 − f1 + . . . + ek−1 − fk−1 + ek.

Lemma 5. Fi = FF for some forest F of G.

Proof. Let F ∈ Fi. Then clearly FF ⊆ Fi since all forests of FF have the
same number of edges, and all edges have different colors. We now show
that Fi ⊆ FF . Let F ′ ∈ Fi, i.e., c(F ′) = |E(F ′)| = i. If C(F ′) = C(F),
then clearly F ′ ∈ FF . Next assume C(F ′) 6= C(F), and consider some edge
e ∈ E(F ′)\E(F) with c(e) 6∈ C(F). No matter whether F + e is a forest or
not, we can find an edge f ∈ E(F)\E(F ′) such that F + e − f is a forest
and F + e − f ∈ FF . Moreover |C(F + e − f)\C(F ′)| < |C(F)\C(F ′)|,

Spanning Trees with Many or ... 265

and we can prove that F ′ ∈ FF by induction on |C(F)\C(F ′)| in the
obvious way.

Note that from the example it follows that the assertion in Lemma [5] is not
true if we omit (3) in the definition of R.

Lemma 6. Let i ∈ {0, 1, . . . , c(Fopt) − 1}. Then for every forest F1 ∈ Fi

there exists a forest F2 ∈ Fi+1 such that F2 = F1 + e1 − f1 + . . . + ek−1 −
fk−1 + ek for some edges {e1, . . . , ek} ⊆ E(F2)\E(F1) and {f1, . . . , fk−1} ⊆
E(F1)\E(F2).

Proof. By induction on k = |E(F2)\E(F1)|. If k = 1, there is nothing to
prove: F2 = F1 + e for some {e} = E(F2)\E(F1). Now assume k ≥ 2 and
suppose the result holds if |E(F2)\E(F1)| < k.

Since |E(F2)| = |E(F1)|+1, there exists an edge e1 ∈ E(F2)\E(F1) such
that F1 + e1 is a forest. If c(e1) 6∈ C(F1), we are done: then F1 + e1 ∈ Fi+1.
Next assume c(e1) ∈ C(F1). Then some edge f1 ∈ E(F1)\E(F2) exists with
c(f1) = c(e1). Now consider F ′

1 = F1 + e1 − f1. Clearly F ′

1 is a forest,
F ′

1 ∈ Fi, and |E(F2)\E(F ′

1)| < |E(F2)\E(F1)| = k. Hence by the induction
hypothesis, F2 = F ′

1 + e2 − f2 + . . . + er−1 − fr−1 + er for some edges
{e2, . . . , er} ⊆ E(F2)\E(F ′

1) and {f2, . . . , fr−1} ⊆ E(F ′

1)\E(F2). Clearly
e1 6∈ {e2, . . . , er} since e1 ∈ E(F ′

1), and f1 6∈ {f2, . . . , fr−1} since f1 6∈ E(F ′

1).
Moreover, {e2, . . . , er} ⊆ E(F2)\E(F1) and {f2, . . . , fr−1} ⊆ E(F1)\E(F2).
Hence F2 = F1 +e1−f1 + . . .+er−1−fr−1 +er for some edges {e1, . . . , er} ⊆
E(F2)\E(F1) and {f1, . . . , fr−1} ⊆ E(F1)\E(F2).

Based on the above observations and the Matroid Intersection Algorithm,
we can formulate the following algorithm for finding an optimal forest in a
graph G = (V, E) with a coloring c : E → N.

Algorithm

Step 0 (Start)
Let F be any forest of G with c(F) = |E(F)|, possibly with
E(F) = ∅.
A := ∅, Q := ∅, T := ∅.

266 H. Broersma and X. Li

Step 1 (Greedy augmentation)
For all ei ∈ E \ E(F):
if c(ei) 6∈ C(F) and F + ei is a forest, then F := F + ei.

Step 2 (Construction of the auxiliary digraph D(F) = (E, A))
For all ei ∈ E \ E(F):
if c(ei) 6∈ C(F), then Q := Q ∪ {ei}; else for all ej in F with
c(ej) = c(ei): A := A ∪ {(ej , ei)};
if F + ei is a forest, then T := T ∪ {ei}; else for all ej in Ci − ei:
A := A ∪ {(ei, ej)} (where Ci is the unique cycle in F + ei).

Step 3 (Augmentation)
In D(F), search for a shortest directed path P (e, e′) from an
element e ∈ Q to an element e′ ∈ T (by breadth-first search),
put F := F ⊕ P (e, e′), and go to Step 0. Stop if there is no such
path; then F is an optimal forest of G.

The correctness of the algorithm is obvious, since it is a translation from the
Matroid Intersection Algorithm. The complexity of the algorithm depends
on the implementation, but it can be implemented to have an overall running
time O(n4), where n is the number of vertices of G. In fact, for the time
bound, we can have at most n augmentations. For each augmentation,
the time requirements are dominated by the construction of the auxiliary
digraph D(F). For each ei ∈ E \ E(F), we find in F the edges with the
same color as ei, or a cycle Ci in F + ei. Thus, the construction of D(F),
Q, and T can be carried out in O(|E|n) time. Finally, searching the digraph
for P (e, e′) takes O(|E|n) time. Therefore, the total complexity is O(n2|E|),
or O(n4).

Example. Consider the graph G of Figure 1a, in which the thicker edges
belong to the forest F of G. We start our algorithm with F . Clearly
c(F) = |E(F)| = 4. In Step 1 no greedy augmentation takes place. In
Step 2 we obtain the auxiliary digraph D(F) of Figure 1b, in which the
vertices are labeled according to the color of the corresponding edges in G,
with a subscript F added if and only if the corresponding edge belongs to F .
In Step 3 we obtain 52F 24F 4 as a shortest directed path in D(F) between
a vertex of Q and T . This leads to the spanning tree F ′ of G indicated by
the thicker edges in Figure 1c.

Perhaps it is worth mentioning that, constructing a similar edge-colored
graph by connecting k ≥ 3 disjoint triangles in a ‘path fashion’ and assigning
suitable colors to the edges, we can obtain a graph G on 3k vertices for
which we need a directed path P of length 2k in D(F) of G to obtain an
augmentation in Step 3 of our algorithm. We can choose the colors in such

Spanning Trees with Many or ... 267

a way that P is not unique.

2

1 5

4

23

4

5

Q

E(F)

1F

2F

3F

4F

T

4

2

2

1 5

4

23

4

1a. G and F . 1b. D(F) of G. 1c. G and F ′.

Figure 1. Construction of D(F) to find an augmentation.

3. Minimum Trees

As we have seen in the previous section, there is a polynomial algorithm
for finding a maximum tree of a connected colored graph. The situation
is quite different for the related problem of finding a minimum tree. As
we will show in the sequel, this problem is NP -hard, implying there is no
polynomial algorithm for this problem unless P = NP .

We start with some additional terminology. Given a graph G = (V, E),
a set S ⊆ V is called a dominating set if every vertex of V \S has a neighbor
in S.

According to [2, GT2, p. 190] the following problem is NP -complete.

Problem 1

INSTANCE: Graph G = (V, E), positive integer K ≤ |V |.

QUESTION: Is there a dominating set of cardinality K or less for G?

We will use this result to show that the following problem is also NP -
complete.

268 H. Broersma and X. Li

Problem 2

INSTANCE: Graph G = (V, E), coloring c : E → N, positive integer

K ≤ c(G).

QUESTION: Is there a spanning tree T with c(T) ≤ K for G?

Theorem 7. Problem 2 is NP -complete.

Proof. It is not difficult to see that Problem 2 is in NP . One way is to see
that a nondeterministic algorithm needs only guess a spanning tree T of G

and check in linear time whether c(T) ≤ K.

Next we transform Problem 1 to Problem 2. Let G = (V, E) be a
graph and K ≤ |V | an integer. We shall construct a new graph G′ =
(V ′, E′) and a coloring c : E′ → N such that G′ has a spanning tree T with
c(T) ≤ K + 1 if and only if G has a dominating set S with |S| ≤ K, and
such that the construction can be accomplished in polynomial time. Let
V = {v1, . . . , vn}. Now construct G′ as follows. Start with the vertex set
V and for each vi ∈ V add a new vertex ui and an edge viui with color
c(viui) = i. Moreover, for each edge vivj ∈ E, add a new vertex uij and an
edge viuij with color c(viuij) = j. Finally add a new vertex v and all edges
from v to the u-vertices, with the same color n+1. Clearly the construction
can be accomplished in polynomial time. We now finish the proof by showing
that G has a dominating set S with |S| ≤ K if and only if G′ has a spanning
tree T with c(T) ≤ K + 1.

First assume G has a dominating set S with |S| ≤ K. For each vertex
vi ∈ V choose one vertex vj ∈ S such that either vi = vj or vivj ∈ E. In
G′ choose the corresponding edge viui with color i = j if vi = vj , or the
edge viuij with color j if vivj ∈ E. Hence in G′ we choose precisely n edges
with at most |S| ≤ K different colors. Adding all edges with color n + 1 we
obtain the edge set of a spanning tree of G′ with at most K + 1 different
colors.

Next assume G′ has a spanning tree T with c(T) ≤ K + 1. Clearly
T contains an edge with color n + 1. For all vi ∈ V ′, the tree T contains
precisely one path of length 2 from v to vi. Replace any other edges incident
with vi in T by edges incident with v and the same other end vertex. Then
the new tree T ′ of G′ also has c(T ′) ≤ K +1 and it is not difficult to see that
the colors of all tree edges not incident with v correspond to a dominating
set S of G with |S| = c(T ′) − 1 ≤ K: if the edge in T ′ incident with vi has
color j, then vi is dominated by vj ∈ S. This completes the proof.

The following consequence of Theorem 7 is immediate.

Spanning Trees with Many or ... 269

Corollary 8. Finding a minimum tree in a connected colored graph is an

NP -hard problem.

Acknowledgments

We thank the anonymous referee for pointing out a mistake in the first
version of the algorithm.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (MacMillan-
Elsevier, London-New York, 1976).

[2] M.R. Garey and D.S. Johnson, Computers and Intractability (Freeman, New
York, 1979).

[3] E.L. Lawler, Combinatorial Optimization, Networks and Matroids (Holt,
Rinehart and Winston, New York, 1976).

[4] D.J.A. Welsh, Matroid Theory (Academic Press, London-New York-San
Francisco, 1976).

Received 23 November 1995
Revised 30 January 1997

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

