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Abstract

We prove that for any additive hereditary property P > O, it is
NP-hard to decide if a given graph G allows a vertex partition V (G) =
A ∪B such that G[A] ∈ O (i.e., A is independent) and G[B] ∈ P.
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1. Introduction

We consider finite undirected simple graphs. A graph property is any isomor-
phism closed class of graphs. A graph property is hereditary if it is closed
under taking subgraphs, and it is additive if it is closed under taking disjoint
unions. The class O of all edgless graphs is the simplest additive hereditary
property.

The join G ⊕H of two graphs G and H is the graph consisting of the
disjoint union of G and H and all the edges between V (G) and V (H).

Let P1,P2, . . . ,Pn be graph properties. A vertex (P1,P2, . . . ,Pn)-
partition of a graph G is a partition (V1, V2, . . . , Vn) of V (G) such that
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for each i = 1, 2, . . . , n, the induced subgraph G[Vi] has the property Pi.
The composition P1 ◦ P2 ◦ . . . ◦ Pn is defined as the class of all graphs hav-
ing a vertex (P1,P2, . . . ,Pn)-partition. A graph property P is reducible if
P = P1 ◦P2 for some nonempty properties P1,P2, and it is called irreducible
otherwise. Every additive hereditary property is uniquely factorizable into
irreducible properties [3].

In this paper we address the complexity of recognizing graphs from
reducible properties. This question may be viewed as a generalization of
graph coloring problems. It is plausible to conjecture that recognition of
P ◦Q graphs is NP-hard for any two nonempty properties, if at least one of
them is nontrivial. In this note we present a general reduction which shows
the hardness for Q = O and P 6= O.

2. The NP-Hardness Results

Theorem 1. If P 6= O is an additive hereditary property not divisible by
O, then the (O,P)-partition problem is NP-hard.

Proof. Let k be the maximum size of a complete graph belonging to P,
i.e., Kk ∈ P and Kk+1 6∈ P. Clearly, k > 1. Let Sk+1 be the graph obtained
by taking k +1 complete graphs of size k and unifying one vertex from each
of them, and let Fk denote the graph obtained from Kk by hanging a copy
of Kk on each of its vertices. (Here and later on, to hang a copy of Kk onto
a vertex x in a graph G means to add a clique of size k − 1 to G and make
all of its k − 1 vertices adjacent to x.)

We will reduce from 1-in-(k + 1)-SAT which is known to be NP-
complete even when the input formula has no negations and all variables
occur in exactly k + 1 clauses each (this is the exact cover problem for
(k + 1)-regular (k + 1)-uniform hypergraphs) [1].

Suppose first that Sk+1 and Fk are both in P. Given a formula Φ
as specified above, we construct a graph G as follows: For each clause
c = (xc,1, xc,2, . . . , xc,k+1) we introduce a complete graph on k + 1 vertices
c1, c2, . . . , ck+1. For each variable x we regard x as a vertex of G. If x occurs
in a clause c, say x = xc,i in c, we construct a so called connector gadget
by taking a complete graph on k + 1 vertices ci, x, v1(c, x), . . . , vk−1(c, x),
and forcing the vertices v1(c, x), . . . , vk−1(c, x) to “be in P”. This forcing
is done as follows. Mihók proved in [2] that for any property P > O not
divisible by O, there exists a graph uniquely partitionable into O ◦P. Take
a copy of such a graph and make one vertex from the O part of it adjacent
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to v1(c, x), . . . , vk−1(c, x). In any O◦P partition of G, this vertex is in the O
part, and since this part is independent, the vertices v1(c, x), . . . , vk−1(c, x)
are all in the P part. We claim that G constructed in this way allows an
(O,P)-partition if and only if Φ is satisfiable.

Suppose first that G does allow a partition V (G) = A ∪ B such that
G[A] ∈ O and G[B] ∈ P. We set x = true iff x ∈ B. Since Kk+1 6∈ P, at
least one vertex of each clause gadget is in A, and since A is independent,
such vertex is unique. Say this is a vertex ci in a clause c. Since A is
independent, the corresponding variable vertex xc,i is in B and this variable
is true in the clause. For any other variable xc,j in c, cj ∈ B. Since the
connector gadget is another copy of Kk+1 and k−1 of its vertices are forced
to be in B, the only vertex which can be in A is the corresponding variable
vertex xc,j , hence every xc,j , j 6= i is false. Thus Φ is 1-in-(k + 1)-satisfied.

Suppose on the other hand that Φ is 1-in-(k + 1) satisfied by a truth
valuation φ. We set

A = {x|φ(x) = false} ∪
⋃
c

{ci|φ(xc,i) = true}

B = {x|φ(x) = true} ∪
⋃
c

{ci|φ(xc,i) = false}

and we add the vertices whose membership is forced to the particular classes
(A representing O and B representing P). Obviously, A is an independent
set. The components of G[B] in the forcing uniquely partitionable graphs
which hang on vi(c, x)’s are in P by construction, the remaining components
of G[B] are copies of Fk (around the clause gadgets) and Sk+1 (around the
variable vertices which were valued true). Thus G ∈ O ◦P and we are done.

The situation is slightly more complex if Fk 6∈ P or Sk+1 6∈ P. Here we first
need to introduce some notation.

Let H be a rooted graph and let s = (s1, s2, . . . , sn) be a finite sequence
of positive integers. We denote by H[s] the graph obtained from H by
hanging n complete graphs Ksi , i = 1, 2, . . . , n on the root of H.

For a sequence of k positive integers s = (s1, s2, . . . , sk), we denote by
Fk(s) the graph obtained by hanging complete graphs Ksi , i = 1, 2, . . . , k on
the vertices of Kk, one on each. Thus

Fk = Fk(k, k, . . . , k) – k terms in the parentheses

Sk+1 = K1[k, k, . . . , k] – k + 1 terms in the parentheses.
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If Fk(k, k, . . . , k) ∈ P, we set m = k and t+ = (k, k, . . . , k). If
Fk(k, k, . . . , k) 6∈ P, we let m be the least number such that Fk(m,m, . . . ,m) 6∈
P and we let h be the smallest index such that for t1 = t2 = . . . = th =
m − 1, th+1 = . . . = tk = m and t = (t1, t2, . . . , tk), Fk(t) ∈ P. We
then set t+ = (t+1 , t+2 , . . . , t+k ) so that t+1 = t+2 = . . . = t+h−1 = m − 1,
t+h = . . . = t+k = m. Thus Fk(t) ∈ P and Fk(t+) 6∈ P. We denote by H
the graph obtained from Fk(t+) by deleting one of the hanging cliques of
size m, rooted in the vertex whose clique was deleted (e.g., in the vertex
corresponding to t+k ).

For a sequence s = (s1, s2, . . . , sn) we denote

ψ(s) = (s2, s3, . . . , sn)

i.e., the sequence obtained by deleting the first element, and we denote

φk(s) = (s1 − 1, s1 − 1, . . . , s1 − 1, s2, s3, . . . , sn)

i.e., the sequence obtained by replacing the first element s1 by k occurrences
of s1 − 1. Note that |ψ(s)| = |s| − 1 and |φk(s)| = |s|+ k − 1.

If Fk 6∈ P, we have H[m] 6∈ P. If Fk ∈ P, we must have Sk+1 6∈ P and
hence H[k, k, . . . , k] 6∈ P (but H = H[1] ∈ P). In either case, Lemma 1 says
that there is a sequence s = (s1, . . . , sn) such that

2 ≤ s1 ≤ s2 ≤ . . . ≤ sn ≤ m,

H[s] 6∈ P but H[φk(s)] ∈ P.

We denote by H̃ the graph H[ψ(s)] = H[s2, s3, . . . , sn] and we use this H̃
for the construction of the graph G.

Given a formula Φ as in the first part of the paper, we again plug into
G (k + 1)-cliques for the clauses of Φ. Each variable x will be replaced by
a copy of H̃ with the root in the vertex x and with all vertices except for
x being forced to “be in P”. If variable x occurs as the i-th variable of a
clause c, the connector of x and c will be a copy of Ks1 containing ci, x and
s1 − 2 extra vertices which will be also forced to “be in P”.

Now the proof is straightforward. Suppose first that G ∈ O ◦ P, say
V (G) = A ∪ B such that A is independent and G[B] ∈ P. Again we set
x = true iff x ∈ B. Since Kk+1 6∈ P, at least one vertex of each clause
gadget is in A, and since A is independent, such a vertex is unique. Say
this be a vertex ci in a clause c. Since A is independent, the corresponding
variable vertex xc,i is in B and this variable is true in the clause. For any
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other variable xc,j in c, cj ∈ B. Since the connector gadget Ks1 together
with the vertices of the variable gadget which are forced to be in B forms
H[s] 6∈ P, it must be xc,j ∈ A for every j 6= i. Thus Φ is Φ is 1-in-(k + 1)
satisfied.

Suppose, on the other hand, that Φ is 1-in-(k + 1) satisfied by a truth
valuation φ. We set

A = {x|φ(x) = false} ∪
⋃
c

{ci|φ(xc,i) = true}

B = {x|φ(x) = true} ∪
⋃
c

{ci|φ(xc,i) = false}

and we add the vertices whose membership is forced to the particular classes
(A representing O and B representing P). Obviously, A is an independent
set. The components of G[B] in the forcing uniquely partitionable graphs
which hang on vi(c, x)’s are in P by construction. The remaining compo-
nents of G[B] are copies Fk(s1−1, . . . , s1−1) ⊂ Fk(m−1,m−1, . . . , m−1) ⊂
Fk(t) ∈ P (around the clause gadgets) and H̃[s1−1, . . . , s1−1] = H[φk(s)] ∈
P (around the variable vertices which are valued true). Thus G ∈ O◦P and
we are done.

Lemma 1. Let H be a graph such that H ∈ P and H[w] 6∈ P for some
sequence w. Then there exists a sequence s such that

max s ≤ maxw,

H[s] 6∈ P,

H[φk(s)] ∈ P.

Proof. Let m = max w. Set

A = {s|1 < s1 ≤ . . . ≤ sn ≤ m,H[s] ∈ P},
A′ = {s|s 6∈ A,ψ(s) ∈ A}.

Let s ∈ A′ be a sequence with minimum possible s1(> 1).
If s1 = 2 then φk(s) = (1, 1, . . . , 1, s2, . . . , sn) and H[φk(s)] = H[ψ(s)] ∈

A and s has the desired property.
If s1 > 2 then s would be good for us if H[φk(s)] ∈ P. So we may as-

sume that H[φk(s)] = H[s1 − 1, s1 − 1, . . . , s1 − 1, s2, . . . , sn] 6∈ P. Since
(s2, . . . , sn) ∈ A, there is a number j > 0 such that (s1 − 1, . . . , s1 −
1, s2, . . . , sn) ∈ A′ (with j occurrences of s1− 1). But this is a contradiction
as 2 ≤ s1 − 1 < s1.
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Theorem 2. For any property P 6= O, the (O ◦ P)-partition problem is
NP-hard.

Proof. If P = On for n ≥ 2, then the (O,P)-partition problem is just the
(n + 1)-colorability of graphs and hence well known NP-complete.

Let P = On◦Q, where andQ is not divisible byO. In view of Theorem 1,
we may assume that n > 0. We know that O ◦ Q-partition is NP-hard.
Suppose G is an input graph for this question. Let G have g vertices and let
G′ be the join (Zykov sum) of G and n independent sets Ii, i = 1, 2, . . . , n,
each of size g. We claim that G′ ∈ O◦P = On+1◦Q if and only if G ∈ O◦Q.

It is clear that if G ∈ O ◦ Q then G′ ∈ On+1 ◦ Q.
On the other hand, suppose that G′ allows a partition into a graph

from Q and at most n + 1 independent sets, say V (G′) = Q ∪ ⋃n+1
i=1 Ai,

where each Ai is independent and G′[Q] ∈ Q. Each Ai is either a subset of
V (G)−Q, or a subset of one of the Ii’s. Assume k + 1 of Ai’s being subsets
of V (G)−Q, and without loss of generality let them be A1, . . . , Ak+1. Then
only n−k sets Ak+2, . . . , An+1 lie outside of V (G), and consequently, at least
k of the Ii’s lie inside Q, say I1, . . . , Ik. But then G[(Q ∩ V (G)) ∪ ⋃k

i=1 Ai]
is isomorphic to a subgraph of G[V (G) ∩ Q] ⊕ ∑k

i=1 Ii ⊂ G′[Q] ∈ Q and
G ⊂ G[(V (G) ∩Q) ∪⋃k

i=1 Ai]⊕G[Ak+1] ∈ Q ◦ O.
Since the construction of G′ is linear in the size of G, we have concluded

the proof.
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