Discussiones Mathematicae Graph Theory 17 (1997) 253–258

ON THE COMPUTATIONAL COMPLEXITY OF $(\mathcal{O}, \mathcal{P})$ -PARTITION PROBLEMS

JAN KRATOCHVÍL*

Department of Applied Mathematics Charles University, Prague, Czech Republic e-mail: honza@kam.ms.mff.cuni.cz

AND

INGO SCHIERMEYER

Lehrstuhl für Diskrete Mathematik, und Grundlagen der Informatik Technische Universität Cottbus, D-03013 Cottbus, Germany e-mail: schierme@math.tu-cottbus.de

Abstract

We prove that for any additive hereditary property $\mathcal{P} > \mathcal{O}$, it is NP-hard to decide if a given graph G allows a vertex partition $V(G) = A \cup B$ such that $G[A] \in \mathcal{O}$ (i.e., A is independent) and $G[B] \in \mathcal{P}$.

Keywords: computational complexity, graph properties, partition problems.

1991 Mathematics Subject Classification: 05C75, 68Q15, 68R10.

1. INTRODUCTION

We consider finite undirected simple graphs. A graph property is any isomorphism closed class of graphs. A graph property is *hereditary* if it is closed under taking subgraphs, and it is *additive* if it is closed under taking disjoint unions. The class \mathcal{O} of all edgless graphs is the simplest additive hereditary property.

The join $G \oplus H$ of two graphs G and H is the graph consisting of the disjoint union of G and H and all the edges between V(G) and V(H).

Let $\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_n$ be graph properties. A vertex $(\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_n)$ partition of a graph G is a partition (V_1, V_2, \ldots, V_n) of V(G) such that

 $^{^{*}\}mbox{Research}$ supported in part by Czech Research grants Nos. GAUK 194/1996 and GAČR 0194/1996. Author's mailing address: KAM MFF UK, Malostranske nam. 25, 118 00 Praha 1, Czech Republic.

for each i = 1, 2, ..., n, the induced subgraph $G[V_i]$ has the property \mathcal{P}_i . The composition $\mathcal{P}_1 \circ \mathcal{P}_2 \circ ... \circ \mathcal{P}_n$ is defined as the class of all graphs having a vertex $(\mathcal{P}_1, \mathcal{P}_2, ..., \mathcal{P}_n)$ -partition. A graph property \mathcal{P} is *reducible* if $\mathcal{P} = \mathcal{P}_1 \circ \mathcal{P}_2$ for some nonempty properties $\mathcal{P}_1, \mathcal{P}_2$, and it is called *irreducible* otherwise. Every additive hereditary property is uniquely factorizable into irreducible properties [3].

In this paper we address the complexity of recognizing graphs from reducible properties. This question may be viewed as a generalization of graph coloring problems. It is plausible to conjecture that recognition of $\mathcal{P} \circ \mathcal{Q}$ graphs is NP-hard for any two nonempty properties, if at least one of them is nontrivial. In this note we present a general reduction which shows the hardness for $\mathcal{Q} = \mathcal{O}$ and $\mathcal{P} \neq \mathcal{O}$.

2. The NP-Hardness Results

Theorem 1. If $\mathcal{P} \neq \mathcal{O}$ is an additive hereditary property not divisible by \mathcal{O} , then the $(\mathcal{O}, \mathcal{P})$ -partition problem is NP-hard.

Proof. Let k be the maximum size of a complete graph belonging to \mathcal{P} , i.e., $K_k \in \mathcal{P}$ and $K_{k+1} \notin \mathcal{P}$. Clearly, k > 1. Let S_{k+1} be the graph obtained by taking k+1 complete graphs of size k and unifying one vertex from each of them, and let F_k denote the graph obtained from K_k by hanging a copy of K_k on each of its vertices. (Here and later on, to hang a copy of K_k onto a vertex x in a graph G means to add a clique of size k-1 to G and make all of its k-1 vertices adjacent to x.)

We will reduce from 1-in-(k + 1)-SAT which is known to be NPcomplete even when the input formula has no negations and all variables occur in exactly k + 1 clauses each (this is the exact cover problem for (k + 1)-regular (k + 1)-uniform hypergraphs) [1].

Suppose first that S_{k+1} and F_k are both in \mathcal{P} . Given a formula Φ as specified above, we construct a graph G as follows: For each clause $c = (x_{c,1}, x_{c,2}, \ldots, x_{c,k+1})$ we introduce a complete graph on k + 1 vertices $c_1, c_2, \ldots, c_{k+1}$. For each variable x we regard x as a vertex of G. If x occurs in a clause c, say $x = x_{c,i}$ in c, we construct a so called connector gadget by taking a complete graph on k + 1 vertices $c_i, x, v_1(c, x), \ldots, v_{k-1}(c, x)$, and forcing the vertices $v_1(c, x), \ldots, v_{k-1}(c, x)$ to "be in P". This forcing is done as follows. Mihók proved in [2] that for any property $\mathcal{P} > \mathcal{O}$ not divisible by \mathcal{O} , there exists a graph uniquely partitionable into $\mathcal{O} \circ \mathcal{P}$. Take a copy of such a graph and make one vertex from the \mathcal{O} part of it adjacent to $v_1(c, x), \ldots, v_{k-1}(c, x)$. In any $\mathcal{O} \circ \mathcal{P}$ partition of G, this vertex is in the \mathcal{O} part, and since this part is independent, the vertices $v_1(c, x), \ldots, v_{k-1}(c, x)$ are all in the \mathcal{P} part. We claim that G constructed in this way allows an $(\mathcal{O}, \mathcal{P})$ -partition if and only if Φ is satisfiable.

Suppose first that G does allow a partition $V(G) = A \cup B$ such that $G[A] \in \mathcal{O}$ and $G[B] \in \mathcal{P}$. We set x = true iff $x \in B$. Since $K_{k+1} \notin \mathcal{P}$, at least one vertex of each clause gadget is in A, and since A is independent, such vertex is unique. Say this is a vertex c_i in a clause c. Since A is independent, the corresponding variable vertex $x_{c,i}$ is in B and this variable is true in the clause. For any other variable $x_{c,j}$ in $c, c_j \in B$. Since the connector gadget is another copy of K_{k+1} and k-1 of its vertices are forced to be in B, the only vertex which can be in A is the corresponding variable vertex $x_{c,j}$, hence every $x_{c,j}, j \neq i$ is false. Thus Φ is 1-in-(k+1)-satisfied.

Suppose on the other hand that Φ is 1-in-(k + 1) satisfied by a truth valuation ϕ . We set

$$A = \{x | \phi(x) = \mathsf{false}\} \cup \bigcup_{c} \{c_i | \phi(x_{c,i}) = \mathsf{true}\}$$
$$B = \{x | \phi(x) = \mathsf{true}\} \cup \bigcup_{c} \{c_i | \phi(x_{c,i}) = \mathsf{false}\}$$

and we add the vertices whose membership is forced to the particular classes $(A \text{ representing } \mathcal{O} \text{ and } B \text{ representing } \mathcal{P})$. Obviously, A is an independent set. The components of G[B] in the forcing uniquely partitionable graphs which hang on $v_i(c, x)$'s are in \mathcal{P} by construction, the remaining components of G[B] are copies of F_k (around the clause gadgets) and S_{k+1} (around the variable vertices which were valued true). Thus $G \in \mathcal{O} \circ \mathcal{P}$ and we are done.

The situation is slightly more complex if $F_k \notin \mathcal{P}$ or $S_{k+1} \notin \mathcal{P}$. Here we first need to introduce some notation.

Let H be a rooted graph and let $s = (s_1, s_2, \ldots, s_n)$ be a finite sequence of positive integers. We denote by H[s] the graph obtained from H by hanging n complete graphs $K_{s_i}, i = 1, 2, \ldots, n$ on the root of H.

For a sequence of k positive integers $s = (s_1, s_2, \ldots, s_k)$, we denote by $F_k(s)$ the graph obtained by hanging complete graphs $K_{s_i}, i = 1, 2, \ldots, k$ on the vertices of K_k , one on each. Thus

 $F_k = F_k(k, k, \dots, k) - k$ terms in the parentheses

 $S_{k+1} = K_1[k, k, \dots, k] - k + 1$ terms in the parentheses.

J. KRATOCHVÍL AND I. SCHIERMEYER

If $F_k(k, k, \ldots, k) \in \mathcal{P}$, we set m = k and $t^+ = (k, k, \ldots, k)$. If $F_k(k, k, \ldots, k) \notin \mathcal{P}$, we let m be the least number such that $F_k(m, m, \ldots, m) \notin \mathcal{P}$ and we let h be the smallest index such that for $t_1 = t_2 = \ldots = t_h = m - 1, t_{h+1} = \ldots = t_k = m$ and $t = (t_1, t_2, \ldots, t_k), F_k(t) \in \mathcal{P}$. We then set $t^+ = (t_1^+, t_2^+, \ldots, t_k^+)$ so that $t_1^+ = t_2^+ = \ldots = t_{h-1}^+ = m - 1, t_h^+ = \ldots = t_k^+ = m$. Thus $F_k(t) \in \mathcal{P}$ and $F_k(t^+) \notin \mathcal{P}$. We denote by H the graph obtained from $F_k(t^+)$ by deleting one of the hanging cliques of size m, rooted in the vertex whose clique was deleted (e.g., in the vertex corresponding to t_k^+).

For a sequence $s = (s_1, s_2, \ldots, s_n)$ we denote

$$\psi(s) = (s_2, s_3, \dots, s_n)$$

i.e., the sequence obtained by deleting the first element, and we denote

$$\phi_k(s) = (s_1 - 1, s_1 - 1, \dots, s_1 - 1, s_2, s_3, \dots, s_n)$$

i.e., the sequence obtained by replacing the first element s_1 by k occurrences of $s_1 - 1$. Note that $|\psi(s)| = |s| - 1$ and $|\phi_k(s)| = |s| + k - 1$.

If $F_k \notin \mathcal{P}$, we have $H[m] \notin \mathcal{P}$. If $F_k \in \mathcal{P}$, we must have $S_{k+1} \notin \mathcal{P}$ and hence $H[k, k, \ldots, k] \notin \mathcal{P}$ (but $H = H[1] \in \mathcal{P}$). In either case, Lemma 1 says that there is a sequence $s = (s_1, \ldots, s_n)$ such that

$$2 \le s_1 \le s_2 \le \ldots \le s_n \le m,$$
$$H[s] \notin \mathcal{P} \text{ but } H[\phi_k(s)] \in \mathcal{P}.$$

We denote by \tilde{H} the graph $H[\psi(s)] = H[s_2, s_3, \dots, s_n]$ and we use this \tilde{H} for the construction of the graph G.

Given a formula Φ as in the first part of the paper, we again plug into G(k+1)-cliques for the clauses of Φ . Each variable x will be replaced by a copy of \tilde{H} with the root in the vertex x and with all vertices except for x being forced to "be in P". If variable x occurs as the *i*-th variable of a clause c, the connector of x and c will be a copy of K_{s_1} containing c_i, x and $s_1 - 2$ extra vertices which will be also forced to "be in P".

Now the proof is straightforward. Suppose first that $G \in \mathcal{O} \circ \mathcal{P}$, say $V(G) = A \cup B$ such that A is independent and $G[B] \in \mathcal{P}$. Again we set x =true iff $x \in B$. Since $K_{k+1} \notin \mathcal{P}$, at least one vertex of each clause gadget is in A, and since A is independent, such a vertex is unique. Say this be a vertex c_i in a clause c. Since A is independent, the corresponding variable vertex $x_{c,i}$ is in B and this variable is true in the clause. For any

other variable $x_{c,j}$ in $c, c_j \in B$. Since the connector gadget K_{s_1} together with the vertices of the variable gadget which are forced to be in B forms $H[s] \notin \mathcal{P}$, it must be $x_{c,j} \in A$ for every $j \neq i$. Thus Φ is Φ is 1-in-(k+1)satisfied.

Suppose, on the other hand, that Φ is 1-in-(k + 1) satisfied by a truth valuation ϕ . We set

$$A = \{x | \phi(x) = \mathsf{false}\} \cup \bigcup_{c} \{c_i | \phi(x_{c,i}) = \mathsf{true}\}$$
$$B = \{x | \phi(x) = \mathsf{true}\} \cup \bigcup_{c} \{c_i | \phi(x_{c,i}) = \mathsf{false}\}$$

and we add the vertices whose membership is forced to the particular classes $(A \text{ representing } \mathcal{O} \text{ and } B \text{ representing } \mathcal{P})$. Obviously, A is an independent set. The components of G[B] in the forcing uniquely partitionable graphs which hang on $v_i(c, x)$'s are in \mathcal{P} by construction. The remaining components of G[B] are copies $F_k(s_1-1,\ldots,s_1-1) \subset F_k(m-1,m-1,\ldots,m-1) \subset F_k(t) \in \mathcal{P}$ (around the clause gadgets) and $\widetilde{H}[s_1-1,\ldots,s_1-1] = H[\phi_k(s)] \in \mathcal{P}$ (around the variable vertices which are valued true). Thus $G \in \mathcal{O} \circ \mathcal{P}$ and we are done.

Lemma 1. Let H be a graph such that $H \in \mathcal{P}$ and $H[w] \notin \mathcal{P}$ for some sequence w. Then there exists a sequence s such that

$$\max s \le \max w,$$
$$H[s] \notin \mathcal{P},$$
$$H[\phi_k(s)] \in \mathcal{P}.$$

Proof. Let $m = \max w$. Set

$$A = \{s | 1 < s_1 \le \dots \le s_n \le m, H[s] \in \mathcal{P}\},$$
$$A' = \{s | s \notin A, \psi(s) \in A\}.$$

Let $s \in A'$ be a sequence with minimum possible $s_1(> 1)$.

If $s_1 = 2$ then $\phi_k(s) = (1, 1, \dots, 1, s_2, \dots, s_n)$ and $H[\phi_k(s)] = H[\psi(s)] \in A$ and s has the desired property.

If $s_1 > 2$ then s would be good for us if $H[\phi_k(s)] \in \mathcal{P}$. So we may assume that $H[\phi_k(s)] = H[s_1 - 1, s_1 - 1, \ldots, s_1 - 1, s_2, \ldots, s_n] \notin \mathcal{P}$. Since $(s_2, \ldots, s_n) \in A$, there is a number j > 0 such that $(s_1 - 1, \ldots, s_1 - 1, s_2, \ldots, s_n) \in A'$ (with j occurrences of $s_1 - 1$). But this is a contradiction as $2 \leq s_1 - 1 < s_1$.

Theorem 2. For any property $\mathcal{P} \neq \mathcal{O}$, the $(\mathcal{O} \circ \mathcal{P})$ -partition problem is NP-hard.

Proof. If $\mathcal{P} = \mathcal{O}^n$ for $n \ge 2$, then the $(\mathcal{O}, \mathcal{P})$ -partition problem is just the (n+1)-colorability of graphs and hence well known NP-complete.

Let $\mathcal{P} = \mathcal{O}^n \circ \mathcal{Q}$, where and \mathcal{Q} is not divisible by \mathcal{O} . In view of Theorem 1, we may assume that n > 0. We know that $\mathcal{O} \circ \mathcal{Q}$ -partition is NP-hard. Suppose G is an input graph for this question. Let G have g vertices and let G' be the join (Zykov sum) of G and n independent sets $I_i, i = 1, 2, \ldots, n$, each of size g. We claim that $G' \in \mathcal{O} \circ \mathcal{P} = \mathcal{O}^{n+1} \circ \mathcal{Q}$ if and only if $G \in \mathcal{O} \circ \mathcal{Q}$. It is clear that if $G \in \mathcal{O} \circ \mathcal{Q}$ then $G' \in \mathcal{O}^{n+1} \circ \mathcal{Q}$.

On the other hand, suppose that G' allows a partition into a graph from \mathcal{Q} and at most n + 1 independent sets, say $V(G') = \mathcal{Q} \cup \bigcup_{i=1}^{n+1} A_i$, where each A_i is independent and $G'[Q] \in \mathcal{Q}$. Each A_i is either a subset of V(G) - Q, or a subset of one of the I_i 's. Assume k + 1 of A_i 's being subsets of V(G) - Q, and without loss of generality let them be A_1, \ldots, A_{k+1} . Then only n-k sets A_{k+2}, \ldots, A_{n+1} lie outside of V(G), and consequently, at least k of the I_i 's lie inside Q, say I_1, \ldots, I_k . But then $G[(Q \cap V(G)) \cup \bigcup_{i=1}^k A_i]$ is isomorphic to a subgraph of $G[V(G) \cap Q] \oplus \sum_{i=1}^k I_i \subset G'[Q] \in \mathcal{Q}$ and $G \subset G[(V(G) \cap Q) \cup \bigcup_{i=1}^k A_i] \oplus G[A_{k+1}] \in \mathcal{Q} \circ \mathcal{O}$.

Since the construction of G' is linear in the size of G, we have concluded the proof.

Acknowledgment

The authors thank Peter Mihók for stimulating discussions.

References

- M.R. Garey and D.S. Johnson, Computers and Intractability, A Guide to the Theory of NP-Completeness (W.H. Freeman and Company, New York, 1979).
- [2] J. Bucko, M. Frick, P. Mihók and R. Vasky, Uniquely partitionable graphs, Discussiones Mathematicae Graph Theory 17 (1997) 103–113.
- [3] P. Mihók, G. Semanišin and R. Vasky, Additive hereditary properties are uniquely factorizable (submitted).

Received 5 June 1997