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Abstract

We prove that for any additive hereditary property P > O, it is
NP-hard to decide if a given graph G allows a vertex partition V(G) =
AU B such that G[A] € O (i.e., A is independent) and G[B] € P.
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1. INTRODUCTION

We consider finite undirected simple graphs. A graph property is any isomor-
phism closed class of graphs. A graph property is hereditary if it is closed
under taking subgraphs, and it is additive if it is closed under taking disjoint
unions. The class O of all edgless graphs is the simplest additive hereditary
property.

The join G ® H of two graphs G and H is the graph consisting of the
disjoint union of G and H and all the edges between V(G) and V(H).

Let P1,Pa,..., P, be graph properties. A wvertex (P1,Pa,...,Pn)-
partition of a graph G is a partition (V1,Va,...,V,) of V(G) such that
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for each i = 1,2,...,n, the induced subgraph G[V;] has the property P;.
The composition P; o Py o...o P, is defined as the class of all graphs hav-
ing a vertex (P1, P2, ..., Py)-partition. A graph property P is reducible if
P = P1 0P, for some nonempty properties Py, P2, and it is called irreducible
otherwise. Every additive hereditary property is uniquely factorizable into
irreducible properties [3].

In this paper we address the complexity of recognizing graphs from
reducible properties. This question may be viewed as a generalization of
graph coloring problems. It is plausible to conjecture that recognition of
P o Q graphs is NP-hard for any two nonempty properties, if at least one of
them is nontrivial. In this note we present a general reduction which shows
the hardness for @ = O and P # O.

2. THE NP-HARDNESS RESULTS

Theorem 1. If P # O is an additive hereditary property not divisible by
O, then the (O, P)-partition problem is NP-hard.

Proof. Let k be the maximum size of a complete graph belonging to P,
ie., K € Pand Ky ¢ P. Clearly, k > 1. Let Si41 be the graph obtained
by taking k 4+ 1 complete graphs of size k and unifying one vertex from each
of them, and let F} denote the graph obtained from K} by hanging a copy
of K}, on each of its vertices. (Here and later on, to hang a copy of K}, onto
a vertex x in a graph G means to add a clique of size £ — 1 to G and make
all of its k — 1 vertices adjacent to x.)

We will reduce from 1-in-(k + 1)-SAT which is known to be NP-
complete even when the input formula has no negations and all variables
occur in exactly k + 1 clauses each (this is the exact cover problem for
(k 4+ 1)-regular (k + 1)-uniform hypergraphs) [1].

Suppose first that Sii11 and Fj are both in P. Given a formula ®
as specified above, we construct a graph G as follows: For each clause
¢ = (Te1,Te2,- -, Tept1) We introduce a complete graph on k + 1 vertices
€1,€2,...,Cp+1. For each variable z we regard z as a vertex of G. If x occurs
in a clause ¢, say * = z.; in ¢, we construct a so called connector gadget
by taking a complete graph on k + 1 vertices ¢;, x,v1(c, x), ..., vp—1(c, x),
and forcing the vertices vi(c,z),...,vk_1(c,z) to “be in P”. This forcing
is done as follows. Mihdk proved in [2] that for any property P > O not
divisible by O, there exists a graph uniquely partitionable into O o P. Take
a copy of such a graph and make one vertex from the O part of it adjacent
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tovi(e,x),. .., vp—1(c,z). In any OoP partition of G, this vertex is in the O
part, and since this part is independent, the vertices vy (c, z),...,vk—1(c, )
are all in the P part. We claim that G constructed in this way allows an
(O, P)-partition if and only if ® is satisfiable.

Suppose first that G does allow a partition V(G) = A U B such that
G[A] € O and G[B] € P. We set « = true iff € B. Since Kjy1 € P, at
least one vertex of each clause gadget is in A, and since A is independent,
such vertex is unique. Say this is a vertex ¢; in a clause c¢. Since A is
independent, the corresponding variable vertex x.; is in B and this variable
is true in the clause. For any other variable z.; in ¢, ¢; € B. Since the
connector gadget is another copy of Kj1 and k—1 of its vertices are forced
to be in B, the only vertex which can be in A is the corresponding variable
vertex z. j, hence every x. ;,j # i is false. Thus ® is 1-in-(k + 1)-satisfied.

Suppose on the other hand that ® is 1-in-(k 4 1) satisfied by a truth
valuation ¢. We set

A = {z|¢(z) = false} U U{cz|¢($m) = true}

B = {z|¢(x) = true} U U{cl|gz$(xm) = false}

and we add the vertices whose membership is forced to the particular classes
(A representing O and B representing P). Obviously, A is an independent
set. The components of G[B] in the forcing uniquely partitionable graphs
which hang on v;(c, z)’s are in P by construction, the remaining components
of G[B] are copies of F}, (around the clause gadgets) and Si11 (around the
variable vertices which were valued true). Thus G € O oP and we are done.

The situation is slightly more complex if Fj, & P or Siy1 € P. Here we first
need to introduce some notation.

Let H be a rooted graph and let s = (s1, $2,. .., $,) be a finite sequence
of positive integers. We denote by H|[s] the graph obtained from H by
hanging n complete graphs K,,,i =1,2,...,n on the root of H.

For a sequence of k positive integers s = (s1,s2,...,Si), we denote by
Fj(s) the graph obtained by hanging complete graphs K,,,7 =1,2,...,k on
the vertices of K, one on each. Thus

Fy, = Fy(k,k, ..., k) — k terms in the parentheses

Sk+1 = Ki[k,k,..., k] — k+ 1 terms in the parentheses.
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If Fp(k,k,....,k) € P, we set m = k and t* = (k,k,..., k). If
Fy(k,k,... k) & P, welet m be the least number such that F,(m,m,...,m) ¢

P and we let h be the smallest index such that for t; = t9 = ... = t;, =
m— 1,tp11 = ... = tp, = mand t = (tl,tg,...,tk), Fk(t) e P. We
then set tT = (t],t5,...,t;) sothat t7 =t = ... =t | = m -1,
th = ... =t =m. Thus Fy(t) € P and Fi(tT) ¢ P. We denote by H

the graph obtained from Fy(t1) by deleting one of the hanging cliques of
size m, rooted in the vertex whose clique was deleted (e.g., in the vertex
corresponding to ¢ ).

For a sequence s = (s1,2,...,S,) we denote

P(s) = (s2,83,...,5n)

i.e., the sequence obtained by deleting the first element, and we denote
dp(s)=(s1—1,s1—1,...,81 —1,82,83,...,5p)

i.e., the sequence obtained by replacing the first element s; by k occurrences
of s1 — 1. Note that [¢(s)] = |s| — 1 and |¢x(s)| = |s| + k — 1.

If Fi, ¢ P, we have H[m| ¢ P. If F}, € P, we must have Sx1 ¢ P and
hence H[k,k,...,k] € P (but H = H[1] € P). In either case, Lemma 1 says
that there is a sequence s = (s, ..., S,) such that

2<s1<s<...<s, <m,

H[s] ¢ P but H[pk(s)] € P.

We denote by H the graph H[y(s)] = H][sa, s3, ..., sp] and we use this H
for the construction of the graph G.

Given a formula ® as in the first part of the paper, we again plug into
G (k + 1)-cliques for the clauses of ®. Each variable x will be replaced by
a copy of H with the root in the vertex z and with all vertices except for
x being forced to “be in P”. If variable x occurs as the i-th variable of a
clause ¢, the connector of x and ¢ will be a copy of K, containing c;, z and
s1 — 2 extra vertices which will be also forced to “be in P”.

Now the proof is straightforward. Suppose first that G € O o P, say
V(G) = AU B such that A is independent and G[B] € P. Again we set
x = true iff x € B. Since Kiy1 ¢ P, at least one vertex of each clause
gadget is in A, and since A is independent, such a vertex is unique. Say
this be a vertex ¢; in a clause ¢. Since A is independent, the corresponding
variable vertex z.; is in B and this variable is true in the clause. For any
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other variable z.; in ¢, ¢; € B. Since the connector gadget K, together
with the vertices of the variable gadget which are forced to be in B forms
Hl[s| ¢ P, it must be z.; € A for every j # i. Thus ® is ® is 1-in-(k + 1)
satisfied.

Suppose, on the other hand, that ® is 1-in-(k 4 1) satisfied by a truth
valuation ¢. We set

A = {z|¢(z) = false} U U{cz|¢(azc,) = true}

B = {z|¢(x) = true} U U{cl|¢(xm) = false}

and we add the vertices whose membership is forced to the particular classes
(A representing O and B representing P). Obviously, A is an independent
set. The components of G[B] in the forcing uniquely partitionable graphs
which hang on v;(c,x)’s are in P by construction. The remaining compo-
nents of G[B] are copies Fi(s1—1,...,s1—1) C Fx(m—1,m—1,...,m—1) C
F(t) € P (around the clause gadgets) and H[s;—1,...,s1—1] = H[pp(s)] €
P (around the variable vertices which are valued true). Thus G € O o P and
we are done. ]

Lemma 1. Let H be a graph such that H € P and H[w] & P for some
sequence w. Then there exists a sequence s such that

max s < maxw,
H[s] ¢ P,
Hpr(s)] € P.
Proof. Let m = maxw. Set
A={s|l<s1 <...<s, <m,H[s] € P},

A= {s|s & A,9(s) € A}.
Let s € A’ be a sequence with minimum possible s1(> 1).

If sy = 2 then ¢r(s) = (1,1,...,1,89,...,8,) and H|¢x(s)] = H[Y(s)] €
A and s has the desired property.

If s1 > 2 then s would be good for us if H[¢r(s)] € P. So we may as-
sume that H[¢r(s)] = H[s1 — 1,51 — 1,...,51 — 1,89,...,5,] & P. Since
(s2,...,8n) € A, there is a number j > 0 such that (s; — 1,...,s1 —
1,89,...,8,) € A" (with j occurrences of s; —1). But this is a contradiction
as 2 <s1 —1 < sj. [ ]
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Theorem 2. For any property P # O, the (O o P)-partition problem is
NP-hard.

Proof. If P =QO" for n > 2, then the (O, P)-partition problem is just the
(n + 1)-colorability of graphs and hence well known NP-complete.

Let P = O"0Q, where and Q is not divisible by O. In view of Theorem 1,
we may assume that n > 0. We know that O o Q-partition is NP-hard.
Suppose G is an input graph for this question. Let G have g vertices and let
G’ be the join (Zykov sum) of G and n independent sets I;,i = 1,2,...,n,
each of size g. We claim that G’ € OoP = O"*!oQ if and only if G € 0o Q.

Tt is clear that if G € @ o Q then G' € O"t1 o Q.

On the other hand, suppose that G’ allows a partition into a graph
from Q and at most n 4+ 1 independent sets, say V(G') = Q U U?jll A;
where each A; is independent and G'[Q] € Q. Each A; is either a subset of
V(G) — Q, or a subset of one of the I;’s. Assume k + 1 of A;’s being subsets
of V(G) — @, and without loss of generality let them be Aj,..., Agyi. Then
only n—k sets Agia,...,Ans1 lie outside of V(G), and consequently, at least
k of the I’s lie inside Q, say Ii,...,I. But then G[(Q NV (G)) U UL, 4]
is isomorphic to a subgraph of G[V(G) N Q] & YF | I; ¢ G'[Q] € Q and
GcGVG)NQ)UUF | A]® G[Ars1] € Qo0 O.

Since the construction of G’ is linear in the size of G, we have concluded
the proof. [
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