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Abstract

The point-distinguishing chromatic index of a graph represents the
minimum number of colours in its edge colouring such that each vertex
is distinguished by the set of colours of edges incident with it. Asymp-
totic information on jumps of the point-distinguishing chromatic index
of Kn,n is found.
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1. Introduction

Recently, the following kind of colourings in the chromatic graph theory
has appeared: One wants to colour elements of a graph G of the same di-
mension (0 for vertices and 1 for edges) in such a way that the remaining
elements of G (of “complementary” dimension) have to be distinguished
using sets of colours of their incident elements. As usually, the minimum
number of colours is searched for; if vertices are coloured, we obtain the
line-distinguishing chromatic number of G, χ1(G) (Frank et al. [6]), and
colourings of edges yield the point-distinguishing chromatic index of G,
χ0(G) (Harary and Plantholt [7]). It has been shown by Hopcroft and
Krishnamoorthy [8] that, for a general graph G, to determine χ1(G) is an
NP-complete problem. However, the situation can be different for graphs
with a simple structure: χ1(Pn) and χ1(Cn) are known – see Al-Wahabi
et al. [1].
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If colourings are required to be proper (i.e., adjacent elements receive dif-
ferent colours), we obtain new invariants of a graph G, the harmonious
chromatic number h(G), corresponding to χ1(G) (Miller and Pritikin [13]),
and the observability obs(G), corresponding to χ0(G) (Černý et al. [4]). The
observability has been introduced independently by Burris and Schelp [3];
recently, in Favaron and Schelp [5], it has been named strong colouring num-
ber. There are several results for upper bounds of h(G), see e.g. Lee and
Mitchem [12] and Beane et al. [2].

If the problems of determining χ0(G) and obs(G) are compared, their
complexity depends on the structure of G and none of them can be stated
to be more difficult than the other. Thus, according to [7], χ0(Qn) = n + 1,
while the observability of cubes is known only asymptotically: by Horňák
and Soták [11] lim

n→∞
obs(Qn)

n = 1 + q∗, where q∗ = 0.293815 . . . is the unique

solution of the equation (x + 1)x+1 = 2x in the interval (0,∞); the exact
value of obs(Qn) is computed only for n ≤ 5. The value of observability is
known, from Horňák and Soták [9], for complete multipartite graphs with
equipotent parts; on the other hand, even for complete equibipartite graphs
we only know, due to [7], that for any integer n ≥ 2

dlog2 ne+ 1 ≤ χ0(Kn,n) ≤ dlog2 ne+ 2,

or, in other words,

2k−2 + 1 ≤ n ≤ 2k−1 ⇒ χ0(Kn,n) ∈ {k, k + 1}.
Zagaglia Salvi [14] found χ0(Kn,n) for n ≤ 45. The same author in [15]
claims to have obtained the complete solution of the problem of computing
χ0(Kn,n). However, we shall see that her solution fails.

Now, to be more precise, the point-distinguishing chromatic index χ0(G)
of a graph G is the minimum integer k admitting a k-colouring of edges of G
such that for each pair (x, y) of different vertices of G the colour set of x
– the set of colours of edges incident with x – is different from the colour set
of y. Evidently, χ0(G) is well defined only if G has no component K2 and
at most one of its components is K1.

For integers p, q set

[p, q] :=
q⋃

i=p

{i}, [p,∞) :=
∞⋃

i=p

{i}

and for k ∈ [3,∞), n ∈ [2,∞) let Mk,n be the set of all square matrices M
of order n with entries from [1, k] such that the sets of elements occurring
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in lines (rows or columns) of M are distinct. Then we have the following
evident statement:

Proposition 1. If n ∈ [2,∞), then χ0(Kn,n) = min{k ∈ [3,∞)Mk,n 6= ∅}.
For M ∈ Mk,n and i ∈ [1, n] let Ri(M) be the set of all entries of i-th row
of M and

R(M) := {Ri(M) i ∈ [1, n]};
analogous sets concerning columns of M will be denoted by Cj(M) for j ∈
[1, n] and C(M). Evidently, R(M) and C(M) are disjoint sets of cardinality
n and any member of R(M) has a non-empty intersection with any member
of C(M). On the other hand, for disjoint sets R, C of n non-empty subsets
of [1, k] such that R ∈ R and C ∈ C implies R∩C 6= ∅ in general there does
not exist M ∈ Mk,n such that R = R(M) and C = C(M); nevertheless, by
[14] (Theorem 4.5) such a matrix does exist provided n ∈ [2k−2 + 1, 2k−1] is
great enough:

Theorem 1. If k ∈ [3,∞) and n ∈ [d2k/3e, 2k−1], then χ0(Kn,n) = k if and
only if there exist disjoint n-element sets R, C of non-empty subsets of the
set [1, k] such that R ∩ C 6= ∅ for every R ∈ R and C ∈ C.
Using this result it is easy to see that χ0(Kn,n) = k for some n ∈
[d2k/3e+ 1, 2k−1] implies χ0(Kn−1,n−1) = k. Moreover, by Corollary 3.5 of
[14] χ0(Kn,n) = k for n ∈ [2k−2, b2k/3c] and we can conclude that χ0(Kn,n)
is a non-decreasing integer function of n with jumps of value 1; put

nk := max{n ∈ [2,∞) : χ0(Kn,n) = k},

rk :=
2nk

2k
=

nk

2k−1
.

By definition, 2nk is the maximum number of subsets of [1, k] able to dis-
tinguish – as colour sets – vertices of a complete equibipartite graph and
rk expresses which portion (of all subsets of [1, k]) those subsets represent.
With respect to considerations above we have nk ∈ [b2k/3c, 2k−1 − 1] and
rk ∈ 〈12 , 1). Furthermore, Theorem 2.4 of [14] yields nk+1 ≥ 2nk, hence the
sequence {rk}∞k=3 is non-decreasing and convergent and lim

k→∞
rk ≤ 1. Theo-

rem 3.1 of [15] states that nk+1 = 2nk for odd k ∈ [5,∞) and nk+1 = 2nk +1
for even k ∈ [6,∞); this would lead to lim

k→∞
rk = 17

24 . However, the aim of

the present paper is to show that

lim
k→∞

rk ≥ 3−
√

5 = 0.763932 . . . > 0.7083̄ =
17
24

.
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Thus, the mentioned theorem of [15] is not valid (implicitly); an explicit
contradiction to it has been found by Horňák and Soták [10]: n7 = 46. (The
starting terms of {nk}∞k=3 are n3 = 2, n4 = 5, n5 = 11 and n6 = 22, see [14],
and nothing, besides trivial bounds, is known for k ≥ 8.)

2. Asymptotic Behaviour of rk

From n5 = 11 = d25/3e and nk+1 ≥ 2nk we get nk ≥ d2k/3e for each
k ∈ [5,∞), hence investigating nk for k → ∞ it is sufficient to study the
existence of sets R, C mentioned in Theorem 1.

Theorem 2. lim
k→∞

rk ≥ 3−√5.

Proof. Take p, q ∈ [2,∞) and put Ai = [(i − 1)p + 1, ip] for i ∈ [1, q].

As
q⋃

i=1
Ai = [1, pq], any subset B of [1, pq] can be presented as

q⋃
i=1

Bi with

Bi = B∩Ai ⊆ Ai. Denote by S1− (S1+) the set of all subsets of [1, pq] with no
(at least one) Bi equal to Ai and by S0− (S0+) the set of all subsets of [1, pq]
with no (at least one) Bi being empty. Then evidently S1+∩(S1−∩S0−) = ∅
and any set of S1+ has a non-empty intersection with any set of S1− ∩ S0−.
If |S1+| ≥ |S1− ∩ S0−| ≥ d2pq/3e, we can set R = S1− ∩ S0− and employ
in the role of C any subset of S1+ equipotent with S1− ∩ S0−; Theorem 1
then yields npq ≥ |S1− ∩ S0−|. Counting sets of S1+ with respect to j, the
number of p- element sets Bi, we have

|S1+| =
q∑

j=1

(
q

j

)
(2p − 1)q−j

=
q∑

j=0

(
q

j

)
(2p − 1)q−j − (2p − 1)q = 2pq − (2p − 1)q ;

on the other hand
|S1− ∩ S0−| = (2p − 2)q .

Let q(p) be the minimum q ∈ [2,∞) fulfilling

2pq − (2p − 1)q ≥ (2p − 2)q ,

or, equivalently,

1 ≥
(

1− 1
2p

)q

+
(

1− 2
2p

)q

;
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it is well defined since
(

1− 1
2p

)
+

(
1− 2

2p

)
= 2− 3

2p
> 1

and
lim

q→∞

((
1− 1

2p

)q

+
(

1− 2
2p

)q)
= 0.

Defining inequalities for q(p) are

1 <

(
1− 1

2p

)q(p)−1

+
(

1− 2
2p

)q(p)−1

=: U(p),

1 ≥
(

1− 1
2p

)q(p)

+
(

1− 2
2p

)q(p)

=: L(p).

Thus, we have

0 < U(p)− L(p) =
(

1− 1
2p

)q(p)−1

· 1
2p

+
(

1− 2
2p

)q(p)−1

· 2
2p

<
1
2p

+
1

2p−1
,

since
(

1− 1
2p

)q(p)−1

,

(
1− 2

2p

)q(p)−1

∈ (0, 1) for any p ∈ [2,∞).

Consequently, from lim
p→∞

(
1
2p + 1

2p−1

)
= 0, we obtain

lim
p→∞(U(p)− L(p)) = 0.

Moreover,
0 < U(p)− 1 ≤ U(p)− L(p),

0 ≤ 1− L(p) < U(p)− L(p),

so that
lim

p→∞U(p) = lim
p→∞L(p) = 1.

It is well known that the sequence
{(

1− a
n

)n}∞
n=dae is increasing and con-

verges to e−a for any a ∈ (0,∞). That is why,

(
1− 1

2p

)2p

+
(

1− 2
2p

)2p

< e−1 + e−2 < 1,
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which yields q(p) ≤ 2p and

0 <
q(p)
2p

≤ 1.

Now we are going to prove that lim
p→∞

q(p)
2p exists by showing that all conver-

gent subsequences of { q(p)
2p }∞p=2 have the same limit. Let {pi}∞i=0 be an in-

creasing sequence of integers, pi ∈ [2,∞), such that the sequence
{

q(pi)
2pi

}∞
i=0

is convergent. Then, putting

t := lim
i→∞

q(pi)
2pi

,

we obtain t ∈ 〈0, 1〉 and

1 = lim
i→∞

L(pi) = lim
i→∞




((
1− 1

2pi

)2pi
)q(pi)/2pi

+

((
1− 2

2pi

)2pi
)q(pi)/2pi




= e−t + e−2t;

the latter equality uses the fact that x−ay : (0,∞) × IR → (0,∞) is a
continuous function for any parameter a ∈ IR. As the equation 1 = x + x2

has exactly one positive solution, we have

e−t =
√

5− 1
2

,

which is equivalent to
t = ln 2− ln(

√
5− 1).

It means that

lim
p→∞

q(p)
2p

= ln 2− ln(
√

5− 1).

Consider sets S0− and S1− corresponding to parameters p and q = q(p).
Then |S1− ∩ S0−| = (2p − 2)q(p) and, for p large enough, |S1− ∩ S0−| ≥
d2pq(p)/3e. To check this inequality, necessary for the application of Theo-
rem 1, we need to show that

(2p − 2)q(p) >
2pq(p)

3
,
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or, in other words, (
1− 2

2p

)q(p)

>
1
3
;

this follows immediately from

lim
p→∞

(
1− 2

2p

)q(p)

= e−2t =
3−√5

2
>

1
3
.

Thus, for sufficiently large p, we obtain npq(p) ≥ (2p − 2)q(p) and, with re-
spect to lim

p→∞ q(p) = ∞,

lim
k→∞

rk = lim
p→∞ rpq(p) ≥ lim

p→∞
(2p − 2)q(p)

2pq(p)−1

= 2 lim
p→∞

(
1− 2

2p

)q(p)

= 2e−2t = 3−√5.

3. Concluding Remarks

Provided that |S0−| ≥ |S0+ ∩ S1+| ≥ d2pq/3e, in the proof of Theorem 2 we
can take R = S0+ ∩ S1+ and C ⊆ S0−. It is interesting that then the same
inequality for lim

k→∞
rk is reached as in Section 2.

The first difference nk+1 − 2nk contradicting Theorem 3.1 of [15] is
n7− 2n6 = 2. Suppose that there are integers p, q such that nk+1− 2nk ≥ p
and nk+1 − 2nk ≤ q for any k ∈ [7,∞). Then n7 = 46 leads to

n7+i ≥ 46 · 2i + p
i−1∑

j=0

2j = (46 + p) · 2i − p,

n7+i ≤ (46 + q) · 2i − q for any i ∈ [1,∞),

so that
lim

k→∞
rk ≥ lim

i→∞
(46+p)·2i−p

26+i =
46 + p

64
,

lim
k→∞

rk ≤ 46 + q

64
.

Then p = 19 would be in contradiction with lim
k→∞

rk ≤ 1, since 46+19
64 > 1

and q = 2 would contradict Theorem 2, since 46+2
64 = 0.75 < 3−√5. That is
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why, there exist l, m ∈ [7,∞) such that nl+1−2nl ≤ 18 and nm+1−2nm ≥ 3.
A natural question arises: Do there exist j ∈ [7,∞) and q ∈ [3,∞) such that
nk+1 − 2nk ≤ q for all k ∈ [j,∞)?

To find a non-trivial upper bound for lim
k→∞

rk seems to be a very difficult

task. We conjecture that lim
k→∞

rk = 3−√5, but we do not even know whether

this limit is less than 1.
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