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Abstract

The point-distinguishing chromatic index of a graph represents the
minimum number of colours in its edge colouring such that each vertex
is distinguished by the set of colours of edges incident with it. Asymp-
totic information on jumps of the point-distinguishing chromatic index
of Ky, is found.
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1. INTRODUCTION

Recently, the following kind of colourings in the chromatic graph theory
has appeared: One wants to colour elements of a graph G of the same di-
mension (0 for vertices and 1 for edges) in such a way that the remaining
elements of G (of “complementary” dimension) have to be distinguished
using sets of colours of their incident elements. As usually, the minimum
number of colours is searched for; if vertices are coloured, we obtain the
line-distinguishing chromatic number of G, x1(G) (Frank et al. [6]), and
colourings of edges yield the point-distinguishing chromatic index of G,
Xo(G) (Harary and Plantholt [7]). It has been shown by Hopcroft and
Krishnamoorthy [8] that, for a general graph G, to determine x;(G) is an
NP-complete problem. However, the situation can be different for graphs
with a simple structure: xi(P,) and x1(C,) are known — see Al-Wahabi
et al. [1].
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If colourings are required to be proper (i.e., adjacent elements receive dif-
ferent colours), we obtain new invariants of a graph G, the harmonious
chromatic number h(G), corresponding to x1(G) (Miller and Pritikin [13]),
and the observability obs(G), corresponding to xo(G) (Cerny et al. [4]). The
observability has been introduced independently by Burris and Schelp [3];
recently, in Favaron and Schelp [5], it has been named strong colouring num-
ber. There are several results for upper bounds of h(G), see e.g. Lee and
Mitchem [12] and Beane et al. [2].

If the problems of determining xo(G) and obs(G) are compared, their
complexity depends on the structure of G and none of them can be stated
to be more difficult than the other. Thus, according to [7], xo(Qn) =n+1,
while the observability of cubes is known only asymptotically: by Horndk
and Sotak [11] lim_ obs(@n) — 1 4 ¢*, where ¢* = 0.293815. .. is the unique

solution of the equation (x + 1)**! = 2z in the interval (0,00); the exact

value of obs(Q,) is computed only for n < 5. The value of observability is
known, from Horndk and Sotdk [9], for complete multipartite graphs with
equipotent parts; on the other hand, even for complete equibipartite graphs
we only know, due to [7], that for any integer n > 2

[logon] + 1 < x0(Kpn) < [loggn] + 2,

or, in other words,
k2 11 <n <2 = xo(Kun) € {k k+ 1},

Zagaglia Salvi [14] found xo(Ky ) for n < 45. The same author in [15]
claims to have obtained the complete solution of the problem of computing
X0(Kn,n). However, we shall see that her solution fails.

Now, to be more precise, the point-distinguishing chromatic index xo(G)
of a graph G is the minimum integer k£ admitting a k-colouring of edges of G
such that for each pair (z,y) of different vertices of G the colour set of x
— the set of colours of edges incident with x — is different from the colour set
of y. Evidently, xo(G) is well defined only if G has no component Ks and
at most one of its components is K.

For integers p, g set

pa= Utih Ipoo) = U0

and for k € [3,00), n € [2,00) let M}, ,, be the set of all square matrices M
of order n with entries from [1, k] such that the sets of elements occurring
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in lines (rows or columns) of M are distinct. Then we have the following
evident statement:

Proposition 1. Ifn € [2,00), then xo(K,,) = min{k € [3,00) My, # 0}.

For M € My, and i € [1,n] let R;(M) be the set of all entries of i-th row
of M and
R(M) = {Ri(M) i € [1,n]};

analogous sets concerning columns of M will be denoted by C;(M) for j €
[1,n] and C(M). Evidently, R(M) and C(M) are disjoint sets of cardinality
n and any member of R(M ) has a non-empty intersection with any member
of C(M). On the other hand, for disjoint sets R, C of n non-empty subsets
of [1, k] such that R € R and C' € C implies RN C # () in general there does
not exist M € My, such that R = R(M) and C = C(M); nevertheless, by
[14] (Theorem 4.5) such a matrix does exist provided n € [28=2 +1,2F1] is
great enough:

Theorem 1. If k € [3,00) and n € [[2¥/3],2%71], then xo(Knn) =k if and
only if there exist disjoint n-element sets R, C of non-empty subsets of the

set [1,k] such that RN C # 0 for every R € R and C € C.

Using this result it is easy to see that xo(K,,) = k for some n €
[[2%/3] + 1,2%571] implies xo(Kn—1,-1) = k. Moreover, by Corollary 3.5 of
[14] xo(Kpnn) = k for n € [272,|2%/3]] and we can conclude that xo (K ,,)
is a non-decreasing integer function of n with jumps of value 1; put

ny := max{n € [2,00) : xo(Knn) = k},

2n  nyg

9k k-1

By definition, 2nj is the maximum number of subsets of [1, k] able to dis-
tinguish — as colour sets — vertices of a complete equibipartite graph and
7). expresses which portion (of all subsets of [1, k]) those subsets represent.
With respect to considerations above we have nj € [|2¥/3],2¥"1 — 1] and
r € (3,1). Furthermore, Theorem 2.4 of [14] yields nj41 > 2ny, hence the
sequence {r}7° 5 is non-decreasing and convergent and hm ri < 1. Theo-

rem 3.1 of [15] states that ng1 = 2ny for odd k € [5, 00) and Nkl = 2ng+1
for even k € [6,00); this would lead to lim 7 = 51 However, the aim of

—0Q0

T 1=

the present paper is to show that

_ 17
lim 7, > 3 — /5 =0.763932... > 0.7083 = —.
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Thus, the mentioned theorem of [15] is not valid (implicitly); an explicit
contradiction to it has been found by Horndk and Soték [10]: ny = 46. (The
starting terms of {n;}7° 4 are ng = 2, ngy = 5, ns = 11 and ng = 22, see [14],
and nothing, besides trivial bounds, is known for k& > 8.)

2. ASYMPTOTIC BEHAVIOUR OF 71},

From ns = 11 = [2°/3] and npy1 > 2np we get np > [2F/3] for each
k € [5,00), hence investigating ny for k — oo it is sufficient to study the
existence of sets R,C mentioned in Theorem 1.

Theorem 2. klim e >3 — 5.
—00

Proof Take p,q € [2,00) and put A; = [(i — 1)p + 1,ip] for i € [1,q].
As U A; = [1,pq], any subset B of [1,pq] can be presented as U B; with

B, = BﬁA C A;. Denote by S1— (S14) the set of all subsets of [1, pq] with no
(at least one) B; equal to A; and by Sp— (Sp+) the set of all subsets of [1, pq]
with no (at least one) B; being empty. Then evidently S14N(S1-NSp—) =0
and any set of S14 has a non-empty intersection with any set of S;— N Sp-—.
If |Si4| > |S1—- N So—| > [2P1/3], we can set R = S1— N So— and employ
in the role of C any subset of S14 equipotent with &1- N Sp—; Theorem 1
then yields n,q > |S1— N'Sp—|. Counting sets of S;4 with respect to j, the
number of p- element sets B;, we have

Sl = Y (q> (27 — 1)~
=1\
= i <q-> (2P —1)977 — (2P — 1) = 274 — (2P — 1),
j=0 \

on the other hand
|S1— N S()_’ = (2P — Q)q.
Let ¢(p) be the minimum ¢ € [2, 0c0) fulfilling
P9 _ (217 _ 1)9 Z (2P _ 2)‘1’

or, equivalently,
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it is well defined since

11 12—231
)T\ Tw) T

1 1\¢ 2\¢9
i 1-— 1-=) )=
A%(( 2p)+( 2,,)) 0

Defining inequalities for ¢(p) are

and

1\4P-1 2\ aP)-1
1<<1—) —1—(1—) =:U(p)

op

1\ 2\ 4(P)

Thus, we have

1\¢P-1 1 2\4P)-1 9
0<U(p)L(p):<1) .+(1) 2.

since

1\4@-1 2\ 4(P)—-1
(1 - > , (1 > € (0,1) for any p € [2,00).

2P o»

Consequently, from lim (2% + 2,,%1) = 0, we obtain

Jim (U(p) = L(p)) = 0.
Moreover,
0<U(p)—1<U(p) — L(p),
0<1-L(p) <U(p) - L(p),
so that

lim U(p) = lim L(p) = 1.

p—00 p—00

247

It is well known that the sequence {(1 — 2)"}zo:M is increasing and con-

n

verges to e~* for any a € (0,00). That is why,

1\? 2\*
(1—2p> +<1—2p> <e T +4+e <],



248 M. HORNAK AND R. SOTAK

which yields ¢(p) < 2P and

Now we are going to prove that lim % exists by showing that all conver-
p—00

a(p)

gent subsequences of {%F

}p2o have the same limit. Let {p;}{2, be an in-

) 00
creasing sequence of integers, p; € [2,00), such that the sequence {%}i—o

is convergent. Then, putting

t:= lim a(pi)

i—oo 2Pi

)

we obtain t € (0, 1) and

1\ 2% q(pi) /2P 9 \ 2 q(pi)/2Pi
1:ili»%loL(pi):ili»%lo <<1_2pi> ) +<(1_2pi> )

=e e

the latter equality uses the fact that z=% : (0,00) x R — (0,00) is a
continuous function for any parameter a € IR. As the equation 1 = z + 22
has exactly one positive solution, we have

e*t—\/gil
= 5

which is equivalent to
t=1In2—In(v5—1).

It means that
lim qé};) =In2—In(v5—1).

p—00
Consider sets Sp— and S;— corresponding to parameters p and ¢ = ¢(p).
Then |S;_ N Sy_| = (22 —2)?P) and, for p large enough, |S;_ N So_| >
[2r4(P) /3], To check this inequality, necessary for the application of Theo-
rem 1, we need to show that

9pa(p)
3 )

(20 — 2)1®) >



LOCALIZATION OF JUMPS OF THE POINT-DISTINGUISHING ... 249

or, in other words,

. 2\4) 1
(1-3) >3

)
W =

Thus, for sufficiently large p, we obtain n,ep) > (27 — Q)Q(p ) and, with re-
spect to lim ¢(p) = oo,
p—00

' (2p o 2)‘1(p)
0 = B Tt = o

2\ 4(p)
=2 lim (1—) =22 =3 - /5.

p—00 2p

3. CONCLUDING REMARKS

Provided that |So—| > |So+ N Si4+| > [2P9/3], in the proof of Theorem 2 we
can take R = Spy NS14 and C C Sp_. It is interesting that then the same

inequality for hm rg is reached as in Section 2.
k—o00

The first difference ni11 — 2ng contradicting Theorem 3.1 of [15] is
ny — 2ng = 2. Suppose that there are integers p, g such that ny,1 —2ng > p
and ngy1 — 2ng < ¢ for any k € [7,00). Then n; = 46 leads to

i1

N7 > 46 - 2° +P22j = (46 +p) - 2' —p,
=0

nryi < (46 +q)-2' —q  forany i€ [1,00),

so that

20 46
lim 74 > lim (4627211-2 p_20FP

k—oo i—00 64 ’
46 + ¢
1 <
TP =64
Then p = 19 would be in contradiction with hm rr < 1, since 46+19 > 1

and ¢ = 2 would contradict Theorem 2, since 46+2 =0.75 < 3—+/5. That is
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why, there exist [, m € [7,00) such that n;y; —2n; < 18 and 41 —2n,, > 3.
A natural question arises: Do there exist j € [7,00) and ¢ € [3,00) such that
ng+1 — 2ng < g for all k € [j,00)?

To find a non-trivial upper bound for lim 7 seems to be a very difficult

task.

k—o0
We conjecture that klim r, = 3—+/5, but we do not even know whether
— 00

this limit is less than 1.

1]

[9]
[10]
[11]

[12]

REFERENCES

K. Al-Wahabi, R. Bari, F. Harary and D. Ullman, The edge-distinguishing
chromatic number of paths and cycles, Annals of Discrete Math. 41 (1989)
17-22.

D.G. Beane, N.L. Biggs and B.J. Wilson, The growth rate of the harmonious
chromatic number, J. Graph Theory 13 (1989) 291-298.

A.C. Burris and R.H. Schelp, Vertex-distinguishing proper edge-colorings,
J. Graph Theory (to appear).

J. Cerny, M. Hornak and R. Soték, Observability of a graph, Math. Slovaca
46 (1996) 21-31.

O. Favaron and R.H. Schelp, Strong edge colorings of graphs, Discrete Math.
(to appear).

O. Frank, F. Harary and M. Plantholt, The line-distinguishing chromatic
number of a graph, Ars Combin. 14 (1982) 241-252.

F. Harary and M. Plantholt, The point-distinguishing chromatic indez,
in: F. Harary and J.S. Maybee, eds., Graphs and Applications (Wiley-
Interscience, New York 1985) 147-162.

J.E. Hopcroft and M.S. Krishnamoorthy, On the harmonious coloring of
graphs, SIAM J. Alg. Discrete Meth. 4 (1983) 306-311.

M. Horndk and R. Soték, Observability of complete multipartite graphs with
equipotent parts, Ars Combin. 41 (1995) 289-301.

—, The fifth jump of the point-distinguishing chromatic index of K, , Ars
Combin. 42 (1996) 233-242.

—, Asymptotic behaviour of the observability of @, Discrete Math. (to
appear).

Sin-Min Lee and J. Mitchem, An upper bound for the harmonious chromatic
number of a graph, J. Graph Theory 12 (1987) 565-567.



LOCALIZATION OF JUMPS OF THE POINT-DISTINGUISHING ... 251

[13] Z. Miller and D. Pritikin, The harmonious coloring number of a graph, Congr.
Numer. 63 (1988) 213-228.

[14] N. Zagaglia Salvi, On the the point-distinguishing chromatic index of K, n,
Ars Combin. 25 (B) (1988) 93-104.

[15] —, On the value of the point-distinguishing chromatic index of K, ,, Ars
Combin. 29 (B) (1990) 235-244.

Received 30 April 1997


http://www.tcpdf.org

