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Abstract

We survey the literature on those variants of the chromatic num-
ber problem where not only a proper coloring has to be found (i.e.,
adjacent vertices must not receive the same color) but some further
local restrictions are imposed on the color assignment. Mostly, the list
colorings and the precoloring extensions are considered.

In one of the most general formulations, a graph G = (V, E), sets
L(v) of admissible colors, and natural numbers cv for the vertices v ∈ V
are given, and the question is whether there can be chosen a subset
C(v) ⊆ L(v) of cardinality cv for each vertex in such a way that the
sets C(v), C(v′) are disjoint for each pair v, v′ of adjacent vertices. The
particular case of constant |L(v)| with cv = 1 for all v ∈ V leads to the
concept of choice number, a graph parameter showing unexpectedly
different behavior compared to the chromatic number, despite these
two invariants have nearly the same value for almost all graphs.

To illustrate typical techniques, some of the proofs are sketched.
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0. Introduction

The key concept of this survey, list coloring, was introduced in the second
half of the 1970s, in two papers, by Vizing [190] and independently by
Erdős, Rubin and Taylor [62]. Despite the subject offers a large number of
challenging problems, some of which appeared already in [62], the vertex list
colorings remained almost forgotten for about a decade. The field started
to flourish around 1990, and has attracted an increasing attention since
then. Most of the early questions have been answered, and new directions
have been initiated. But one of the innocent-looking problems raised in [62]
(Problem 1.5 below) is still open, and in the particular cases for which
affirmative answers have been proved, we are still rather far from a general
solution.

The systematic study of precoloring extensions was initiated about a
decade after [62], in the paper by Biró, Hujter and Tuza [18]. Some of its
particular cases (mostly in connection with edge colorings) appeared earlier
in the works of Burr [40], Marcotte and Seymour [145], and, using a different
terminology, in several papers on Latin squares.

In this paper we summarize what is known so far on these problems and
in their ‘ close neighborhood.’ Surveying this part of the literature, not only
the strongest results but also much of the history is presented. Some typical
techniques are illustrated by sketches of proofs. Several open problems are
mentioned, too.

We have to mention at this point that the class of hypergraphs seems to
offer a big unexplored area with many interesting results to be discovered.
And, in this context as well, the intensively studied symmetric structures
(finite geometries, Steiner systems, balanced incomplete block designs) may
deserve more attention.

There are at least two previous works to be cited for general reference
on list colorings. The paper of Alon [4] surveys the early results, presents
some of the important methods, and also contains several new theorems.
Moreover, many aspects of list colorings, with lots of interesting historical
remarks and informative comments, are discussed in various subsections of
the excellent book by Jensen and Toft [111].

Applications. Before giving the formal definitions, let us mention that
both List Coloring and Precoloring Extension are well motivated,
providing natural interpretations for various kinds of scheduling problems ;
see, e.g., [18, 19, 22]. As a matter of fact, the starting point of the in-
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vestigations on precoloring extension was the observation that, on inter-
val graphs, it provides an equivalent formulation of a practical problem
where flights have to be assigned to a given number of airplanes accord-
ing to the schedule of a timetable, under the additional condition that the
fixed schedule of maintenances (prescribed for each airplane) must not be
changed. Further applications include issues in VLSI theory. The problem
of T -Colorings has important practical motivation as well, from the area
of frequency assignments to avoid interferences ; see [89, 174] and the sur-
veys [154, 155]. Precoloring extension also has some consequences on the
non-approximability of some scheduling problems [22]. Moreover, edge col-
orings of complete bipartite (and also of complete) graphs have equivalent
interpretations in terms of Latin squares and rectangles. The extendabil-
ity of partial Latin squares has been studied extensively ; we refer to the
survey [10] and the more recent paper [11] for references in this part of the
literature.

From the theoretical point of view, Vizing introduced list colorings with
the intention to study total colorings, while Erdős, Rubin and Taylor took
their motivation from Dinitz’s conjecture on n × n matrices. Last but not
least, the idea of extending a partial coloring to a larger one is a natural
approach in various contexts where graph colorings are constructed sequen-
tially.

Related problems. At the end of this informal introduction, let us say a
few words also about three topics that will not be considered here, despite
they might have fitted nicely in the context. First, we shall not deal with
problems in which some forbidding condition (e.g., the exclusion of ‘ being
monochromatic ’) is extended from adjacent vertices to vertex pairs at larger
distance apart. These ‘ distance colorings ’ lead to interesting questions and
results, but usually may be viewed as colorings on the kth powers of graphs,
and so they are less ‘ restricted ’ than the concepts discussed here. Second, in
a more general setting, the ‘P-chromatic number ’ of a graph can be defined
with respect to any hereditary property P. This concept is discussed in
detail in the paper [33], therefore we shall only mention a couple of related
references at some points. Last but not least, we do not consider here
‘ rankings,’ i.e., vertex (edge) colorings with positive integers in such a way
that each monochromatic pair of vertices (edges) is completely separated
by the vertices (edges) of greater colors. A large part of the literature on
rankings can be traced back from the relatively recent papers [125] and [21].
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The unpublished manuscript [184] surveys many problems ; we hope to pol-
ish this preliminary version for publication reasonably soon.

0.1. Standard Definitions

A graph (meant to be undirected, without loops and multiple edges) or
multigraph (undirected, without loops) will usually be written in the form
G = (V, E), where V = V (G) and E = E(G) denote the set of vertices and
edges, respectively. The complement of G will be denoted by G, the degree
of vertex v by d(v) or dH(v) when the particular graph H in which it is
considered has to be emphasized, and the maximum degree of G by ∆(G)
or ∆. The cardinality |V | of the vertex set is called the order of G, and
usually will be denoted by n. The parameters α(G) and ω(G) denote the
independence or stability number and the clique number, respectively (i.e.,
the largest cardinality of a subset Y ⊆ V consisting of mutually nonadja-
cent resp. adjacent vertices). Standard notation is applied for particular
types of graphs, too, including Kn (complete graph with n vertices), Kp,q

(complete bipartite graph with vertex classes of respective cardinalities p
and q), Pn (path of length n− 1), Cn (cycle of length n), Sn (star of degree
n− 1). Terminology not defined here for particular classes of graphs and
basic concepts can be found e.g. in [15, 29, 72, 91, 142].

A proper vertex / edge / total coloring is a mapping ϕ from the set V /
E / V ∪ E into the set IN of natural numbers, such that the first / the
second / all the three conditions below are satisfied :

• ϕ(v) 6= ϕ(v′) for all vertex pairs v, v′ ∈ V with vv′ ∈ E,

• ϕ(e) 6= ϕ(e′) for each pair e, e′ ∈ E of edges sharing a vertex,

• ϕ(v) 6= ϕ(e) for all v ∈ V and all e ∈ E with v ∈ e.

Throughout the paper, the expressions ‘ coloring ’ and ‘ proper coloring ’ will
be used as synonyms, except in the few paragraphs where the ‘T -colorings ’
are considered (see the definition in Subsection 0.3). We shall mostly deal
with vertex colorings ; the only exceptions are some complexity issues (in
Section 3.5) and the material presented in Section 3.3.

0.2. Notation for Vertex Colorings

Assuming that the vertex set is V = {v1, . . . , vn}, Li will denote the list
(= set of admissible colors) associated with vi. For the union of the lists,
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we use the notation
IL := L1 ∪ · · · ∪ Ln .

We also denote
L := (L1, . . . , Ln) ,

the (ordered) n-tuple of lists. A mapping ϕ : V → IL is a (vertex) list
coloring , or an L-coloring , if ϕ is a proper coloring and ϕ(vi) ∈ Li holds for
all 1 ≤ i ≤ n. (In some papers, the set of forbidden colors is given instead
of the admissible ones. Those sets may be viewed as complements of the Li

with respect to IL.)
If |Li| = k for all i, then L is termed a k-assignment. The choice number

of G (also called the list chromatic number in the literature), denoted χ
`
(G),

is the smallest k such that every k-assignment L admits a list coloring. For
χ

`
(G) ≤ k, G is said to be k-choosable. Since the identical lists (defining

Li := {1, . . . , k} for all i) form a particular k-assignment, it follows by
definition that the chromatic number χ(G) of G does not exceed χ

`
(G).

The concept of precoloring extension lies between k-colorability and k-
choosability. In this problem, a vertex subset W ⊂ V of the graph G =
(V, E) is precolored with

ϕW : W → {1, . . . , k}

for some k ∈ IN, where the mapping ϕW is not required to be onto (and, in
particular, W = ∅ is also allowed), and the question is whether G admits a
proper k-coloring that extends ϕW . That is, a color should be assigned to
each precolorless vertex vi ∈ V \W from the list Li := {1, . . . , k} (identical
lists for the entire V \W ) while the colors Lj := {ϕW (vj)} of the precolored
vertices vj ∈ W are unchangeable. The parameter k is termed the color
bound.

Finally, the coloring number of G, denoted col(G), is defined as the
largest integer k such that G has a subgraph of minimum degree k − 1.
Equivalently, col(G) is the smallest k such that G is ‘ (k − 1)-degenerate.’
As a trivial first remark, let us note that if vn has more colors in its list
than the number of its neighbors, then G is list colorable if and only if so
is G− vn. In this way, the inequalities

χ(G) ≤ χ
`
(G) ≤ col(G) ≤ ∆(G) + 1

are valid for every graph G.
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0.3. Some Variations

Beside the concepts introduced above, at some points we shall mention
results on the following variants, too.

(f, g)-choosability. A more general setting for k-choosability is as follows.
Let f and g be two functions from the same domain V into IN, with f(vi) ≥
g(vi) for all 1 ≤ i ≤ n. The graph G is said to be (vertex-) (f, g)-choosable
if, for every list assignment L with |Li| = f(vi) for all i, there can be chosen
subsets Si ⊆ Li of cardinality |Si| = g(vi), such that Si ∩ Sj = ∅ holds for
every edge vivj ∈ E. The constant functions are of particular interest ; the
case g ≡ 1 is termed f -choosable, while f ≡ k and g ≡ ` with k, ` ∈ IN fixed
will be referred to as (k, `)-choosable. These concepts extend to edge and
total colorings in the natural way.

(p, q, r)-choosability. This type of list colorings is obtained from the pre-
vious one by taking constant functions f ≡ p and g ≡ q, and assuming
that |Li ∪ Lj | ≥ p + r whenever vi and vj are adjacent. To exclude trivial
uncolorability, it is assumed that p ≥ q and p + r ≥ 2q.

List T -colorings. Given a set T ⊂ IN ∪ {0}, a (vertex) T -coloring of
G = (V, E) is a mapping ϕ : V → IN such that |ϕ(vi)− ϕ(vj)| /∈ T holds for
all edges vivj ∈ E. List T -colorings are defined in the natural way, choosing
each color ϕ(vi) from the corresponding list Li. The T -choice number, i.e.,
the smallest k for which every k-assignment of G has a list T -coloring, will be
denoted by χ

`|T (G). Note that a (list) T -coloring is required to be a proper
coloring if and only if 0 ∈ T ; in fact, a list coloring is a list T -coloring with
T = {0}, and χ

`|{0} = χ
`

holds.

0.4. Small Uncolorable Graphs

We close this introduction with some simple examples admitting no list
coloring, to illustrate the above definitions.

Example 0.1. The complete bipartite graph K2,4 with the lists {1, 2} and
{3, 4} in the first vertex class and {1, 3}, {1, 4}, {2, 3}, {2, 4} in the second
class admits no list coloring, hence it is not 2-choosable. Similarly, K3,3 with
the lists {1, 2}, {1, 3}, and {2, 3} in each vertex class has no list coloring,
therefore it is not 2-choosable either. On the other hand, it is easy to show
that both graphs are 3-choosable, thus χ

`
(K2,4) = χ

`
(K3,3) = 3 holds.
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Example 0.2. One of the simplest non-3-choosable, planar, K4-free
graphs is obtained from K2,18 by inserting a matching of nine edges in
the 18-element vertex class. Denote these edges by eij , where 1 ≤ i ≤ 3
and 4 ≤ j ≤ 6. Assign the lists {1, 2, 3} and {4, 5, 6} to the vertices in the
2-element class ; and the list {i, j, 7} to both vertices of each matching edge
eij . This 3-assignment admits no list coloring.

Example 0.3. A non-3-choosable bipartite graph with transparent struc-
ture is K7,7 , e.g. with the lists {1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 7}, {2, 5, 6},
{3, 4, 6}, {3, 5, 7} in each vertex class. These lists correspond to the seven
lines of the Fano plane, where the colors are viewed as points. It is well
known (and easy to see) that if a set T of at most three points meets all
lines of the plane, then T itself is a line. Thus, in any selection of colors
from the above lists, either at least four of the seven colors occur in each
vertex class, or in one class the three colors of an entire line are selected
(and this line is a list in the other class, too). In either case, some color
is selected in both classes, implying that no list coloring exists because the
corresponding two vertices are adjacent.

Example 0.4. Consider the list T -coloring problem on K3,3 with lists
{1, 2}, {1, 3}, {2, 3} in one vertex class and {1, 3}, {1, 4}, {3, 4} in the
other class, where T = {2}. Though 0 /∈ T , no feasible coloring exists.
(Compared to Example 0.1, the lists are now ‘ shifted ’ by 2 (mod 4).) The
graph remains uncolorable even if we remove the two edges ({1, 3}, {1, 3})
and ({2, 3}, {1, 4}).

1. General Results

In this section we review some of the most general facts, walking around
the subject from several different sides.

1.1. Equivalent Formulations

Next, we present two types of reductions, taken from [18] and [190], re-
spectively. The first one shows in two steps that the three problems of list
coloring, precoloring extension, and chromatic number are quickly reducible
to each other. (In one direction it is obvious that, in general, list coloring
is hardest and chromatic number is the most particular case, with all lists
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identical and having no precolored vertices.) The second construction will
establish a relationship between list colorability and independence number.

List colorings vs. precoloring extension. Assuming that a graph G =
(V,E) with a list assignment L is given, and that the union IL of the lists
is the interval {1, . . . , k} without any gaps, take k new vertices u1, . . . , uk

and join ui with vj if and only if i /∈ Lj (1 ≤ i ≤ k, 1 ≤ j ≤ n). Then,
forgetting about the list assignment, precolor the vertex ui with color i, for
all i = 1, . . . , k. This precoloring of the larger graph is extendable with
color bound k (i.e., without taking any new colors) if and only if G is list
colorable.

Precoloring extension vs. chromatic number. Let the graph G =
(V,E) with precolored set W and color bound k be given. Assuming that
Wi ⊆ W is the (possibly empty) set of vertices of color i for 1 ≤ i ≤ k,
replace Wi by a new vertex ui (joining vj ∈ V \W to ui if and only if vj

had at least one neighbor in Wi), and make the new vertices ui mutually
adjacent, creating a complete subgraph of order k. The modified graph has
chromatic number k if and only if the precoloring of G is extendable with
color bound k.

List colorings vs. independence number. Given the graph G = (V,E)
with a list assignment L, construct the graph G2L with vertex set

V (G2L) := {(i, j) vi ∈ V, j ∈ Li}

and join two of its vertices (i′, j′), (i′′, j′′) if and only if they belong to the
same vertex (i.e., 1 ≤ i′ = i′′ ≤ n) or to the same color at adjacent vertices
(j′ = j′′ ∈ Li′ ∩ Li′′ and vi′vi′′ ∈ E).

Theorem 1.1. (Vizing [190]) The graph G = (V, E) with lists L admits
a list coloring if and only if α(G2L) = n.

As a matter of fact, slightly more is true ; namely, there is a bijection be-
tween the admissible list colorings and the independent sets of cardinality n,
as the vertex set of G2L is partitioned into the n cliques induced by the
sets {(i, j) j ∈ Li}, 1 ≤ i ≤ n. Note further that if all lists are identical,
then the above construction results in the known equivalent definition of
the chromatic number, stating that a graph G = (V, E) is k-colorable if and
only if the ‘ Cartesian product ’ (also called ‘ box product ’) of G and Kk has
independence number |V |.
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1.2. Complete Bipartite Graphs and the Construction of Hajós

Next, we consider complete bipartite — and more generally, complete mul-
tipartite — graphs, present estimates on their choice numbers, and show
how they can be taken as building blocks to construct all non-k-choosable
graphs.

We have already seen (cf. Examples 0.1 and 0.3) that some bipartite
graphs are not 2-choosable. As a matter of fact, the choice number of Kn,n

tends to infinity with n, and its growth can be described fairly accurately
along the following observations of [62].

Denote by mr the minimum number of edges in an r-uniform 3-chromatic
hypergraph Hr (i.e., |H| = r for all H ∈ Hr, and in every vertex partition
of Hr into two parts, at least one part contains some H ∈ Hr). View the
vertices of Hr as colors, and assign the edges of Hr to the vertices in each
vertex class of Kn,n, for any n ≥ mr, as lists. If there were a list coloring (in
which no color appears in both classes of Kn,n), it would yield a 2-partition
of Hr with no part containing any H ∈ Hr ; thus, χ

`
(Kn,n) > r. On the

other hand, if 2n < mr, then the lists in every list assignment on the vertices
of Kn,n form some 2-chromatic hypergraphH, and from a proper 2-partition
A ∪ B of H, we can choose a color from A for the vertices in one class of
Kn,n and a color from B for the other class. Thus, the smallest n = nr for
which Kn,n is not r-choosable satisfies the inequalities

1
2 mr < nr ≤ mr .

It is known (see [14, 59, 61]) that the growth of mr is between r1/3−ε · 2r

and r2 · 2r, therefore we obtain

Theorem 1.2. (Erdős, Rubin, Taylor [62]) As n → ∞, χ
`
(Kn,n) =

log2 n + o(log n).

Unequal vertex classes. The exact determination of χ
`
(Kp,q) seems to

be hopeless. Already the simplest particular case of characterizing all pairs
p, q with 3-choosable Kp,q, p ≤ q, required much effort. A complete de-
scription can be obtained by combining the works of Mahadev, Roberts and
Santhanakrishnan [144] (p = 3, q ≤ 26, and p = 4, q ≤ 18), Füredi, Shende
and Tesman [169] (p = 5, q ≤ 12), and O-Donnel [151] (p = 6, q ≤ 10).

A related problem is to determine the smallest nk, k ∈ IN, for which
there exists a non-k-choosable Kp,q with p + q = nk. By the observations
above, nk ≤ 2mk holds, and for small values the bound is tight : n2 = 6 and
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n3 = 14 (the latter proved in [90], cf. Example 0.3). Hanson, MacGillivray
and Toft also give the recursive estimate nk ≤ k nk−2 +2k which, for k even,
provides a better upper bound than the known ones for 2mk (e.g., n4 ≤ 40 is
obtained, while the currently best upper bound on m4 is 23). Nevertheless,
as sufficiently strong lower bounds on mk are not available, the equality of
nk and 2mk has not been ruled out for any value of k so far.

For p much bigger than q, Hoffman and Johnson [98] determine the
choice number, proving that

χ
`
(Kp,q) = q for (q − 1)q−1 − (q − 2)q−1 ≤ p < qq

and that for p smaller, χ
`

is smaller than q. (For p ≥ qq, the choice number
is easily seen to equal q + 1.) They also study which list assignments are
uncolorable when p is at the two ends of the above interval. It is not
known, however, for which values of p the smaller ‘ jumps ’ in χ

`
occur as

it grows from log2 q to q − 1 (for q fixed). For instance, if q = 6, we obtain
χ

`
(Kp,6) = 5 for all 125 ≤ p ≤ 55 − 45 − 1 = 2100 (the construction for

p = 125 is due to Eaton [54]), but it is not clear whether this is indeed the
entire range of p for χ

`
= 5.

Complete multipartite graphs. More generally, denote by Kr∗t the
complete r-partite graph with t vertices in each of its r classes. Alon [3]
proves that there exist positive constants c1, c2 such that

c1 r log t ≤ χ
`
(Kr∗t) ≤ c2 r log t(1)

holds for every r and t.

Generating all non-k-choosable graphs. In his well known paper [88],
Hajós describes three elementary operations by the repeated application of
which all graphs of chromatic number greater than k can be obtained from
the complete graph Kk+1. Gravier has proved that a similar generating
procedure can be applied for graphs whose choice number exceeds k.

Consider the following three types of operations.

1. Add a new vertex or a new edge.

2. Let G1, G2 be vertex-disjoint, and xiyi an edge in Gi, i = 1, 2. Identify
x1 and x2, join y1 with y2 by a new edge, and delete the edges x1y1

and x2y2.
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3. If G has an uncolorable list assignment L such that |Li| ≥ k for all
1 ≤ i ≤ n and two nonadjacent vertices vi′ , vi′′ have the same list in
L, then identify vi′ with vi′′ .

Theorem 1.3. (Gravier [74]) Every non-k-choosable graph can be gener-
ated by the above three operations from any one non-k-choosable complete
bipartite graph.

In this way, the role of complete graphs is taken by the complete bipartite
ones when χ is replaced by χ

`
. It is interesting to note that, though there

is an increasing number of (inclusionwise) minimal complete bipartite non-
k-choosable graphs as k gets large, all of them are equivalent from the
generative point of view.

1.3. Typical Behavior of the Choice Number

In this subsection we present asymptotic results on the choice number of
random graphs and random bipartite graphs.

On one hand, putting r := χ(G) and t := n, the inequality (1) implies

χ
`
(G) ≤ c χ(G) log n

for every graph of order n, for some absolute constant c. On the other hand,
the complete bipartite graphs Kn,n already show that this bound is tight
(apart from the actual value of c), and, in particular, the choice number is
not bounded by any function of the chromatic number. In this setting it
may be unexpected that, nevertheless, χ and χ

`
have nearly the same value

for almost all graphs.

Random graphs. Let p be a real number, 0 < p < 1. Denote by Gn,p

the random graph on n vertices, in which each unordered vertex pair vivj is
chosen to be an edge with probability p, and these choices are made totally
independently of each other. The following result for p = 1/2 is due to
J. Kahn (its proof appeared in [4]) ; the general case has been proved by
Tuza and Voigt [182]. (The weaker upper bound of o(n), conjectured in
[62], was first proved by Alon [3].)

Theorem 1.4. For every fixed edge probability p,

χ
`
(Gn,p) = (1 + o(1)) · χ(Gn,p)

with probability 1− o(1) as n →∞.
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An important result of Bollobás [25] states that

χ(Gn,p) =
(

1
2

+ o(1)
) (

log
1

1− p

)
n

log n
,

i.e., the expected value of the chromatic number asymptotically equals the
order n divided by the expectation of the independence number. As regards
the choice number, one can prove that there exists a slowly decreasing se-
quence εn → 0 (the appropriate speed of convergence can be read out from
numerical estimates of [25]) for which the following procedure successfully
finds a list coloring for any k-assignment with k = (1+εn) ·χ(Gn,p). As long
as there exists an independent set S of at least (1− ε′n) · α(Gn,p) currently
uncolored vertices and a color i appearing in the lists of all vertices in S,
assign i to the entire S and remove i from all the other lists. On the other
hand, if such a large uncolored S does not exist anymore, then, for every
subset Y of the currently uncolored vertices, the union of the modified lists
belonging to Y contains at least |Y | colors, thus the remaining lists have
distinct representatives by the Kőnig–Hall theorem.

It remains an open problem to settle whether χ(Gn,p) and χ
`
(Gn,p)

have the same asymptotic behavior for every ‘ reasonable ’ edge probability
function p = p(n). Neither is it known how strongly χ

`
is concentrated, and

whether χ
`

> χ holds with probability 1− o(1).

Random bipartite graphs. Erdős, Rubin and Taylor [62] investigated
the random bipartite graph Bn,p with m = n/2 vertices in each class and
with edge probability p = 1/2 They proved the logarithmic growth of

log m

log 6
< χ

`
(Bn,p) <

3 log m

log 6

with probability 1− o(1) as m →∞.

1.4. Unions of Graphs and the (am, bm)-Conjecture

In this section we deal with some problems and results related to (k, `)-
choosability. Perhaps the most challenging open question of this kind is the
following one, being unsolved for already almost two decades.

Problem 1.5. (Erdős, Rubin, Taylor [62]) If G is (k, `)-choosable, does
it follow that G is (km, `m)-choosable for every m ∈ IN ?
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It is widely believed that the answer is affirmative (justifying the word
‘conjecture’ in the title of this subsection), and almost all known proofs
showing that a certain graph is (k, 1)-chosable can be extended with little
effort to verify (km, m)-choosability. Nevertheless, (k, `) = (2, 1) is the
only case for which the implication formulated in Problem 1.5 has been
proved for all m and for all graphs G satisfying the supposition (i.e., for
all 2-choosable graphs). This result, published in [186], can be extended to
obtain a reduction method as follows.

Theorem 1.6. (Tuza, Voigt [187]) Let L be a k-assignment on G =
(V, E), and suppose that X ⊂ V is a vertex set such that the edges in-
cident to X form a 2-choosable graph. Then, there can be chosen a color
ϕ(vi) ∈ Li for each vi ∈ X, in such a way that

∣∣∣Lj ∩ {ϕ(vi) vi ∈ X, vivj ∈ E}
∣∣∣ ≤ 1

holds for every vj ∈ V \X.

If a set X ⊂ V with the above property exists in G and, in addition, the
induced subgraph G − X can be proven to be (k − 1)-choosable, then the
k-choosability of G follows as well. The (km, m)-choosability of G can be
deduced in a similar way ; for instance, the (3m,m)-choosability of the
Petersen graph is obtained for every m ∈ IN.

Graph union. One of the interesting consequences of an affirmative an-
swer to Problem 1.5 (if it holds true indeed) would be that the choice number
is a submultiplicative function with respect to graph union. For the time
being, however, this can only be formulated as yet another intriguing open
problem.

Conjecture 1.7. For any two graphs G1 and G2 on the same vertex set,

χ
`
(G1 ∪G2) ≤ χ

`
(G1) χ

`
(G2) .(2)

To see that the implication of Problem 1.5 would indeed imply (2), assume
χ

`
(Gi) = ki for i = 1, 2. Starting with any (k1k2)-assignment of G1 ∪ G2,

choose k2-element color sets Si ⊆ Li such that Si and Sj are disjoint when-
ever vivj ∈ E(G1) — on applying that the k1-choosability of G1 implies
its (k1k2, k2)-choosability as well — and then find a list coloring of the
k2-choosable graph G2 in the list assignment (S1, . . . , Sn). (More generally,
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inserting the edges of a (b, c)-choosable graph into an (a, b)-choosable graph,
we obtain an (a, c)-choosable one [62].) By the results cited above, the in-
equality (2) holds (with equality) if at least one of the two Gi is 2-choosable.

Jensen and Toft [111] remark that so far (2) is not confirmed even for
the following rather simple particular case. Suppose that G is bipartite, and
substitute two nonadjacent vertices for each vertex of G. (Each edge of G
becomes then an induced C4.) It is easily seen that the new graph G′ can
be written in the form G1 ∪ G2, where G1 ' G2 ' 2G ; it is not known,
however, whether χ

`
(G′) ≤ (χ

`
(G))2.

Let us mention here a further problem, that deals with the union of three
graphs.

Conjecture 1.8. (Voigt [192]) Let G = (V,E) be a graph with V = V1 ∪
V2∪V3 where V1, V2, V3 are mutually disjoint independent sets, and suppose
that the subgraph induced by Vi ∪ Vj is 2-choosable for all 1 ≤ i < j ≤ 3.
Then G is 3-choosable.

Recently, Voigt proved in [194] that those graphs are 4-choosable, and more
generally, (4m,m)-choosable for all m ∈ IN.

Though the inequality (2) has not yet been proved, an upper bound on
the choice number of the union of two graphs follows from a result of Alon
(Theorem 2.5, to be discussed later).

Theorem 1.9. (Alon) There exists a function h : IN× IN → IN such that
χ

`
(G1 ∪G2) ≤ h(χ

`
(G1), χ`

(G2)) holds for any two graphs G1, G2.

The superexponential upper bound read out from Theorem 2.5 is the best
known general one, hence being very far from quadratic (as expected).

1.5. Graphs and Their Complements

The well known theorem of Nordhaus and Gaddum states that

χ(G) + χ(G) ≤ n + 1

holds for every graph G on n vertices. As shown in [62], this inequality can
be strengthened to a far extent.

Theorem 1.10. (Erdős, Rubin, Taylor [62]) Every graph G of order n
satisfies

χ
`
(G) + χ

`
(G) ≤ col(G) + col(G) ≤ n + 1 .
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For a short proof, denote by d−i the number of vertices vj with j < i that
are adjacent to vi, and by d+

i the number of those vj with j > i which are
nonadjacent to vi. Assuming that the vertices are labelled in a decreasing
order of degree, we see

d−i + d+
j ≤ n− 1 for i ≥ j .

(The inequality remains valid even if we replace d−i and d+
j by the degrees

dG(vi) and dG(vj) in the entire G and G, respectively.) Moreover, since
d−i ≤ i− 1 and d+

i ≤ n− i obviously hold, we also have

d−i + d+
j ≤ i− 1 + n− j ≤ n− 1 for i ≤ j .

The combination of the above inequalities yields

χ
`
(G) + χ

`
(G) ≤ col(G) + col(G) ≤ max

i
(d−i + 1) + max

j
(d+

j + 1) ≤ n + 1 ,

proving the assertion.
The graphs attaining equality in the Nordhaus–Gaddum theorem have

been described (cf. [15]). On the other hand, the following problem seems
to be unsolved, as well as its analogue for the coloring number.

Problem 1.11. Characterize the structure of graphs G = (V,E) such that

χ
`
(G) + χ

`
(G) = |V |+ 1 .

To see how small the sum χ
`
(G) + χ

`
(G) can be, consider the complete

r-partite graph G := Kr∗t of order n = rt, with r :=
√

n/ log n vertex
classes and t :=

√
n log n = n/r vertices in each class. Applying the upper

bound of Inequality (1), we obtain that χ
`
(G) = O(

√
n log n) ; moreover,

its complement G is just rKt, so that χ
`
(G) + χ

`
(G) = O(

√
n log n). (This

construction in [3] answered a question of [62] in the negative.)
It is an open problem whether the factor

√
log n is necessary in the

formula, or perhaps χ
`
(Gn) + χ

`
(Gn) ≤ c

√
n holds for an infinite sequence

of graphs Gn of order n.

2. Vertex Degrees

In this section we discuss three main issues. The first one is to investigate
the possible extensions of Brooks’s theorem for various types of choosability,
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i.e., to obtain sufficient conditions in terms of vertex degrees for choosing
colors or color sets from the lists. The second one is a lower bound on
χ

`
(G) as a function of the average degree, a property in which the choice

number significantly differs from the chromatic number. The third and
fourth subsections are devoted to an algebraic approach invented by Alon
and Tarsi, that leads to sufficient conditions for choosability, in terms of the
existence of certain orientations on the edges.

The bounds on edge colorings are also strongly related to vertex degrees,
but we shall discuss them only later, in Section 3.3.

2.1. The Theorems of Brooks and Gallai

The inequality χ
`
(G) ≤ col(G) ≤ ∆(G) + 1 yields an obvious upper bound

on the choice number. Certainly, the bound is tight, and one nice class
attaining equality is that of the chordal graphs. In fact, arranging the
vertices of a chordal graph in reversed simplicial order v1, . . . , vn (i.e., where
for each i ≤ n, the neighbors vj of vi with j < i are mutually adjacent), gives
not only a simple coloring algorithm, but also demonstrates that the bounds
obtained are best possible. In this way, one can handle many situations,
including (f, g)-choosability and T -choosability as well (see e.g. [174, 175,
185]). For instance, it is easy to show that denoting by ωi the largest number
of vertices in a clique containing vi, every chordal graph is (f, g)-choosable
for f(vi) = mωi and g ≡ m, for all m ∈ IN.

Similarly to the classic theorem of Brooks [38], the previous upper
bounds on the necessary length of lists are hardly ever tight, and lists of
lengths not exceeding the vertex degrees suffice in most graphs. The first
result of this kind is due to Vizing [190] who proved that a connected graph
of maximum degree ∆ is ∆-choosable unless it is K∆+1, or ∆ = 2 and
the graph is an odd cycle. Erdős, Rubin and Taylor [62] and Borodin [30]
strengthened this assertion, proving list colorability with lists of lengths
d(vi) for every vertex vi, provided that at least one 2-connected block of the
connected graph is not a clique or an odd cycle. Tuza and Voigt [185] showed
further that, under the same structural condition, color sets of cardinality
m can be chosen whenever |Li| = md(vi) for every vi. We summarize these
results in the following assertion.

Theorem 2.1. Let m ∈ IN, and let G = (V, E) be a connected graph.
Suppose that L is a list assignment where |Li| ≥ m d(vi) for each vi ∈ V .
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If

(i) |Li| > m d(vi) for some vi, or

(ii) G contains a block which is neither a complete graph nor an induced
odd cycle,

then G admits a choice of an m-element Ci ⊆ Li for each i, such that
Ci ∩ Cj = ∅ for all vivj ∈ E.

Further generalizations are known for list T -colorings (Waller [196], also
making a distinction for the cases where T is an arithmetic progression
containing 0) and colorings with respect to additive and hereditary graph
properties (Borowiecki et al. [35, 34]). The previous theorem does not hold
true for infinite graphs, however, as shown by the following class of examples.
Take the countable star S∗ with center v0 and leaves v1, v2, . . . , with the list
assignment L0 = IN and Li = {i} for all i ∈ IN, and join v0 with a vertex
of a finite 2-connected graph G which is neither a complete graph nor an
odd cycle. If the lists on G are larger than |V (G)|, then the conditions of
the theorem are satisfied in the graph composed from S∗ and G, but no list
coloring exists since already S∗ is uncolorable.

Critical graphs. A closely related classic theorem due to Gallai [69] deals
with the structure of subgraphs induced by the set of vertices of minimum
degree in a color-critical graph. To generalize this result, call a graph G =
(V, E) critical with respect to a color assignment L if it has no list coloring,
but each of its proper induced subgraphs does have one. Clearly, |Li| ≤ d(vi)
holds for every vertex vi if G is critical. Call vi small if its degree equals |Li|.

Theorem 2.2. (Kostochka, Stiebitz, Wirth [132] ; Thomassen [178]) If
the graph G is critical with respect to the list assignment L, then each block
of its subgraph induced by the small vertices is a complete graph or an odd
cycle.

This result can be obtained directly from the proof of Erdős, Rubin and
Taylor [62], too ; however, the new proofs are much simpler. In fact, Gal-
lai’s original method [69] can also be applied. Moreover, for general graph
properties P, the variations [36, 146] of Brooks’s and Gallai’s theorems can
be extended to list P-colorings as well, see [35]. The corresponding result
for hypergraphs appears in [132].
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There are several results concerning ‘ critical amenable graphs,’ too, where
the lists are supposed to be nonidentical. See [39, 179] for further details
and references.

Sparse graphs. Perhaps the most involved theorems concerning vertex
choosability vs. vertex degrees are related to triangle-free graphs. The re-
sults summarized below are proved by a heavy use of probabilistic methods.
The estimates nicely match with the general lower bounds on the indepen-
dence number, in terms of order and maximum degree ([1, 166, 167, 168]).

Theorem 2.3. Let G be any graph of maximum degree ∆.

(i) If G has girth at least 5, then χ
`
(G) ≤ (1 + ε∆)∆/ log ∆, where

ε∆ → 0 as ∆ →∞ (Kim [128]).

(ii) If G is triangle-free, then χ
`
(G) ≤ c ∆/ log ∆ for some constant c

independent of ∆ (Johansson [113]).

(iii) For every r ∈ IN there exists a constant cr such that if G is Kr-free,
then χ

`
(G) ≤ (cr ∆ log log ∆)/ log ∆ (Johansson [114]).

Apart from a multiplicative constant, the upper bounds in (i) and (ii) as
functions of ∆ are tight, since there exist graphs of arbitrarily large girth
with maximum degree ∆ and chromatic number c∆/ log ∆ (see [24]). It
remains an open problem to prove the asymptotic bound of (i) for the
triangle-free case :

Conjecture 2.4. (Kahn, Kim [128]) For triangle-free graphs G of maxi-
mum degree ∆,

χ
`
(G) ≤ (1 + o(1))∆/ log ∆

as ∆ →∞.

For relatively small maximum degree ∆ ≥ 5 and sufficiently large girth g
with respect to ∆, the stronger explicit upper bound χ

`
≤ ∆/2 + 2 was

proved by Kostochka [129, Remark 6]. It follows, in particular, that every
graph of maximum degree 5 and girth at least 35 is 4-choosable

Almost disjoint lists. In the context of (p, q, r)-choosability, upper
bounds in terms of vertex degrees have been derived by Kratochv́ıl, Tuza
and Voigt [138]. For instance, it is shown by probabilistic methods that if
the lists are almost disjoint (say, r = p− c) then lists of size

√
5.437 c ∆(G)

always admit a list coloring and this bound is best possible for all c, apart
from a multiplicative constant.
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2.2. Lower Bounds on the Choice Number

The following result shows that χ
`

is closely related to the essentially local
parameter of vertex degree. In this respect it essentially differs from the
chromatic number which is a global graph invariant in nature.

Theorem 2.5. (Alon [4]) Let k ∈ IN. If

d > 4

(
k4

k

)
log

(
2

(
k4

k

))

holds for the average vertex degree d := 1
n (d(v1) + . . . + d(vn)) of G, then

χ
`
(G) > k.

The proof is probabilistic, performed in two main steps. Start with a bipar-
tite subgraph H ⊆ G of minimum degree at least d/4, with vertex partition
A ∪ B, |A| ≥ |B|. Simple calculation shows that selecting k-element lists
for the vertices of B from a k4-element color set IL randomly and indepen-
dently, each with probability

(k4

k

)−1
, the probability that all k-subsets of

IL occur as lists in the neighborhood of a vertex v is at least 1/2, for each
v ∈ A. Call such a v good. We now fix a list assignment for B in which
at least |A|/2 vertices v ∈ A are good, and choose a k-subset of IL for each
good vertex of A, again randomly and independently. Since every coloring
from the lists on B uses at least k4 − k + 1 colors in the neighborhood of a
good vertex, it is necessary for the colorability of H (and hence of G, too)
that the list of each good v ∈ A contains at least one of the remaining k− 1
colors. This can be seen to have probability less than k−2, however, and
thus by the independent random choice, any one of the k|B| possible color-
ings of B has an extension on A with probability less than k−2|A|/2 ≤ k−|B|.
Consequently, some list assignment admits no coloring.

Approximability. One important consequence of Theorem 2.5 is that the
choice number can be estimated within constant accuracy on every class of
graphs where χ

`
is supposed to not exceed a fixed bound. This is obtained

by observing the additional facts that the coloring number col(G) can be
determined in linear time, and that every graph of average degree t contains
a subgraph of minimum degree at least t/2.

Corollary 2.6. There exists a function h : IN → IN and an algorithm A
that finds, for every graph G = (V, E), an s ∈ IN in O(|V |+ |E|) steps such
that s ≤ χ

`
(G) ≤ h(s).
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Taking h(s) = col(G), the above method yields that h−1(x) can grow at
least with the speed of log x/ log log x.

Unit distance graphs. Theorem 2.5 has several further interesting corol-
laries. One on graph unions will be discussed later, in Section 1.4. Here
we mention a problem raised by Johnson [116] and solved by Jensen and
Toft [112].

The unit distance graph in IR2 has the points of the Euclidean plane
as vertices, and two vertices are adjacent if and only if their distance in
the plane equals 1. The chromatic number of this graph is known to be
between 4 and 7. Jensen and Toft observe that the unit distance graph
contains a d-regular bipartite subgraph for every d ∈ IN, namely the d-
dimensional cube Qd can be embedded into it (e.g., translating Qi with a
unit vector of general position, we obtain Qi+1). Since χ

`
(Gd) tends to

infinity with d by Theorem 2.5, it follows that the choice number of the
planar unit distance graph is infinite.

Making this assertion more precise, Schmerl [161] proved that the choice
number for IR2 and IR3 is countable, as well as the ‘ rational distance graph ’
in IR2 ; and that these bounds are not valid in higher dimension.

2.3. Graph Polynomials

The graph polynomial , also called the edge difference polynomial , of a graph
G = (V, E) is defined as

PG = PG(x1, . . . , xn) :=
∏
i<j

vivj∈E

(xi − xj)

for E 6= ∅. Assuming that the list assignment L = (L1, . . . , Ln) is given, the
polynomials

Qi = Qi(xi) :=
∏

q∈Li

(xi − q)

(for i = 1, . . . , n) will also be of great importance.
The classical concept of graph polynomials was studied already in the

19th century, by Sylvester [173] and Petersen [152]. (For more recent
references, see [7, 58].) In order to relate it to list colorings, Alon and
Tarsi [7] first observe (by applying induction on n) that the following kind
of ‘ Nullstellensatz ’ is valid.
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Lemma 2.7. Let P (x1, . . . , xn) be a polynomial of n variables over the
ring ZZ of integers, and suppose that the degree of xi in P is at most di.
Let Li be any subset of ZZ with cardinality |Li| = di + 1, for 1 ≤ i ≤ n. If
P (x1, . . . , xn) = 0 for all n-tuples (x1, . . . , xn) ∈ L1×· · ·×Ln, then P ≡ 0.

From this lemma, several useful results can be deduced for list colorings.
The first one is an algebraic necessary and sufficient condition for list col-
orability.

Theorem 2.8. (Alon, Tarsi [7]) A graph G with an n-tuple L of lists
admits a list coloring if and only if the graph polynomial PG does not belong
to the ideal I(Q1, . . . , Qn) generated by the polynomials Qi.

To prove this assertion (in either direction), one observes first that, substi-
tuting the color of vi for xi in PG, the graph polynomial becomes zero if and
only if the color assignment is not a proper coloring. On the other hand,
choosing a color for each vertex from its list, makes the value of each Qi equal
to zero, therefore x

|Li|
i can be expressed in the form Qi :=

∑
0≤j<|Li| cijx

j
i

as long as we restrict ourselves to color assignments taken from the lists.
Substituting x

|Li|
i by Qi repeatedly in PG, eventually we obtain a polyno-

mial, say PG, in which each xi has degree less than |Li|, and furthermore
(PG − PG) ∈ I(Q1, . . . , Qn). By the small degrees, PG ∈ I(Q1, . . . , Qn)
holds if and only if PG ≡ 0.

Now, if we assume that G admits no list coloring, then PG as well as PG

is zero on the entire L1 × · · · × Ln, thus PG ≡ 0 and PG ∈ I(Q1, . . . , Qn) ;
and, conversely, assuming PG ∈ I(Q1, . . . , Qn), we obtain PG ≡ 0, thus
PG(x1, . . . , xn) = 0 for all (x1, . . . , xn) ∈ L1 × · · · × Ln, and therefore G
admits no list coloring.

Uniquely list-colorable graphs. Dinitz and Martin [49] analyze irre-
ducible factors of the remainder PG of PG modulo I(Q1, . . . , Qn), with
emphasis on the case where G admits precisely one list coloring. For this
purpose, it is convenient to view PG as a homogeneous polynomial of degree
|E| over the set IL ∪ {x1, . . . , xn} of variables. (Note that the substituting
operation with respect to the Qi never destroys homogenity if also the colors
are treated as variables.) It is proven in [49] that if (G,L) admits precisely
one coloring, say (c1, . . . , cn), then PG is the product of |E| linear factors,
where each xi appears on the power |Li|−1, and the other |E|+ |V |−∑ |Li|
factors are of the form ci − cj . What is more, E admits an orientation ~E
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for which a subset ~E′ ⊆ ~E can be chosen, | ~E′| = ∑n
i=1(|Li| − 1), such that

PG(x1, . . . , xn) =
∏

vivj∈ ~E′
(xi − cj)

∏

vivj∈ ~E\ ~E′
(ci − cj) .

Since PG has degree less than |Li| in each variable xi, and all but one colors
are infeasible at vi — setting PG to zero for each xi = c, c ∈ Li \ {ci}, the
first product can be equivalently written as

∏

vivj∈ ~E′
(xi − cj) =

n∏

i=1

∏
c∈Li
c6=ci

(xi − c) .

In particular, the formula establishes a bijection between the edges of G and
the irreducible factors of PG, for each uniquely colorable list assignment L
on G.

2.4. Orientations and Eulerian Subdigraphs

In general, it is not easy to check whether PG can be expressed in terms of a
combination of the Qi with polynomial coefficients, therefore Theorem 2.8
is not a ‘ good characterization ’ in the algorithm-theoretic sense. One can
deduce a more explicit sufficient condition for colorability from it, however,
with the help of orientations. To formulate the result, call a digraph ~G Eu-
lerian if the in-degree equals the out-degree for each of its vertices. (Hence,
such a digraph is not required to be connected, and it is allowed to have an
arbitrary number of isolated vertices, too.) We denote by ee( ~G) the number
of those spanning Eulerian subgraphs of ~G which have an even number of
edges, and by eo(~G) the number of those with an odd number of edges.

Theorem 2.9. ([7]) Let a graph G = (V, E) with a collection L of lists
be given. If G has an orientation ~G such that the out-degree of each vertex
vi is at most |Li| − 1, and ee(~G) 6= eo(~G), then G is L-list colorable.

Call an orientation ~G of G even if it has an even number of edges vivj

with i > j, i.e., oriented from a vertex of larger subscript to a smaller one ;
and call ~G odd if the number of those backwards-oriented edges is odd. To
prove Theorem 2.9, one observes first that, writing PG as the sum of 2m

(m := |E|) monomials, there is a bijection between those 2m terms and the
2m possible orientations of G. (In the factor (xi−xj) of PG, choose xi if the
edge vivj is oriented from vi to vj , and choose −xj if it is oriented from vj to
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vi.) Hence, the monomials
∏m

i=1 xdi
i are in one-to-one correspondence with

those orientations in which the out-degree sequence is (d1, . . . , dm). Thus,
the coefficient of

∏m
i=1 xdi

i in the standard representation of PG equals the
difference between the numbers of even and odd orientations having out-
degree sequence (d1, . . . , dm).

If two orientations ~G1, ~G2 have the same out-degree sequence, then the
set ~G1 ⊕ ~G2 of edges oriented differently in ~G1 and in ~G2 is an Eulerian
subgraph, and the parity of the number of its edges is even if both ~G1 and
~G2 are even or both are odd, and the parity is odd if precisely one of ~G1 and
~G2 is even. Therefore, under the conditions of Theorem 2.9, the coefficient
of

∏m
i=1 xdi

i in PG is nonzero (as the mapping ~G′ 7→ ~G ⊕ ~G′ is a parity-
preserving bijection between orientations and Eulerian subgraphs if ~G is
even, and parity-changing otherwise). Since all terms of PG have degree m
and every reduction step (by which PG is derived from PG) decreases the
degree of the monomial to which it is applied, no new term

∏m
i=1 xdi

i can
occur during the reduction steps ; and the original terms

∏m
i=1 xdi

i in PG are
not modified because di < |Li| is assumed for all 1 ≤ i ≤ n. Consequently,
PG 6≡ 0, and thus G admits a list coloring.

Orientations without odd circuits. An interesting case, worth men-
tioning separately, is where eo( ~G) = 0, i.e., if no directed circuits of odd
length occur in the orientation. Since ee( ~G) > 0 (as the edgeless subgraph
always is Eulerian), Theorem 2.9 implies that the maximum out-degree plus
1 is an upper bound on the choice number. For eo(~G) = 0, however, the al-
gebraic machinery is not needed, as an elementary proof works by applying
Richardson’s theorem [153]. This result guarantees that, under the ‘ no odd
circuits ’ assumption, G contains an independent set S such that from each
v ∈ V \ S there is at least one edge oriented to some vertex of S. In such
orientations, the method of the proof described for Theorem 3.12 finds a
list coloring whenever the out-degree of each vertex vi is smaller than |Li|.

In several situations, the following related observation turns out to be
useful.

Lemma 2.10. If G = (V, E) and d ∈ IN such that, for every t ≤ |V |,
each induced subgraph on t vertices has at most dt edges, then G has an
orientation of maximum out-degree at most d.

This assertion seems to have been in the folklore at least from the second
half of the 1980s ; a proof can be found in [7]. By the observations above,
if G is bipartite, then the lemma yields an orientation ~G with a guaranteed
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upper bound not only on the maximum out-degree, but also on the choice
number.

Corollary 2.11. Every 4-regular bipartite graph is 3-chosable. More gen-
erally, for all k, m ∈ IN, every 2k-regular bipartite graph is (km + m,m)-
choosable.

Contrary to the algebraic proof of Theorem 2.9, these ideas can be turned
to a polynomial algorithm that finds a list coloring when the relevant as-
sumptions hold. On the other hand, as noted by Jensen and Toft [111],
there seem to be no efficient algorithms known that find the smallest possi-
ble maximum out-degrees in orientations ~G with ee(~G) 6= eo(~G) or in those
with no odd directed circuits.

4-regular Hamiltonian graphs. One of the successful applications con-
cerns graphs with 3t vertices and 6t edges, whose edge set is the union of a
Hamiltonian cycle and t vertex-disjoint triangles. For such graphs, Du and
Hsu [52] conjectured that the independence number equals t, and Erdős
raised the problem whether they always are 3-colorable. This has been
answered in the following stronger form.

Theorem 2.12. (Fleischner, Stiebitz [67]) If a directed graph ~G is the
edge-disjoint union of a Hamiltonian circuit and some mutually vertex-
disjoint, cyclically oriented triangles, then ee(~G) − eo( ~G) ≡ 2 (mod 4),
and, consequently, the underlying graph of ~G is 3-choosable.

Without applying the algebraic machinery of Theorem 2.9, Sachs [157]
presents a purely combinatorial proof for the weaker assertion of 3-
colorability.

List T -colorings. Recently, Alon and Zaks [9] generalized Theorem 2.9
for list-T -colorings. They consider multigraphs Gm where each edge of G
is replaced by 2|T | − 1 parallel edges if 0 ∈ T , and by 2|T | parallel edges
if 0 /∈ T . Then, if Gm admits an orientation ~Gm where ee( ~Gm) 6= eo(~Gm)
and the out-degree of each vertex vi is smaller than Li, then G admits a
list-T -coloring.

3. Comparisons of Coloring Parameters

In the bulk of this section, we investigate graph classes in which the choice
number is not much larger than the chromatic number. Classical examples
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of this kind are the planar graphs, while a fundamental open problem is
related to line graphs. At the end, we discuss the relationship between
subset choosability and the fractional chromatic number.

3.1. Planar Graphs

Planar graphs have always been special objects in the study of graph col-
orings. The paper by Erdős, Rubin and Taylor [62], too, contained several
challenging questions about them. The answers (each found more than a
decade later) and some further results are summarized next. One may note
at the beginning that χ

`
(G) ≤ 6 is easily seen, because every planar graph

contains a vertex of degree at most 5, therefore col(G) ≤ 6 also holds.

Theorem 3.1.

(i) Every planar graph is 5-choosable (Thomassen [176]).

(ii) There exists a non-4-choosable planar graph (Voigt [191]).

(iii) Every planar graph is (4, 1, 3)-choosable (Kratochv́ıl, Tuza, Voigt
[138]).

(iv) Every triangle-free planar graph is 4-choosable.

(v) There exists a non-3-choosable triangle-free planar graph (Voigt [193]).

(vi) Every triangle-free planar graph is (3, 1, 2)-choosable (Kratochv́ıl,
Tuza, Voigt [138]).

(vii) Every planar graph of girth 5 is 3-choosable (Thomassen [177]).

(viii) Every bipartite planar graph is 3-choosable (Alon, Tarsi [7]).

Further constructions for parts (ii) and (v) were found by Gutner [82]. More-
over, as noted in [195], a construction of [82] (as well as one of [195]) is a
non-4-choosable planar graph of chromatic number 3, having an uncolorable
list assignment on as few as |IL| = 5 colors. The currently known smallest
3-colorable non-4-choosable planar graph, with 63 vertices, is presented by
Mirzakhani [148] (also describing the interesting story of ‘ teamwork ’ how
the record of 63 has been achieved). In her construction, too, an uncolorable
list assignment with |IL| = 5 is given.

To (viii), one may note that K2,4 is bipartite, planar, and not
2-choosable. Furthermore, the k-choosability results (k = 3, 4, 5) extend to
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(km,m)-choosability for all m ∈ IN. In connection with (iii), the following
problem remains open.

Problem 3.2. ([138]) Is every planar graph (4, 1, 2)-choosable ?

Moreover, Škrekovski asks concerning (vi) whether there exist any planar,
non-(3, 1, 2)-choosable graphs.

The proofs of the various upper bounds on the choice number in Theo-
rem 3.1 use quite different techniques. Part (iv), that belongs to the folklore
and seems to have been first mentioned explicitly in [136], is just a simple
remark on applying Euler’s formula ; (vii) requires a lot of intermediate
steps to verify ; (iii), (vi), and (viii) are based on the fact that the graphs
in question admit an orientation with maximum out-degree 3 and 2, respec-
tively (cf. Lemma 2.10) ; and the proof of (i) is already a classic, that we
present next.

The proof of 5-choosability. As the assertion is trivial for graphs of
order at most 5, one can apply induction on n. We may assume that G is
a 2-connected near-triangulation, i.e. all of its internal faces are triangles.
Omitting colors from lists on the outer cycle C, the following induction
hypothesis will be applied on the list assignments : Two consecutive vertices
v1, v2 of C are colored (i.e., |L1| = |L2| = 1) with distinct colors, lists at the
other vertices of C have size 3, and vertices not incident to C have lists of 5
colors each. If C is a triangle, one can immediately reduce G by omitting v1,
v2, and their colors from the lists of their neighbors (with just a little more
care if an internal vertex is adjacent to the entire C). Hence, we assume
|C| ≥ 4.

If C has a chord, say vi, vj ∈ V (C) are adjacent but nonconsecutive
on C, then {vi, vj} splits G into two parts G1, G2, having the edge vivj on
their outer cycles, and one of them, say G1, contains the two colored vertices
of C. Finding a list coloring of G1 by the induciton hypothesis, vi and vj

get colored on the outer cycle of G2, and then G2 is also list colorable.
If C has no chord, consider the uncolored neighbor of v2, say v3, and

reduce its list to a 2-element subset L′3 not containing L2. Since G is a
near-triangulation and |C| > 3, the neighbors of v3 induce a path P from v2

to the uncolored neighbor v4 of v3 on C, and P is internally disjoint from
C (as C has no chord) ; therefore, the lists of size 5 on P can be reduced
to 3-element lists disjoint from L′3. Finding a list coloring of G − v3 by
induction, v4 is the unique vertex that can exclude one of the two colors
from L′3, therefore G, too, is list colorable.
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Defective colorings. Cowen, Cowen and Woodall [45] consider vertex
colorings ϕ which are not proper, but for a fixed d ∈ IN every vertex v
has at most d neighbors of color ϕ(v). In the list coloring version, call a
graph (k, d)∗-choosable if it admits such a coloring for every k-assignment
L. This concept was recently introduced independently and simultaneously
by Škrekovski [170] and Eaton and Hull [55]. In the manuscript [170], the
following collection of results is announced :

(i) Every planar graph is (3, 2)∗-choosable.

(ii) Every triangle-free planar graph is (3, 1)∗-choosable.

(iii) Every outerplanar graph is (2, 2)∗-choosable.

(iv) Every triangle-free outerplanar graph is (2, 1)∗-choosable.

The assertions (iii) and (iv) concerning outerplanar graphs have also been
proved by Eaton and Hull. Both [170] and [55] ask whether every planar
graph is (4, 1)∗-choosable ; if true, this would be an interesting generaliza-
tion of a theorem of [45].

Answering a problem of [170] in the negative, Tuza and Voigt have
constructed 3-colorable planar graphs which are not (3, 1)∗-choosable. (One
simple example is 27P3 + 2K1.)

3.2. Graphs with Equal Chromatic and Choice Number

Beside the asymptotic results of Section 1.3, it would be of great interest to
know which conditions ensure that the choice number equals the chromatic
number. At the current state of the art, however, it seems hopeless to find
a characterization theorem for graphs G satisfying χ

`
(G) = χ(G).

Graphs of small chromatic number. Already the case of 2-choosable
bipartite graphs, settled by Rubin2, is not at all trivial. To formulate the
result, define the core of G the subgraph obtained by successively removing
vertices of degree 1 as long as such a vertex is present in the current graph.
Moreover, let us say for short that a graph is a θ-graph if it consists of
two vertices of degree 3 joined by three paths of respective lengths 2, 2, 2m
(m ∈ IN arbitrary) all internal vertices of which have degree 2. (I.e., one
edge of K2,3 is subdivided into an odd path.)

2 There are several important results in the paper [62] attributed by its authors to
A. L. Rubin who was working on his Thesis at that time.
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Theorem 3.3. (Rubin [62]) A connected graph is 2-choosable if and only
if its core is either a single vertex or an even cycle or a θ-graph.

The smallest uncolorable 2-assignments of a non-2-choosable graph require
at most four colors in IL. Hoffman, Johnson and Wantland [99] observe that
under the additional condition |IL| ≤ 3, the graphs K2,n−2 (and only those)
become 2-choosable, for all n.

It is worth noting here that the T -choice version of list colorings seems
to be much harder than the problem for T = {0}. Already for a subcase of
k = 2, namely for cycles of even length, and for some rather restricted sets
T , unexpected difficulties arise.

Conjecture 3.4. (Alon, Zaks [9]) For every n, r ∈ IN, and for the set
T = Tr := {0, 1, . . . , r},

χ
`|T C2n =

⌊
4n− 2
4n− 1

· (2r + 2)
⌋

+ 1 .

In [9], the conjecture is proved for cycles of length four.
For a subclass of 3-colorable graphs, we mention the following result.

Theorem 3.5. (Gravier, Maffray [75]) Suppose that ω(G) ≤ 3 in the
graph G = (V,E). If the edge set can be partitioned into two sets
E′∪E′′ = E in such a way that each induced P3 of G has precisely one edge
in each of E′ and E′′, then χ

`
(G) = χ(G) = ω(G).

Further problems. Graphs with larger chromatic number are considered
in recent works by Gravier and Maffray. In [76] they investigate graphs in
which there exists a k-coloring without color classes of more than 2 vertices.
Corollaries are derived for claw-free graphs (i.e., graphs containing no in-
duced star of degree 3) of small order, from which it follows that if G is
the complement of a triangle-free graph, then χ(G) = χ

`
(G). An interesting

related problem is

Conjecture 3.6. (Gravier, Maffray [75, 76]) If G is claw-free, then
χ

`
(G) = χ(G).

In some sense, this conjecture seems to be ‘ too strong,’ and perhaps it
would be worth making further efforts to find a counterexample. On the
other hand, if it turns out to be true, then it implies the validity of the
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famous List Coloring Conjecture, too. (The latter will be discussed in the
next subsection.)

Choice-perfect graphs. Motivated by the concept of perfect graphs, one
can define various types of ‘ choice perfectness,’ and raise the following prob-
lem.

Problem 3.7. ([181]) Characterize those graphs G in which χ
`
(G′) =

f(G′) holds for every induced subgraph G′, where

(i) f(G′) := χ(G′),

(ii) f(G′) := ω(G′).

The second property implies that G is perfect, but the first one doesn’t ;
for instance, the odd cycles are ‘ perfect ’ in the sense of (i). Further choice-
perfect classes will be mentioned in the next subsection.

Concerining the equality χ = χ
`
, the following problem extends the fa-

mous Erdős–Lovász–Farber conjecture (see e.g. [60, p. 26]) for choosability.

Conjecture 3.8. (Alon [5]) If G is the edge-disjoint union of n complete
graphs of order n each, then χ

`
(G) = n.

Kahn [124] has observed that a slight modification in the proof of the main
result in [122] yields χ

`
= n + o(n) for these graphs. From another point of

view, motivated by Theorem 2.9, Alon and Seymour [5] have proved that
such a graph always has an orientation with maximum out-degree at most
n− 1.

A theorem on matroids. In the context of χ
`

= χ, we mention the
following result of Seymour [164] who derives it from the Matroid Union
Theorem [57, 150]. Let M be a matroid whose set X of elements can
be partitioned into k independent sets. If Lx is a set with |Lx| ≥ k for
each x ∈ X, then there exists a partition of X into independent sets Xi,
i ∈ ⋃

x∈X Lx, such that i ∈ Lx for all i and all x ∈ Xi.
It follows, in particular, that if the edge set of a graph can be decom-

posed into k forests, and each edge is assigned to a list of k colors, then a
color can be chosen for each edge from its list so that no cycle is monochro-
matic. (Certainly, colorings obtained this way are usually not proper edge
colorings.)
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3.3. Edge and Total Colorings

There is a large number of results motivated by the List Coloring Conjecture
(Conjecture 3.10 below) which states the equality χ = χ

`
for line graphs. In

this subsection we survey the results related to this problem, but in the more
convenient terminology of edge and total colorings, rather than coloring line
graphs and total graphs.

We shall use the following notational conventions, analogously to vertex
colorings.

Prime notation. The parameters corresponding to chromatic and choice
numbers for edge colorings are denoted in the same way, except that we
write χ′ instead of χ, as follows :

χ′(G) = the chromatic index of G,

χ′
`
(G) = the edge choice number or list chromatic index of G = the smallest

k such that every k-assignment L on the edges of G admits a list
coloring.

These parameters are just the corresponding values of χ(L(G)) and
χ

`
(L(G)) of the line graph L(G) of G.

Double prime notation. The parameters for total colorings are denoted
by χ′′ with the analogous subscripts :

χ′′(G) = the total chromatic number of G = the smallest number of colors
in a proper coloring of V ∪ E,

χ′′
`
(G) = the total choice number (or the total list chromatic number) of G

= the smallest k such that every k-assignment L on V ∪ E admits a
list coloring.

The following lemma, the variants of which have been observed by many
authors, shows that total list colorings are closely related to the edge choice
number.

Lemma 3.9. For every graph G, χ′′
`
(G) ≤ χ′

`
(G) + 2.

The key idea of the proof is to color the vertices first. This can be done, for
any k-assignment with k = χ′

`
(G)+2, by the inequalities χ(G) ≤ ∆(G)+1 <

χ′
`
(G) + 2. Removing the vertex colors from the list of each edge, at least
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χ′
`
(G) colors remain in each list, so that a total list coloring exists. In this

way, every upper bound on the edge choice number yields one on the total
choice number as well.

As accounted in [86], the following problem has been raised indepen-
dently by several authors, including Vizing, Gupta, Albertson and Collins,
and Bollobás and Harris.

Conjecture 3.10. (List Coloring Conjecture) For every multigraph
G, χ′

`
(G) = χ′(G).

A challenging related recent problem has been raised by several authors
independently (Borodin, Kostochka and Woodall [32] ; Juvan, Mohar and
Škrekovski [119] ; Hilton and Johnson [95]). For general reference, we pro-
pose a name for it.

Conjecture 3.11. (Total Choice Conjecture) For every multigraph
G, χ′′

`
(G) = χ′′(G).

Subdividing each edge of G into a path of lenght 2, we obtain a graph H
whose square H2 is isomorphic to the ‘total graph’ of G, so that χ(H2) =
χ′′(G) and χ

`
(H2) = χ′′(G). In this direction, Kostochka and Woodall [133]

generalize the Total Choice Conjecture to the following one, that we may
call the Square Choice Conjecture : For every graph G, χ

`
(G2) = χ(G2).

Asymptotic results. Though the List Coloring Conjecture is still open
in general, considerable progress has been achieved. A trivial upper bound
is χ′

`
(G) ≤ col(L(G)) < 2∆(G). After the subsequent improvements by

Bollobás and Harris [26], Chetwynd and Häggkvist [41] (for triangle-free
graphs), and Bollobás and Hind [27], Kahn [121, 122] proved the asymptotic
result

χ′
`
(G) = ∆ + o(∆)

by the ‘ incremental random ’ method, not only for all graphs of maximum
degree ∆(G) = ∆ as ∆ → ∞, but also for families of hypergraphs of maxi-
mum degree ∆ where each pair of vertices is contained in a sufficiently small
number (i.e., o(∆) ) of (hyper)edges with respect to ∆.

So far the estimate with best known error term for graphs seems to be

χ′
`
(G) = ∆ + O(∆2/3

√
log ∆) ,
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proved by Häggkvist and Janssen [87]. They also prove, by an involved
application of Theorem 2.9, that

χ′
`
(Kn) ≤ n ,

which is in fact best possible for n odd. A more restricted version of list
total colorings of Kn, where the number of occurrences of the colors is also
prescribed, is due to Sun [172] (proving a conjecture of [41]).

Line graphs of bipartite graphs. The following celebrated theorem
settles Conjecture 3.10 for all cases where G is bipartite.

Theorem 3.12. (Galvin [70]) If G is a bipartite multigraph, then
χ′

`
(G) = χ′(G) = ∆(G).

If G has no multiple edges, then the surprisingly simple argument just com-
bines the ‘ Stable Marriage Theorem ’ of Gale and Shapley [68] and a useful
idea of Bondy, Boppana and Siegel [28], as follows. Start with a proper
edge coloring ϕ′ : E → {1, . . . , ∆(G)}. Denoting by X and Y the two vertex
classes of G, for each incident edge pair e, e′ with ϕ′(e) > ϕ′(e′), orient the
edge ee′ ∈ E(L(G)) from e to e′ if e∩ e′ ∈ X, and from e′ to e if e∩ e′ ∈ Y .
In this orientation, the maximum out-degree is at most ∆(G)−1. Assuming
that the out-degree of each e is smaller than the number of colors in the list
of e (which is certainly the case at the beginning in any ∆(G)-assignment),
the following procedure successfully list-edge-colors G : Taking the colors
i ∈ IL one by one, consider the set Ei ⊆ E of those uncolored edges whose
lists contain i. By [68], Ei contains a matching Mi which is ‘ absorbant ’ in
Ei, i.e., there exist edges oriented from each e′ ∈ Ei \Mi to some e ∈ Mi.
Assign color i to the members of Mi, remove i from the lists of Ei \ Mi,
and delete all edges oriented from Ei \Mi to Mi. Since a list gets shortened
only if the corresponding out-degree is decreased, all lists remain longer
than the out-degrees, and eventually the entire G becomes edge-colored.
For multigraphs, one needs an extension of the Stable Marriage Theorem,
which follows immediately by a more general result of Maffray [143].

Earlier results and extensions. Galvin writes very modestly in his In-
troduction : “ The proof is very simple and uses no new ideas.” Nevertheless,
his theorem settles the long-standing conjecture of Dinitz (raised in 1978,
also cited in [62]) which is just the rather particular case G = Kn,n. Before
Theorem 3.12, Janssen [110] solved the problem for all unbalanced complete
bipartite graphs, proving χ′

`
(Kp,q) = max (p, q) for all p 6= q. (She proved
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that, with a suitably chosen out-degree sequence d, L(Kp,q) admits just one
orientation without cyclic triangles, while the even and odd orientations —
cf. the first paragraph after Theorem 2.9 — containing at least one cyclic
triangle can be matched with each other by a bijection. Consequently, the
monomial corresponding to d in the standard representation of PG has co-
efficient 1 or −1, implying list colorability. This idea was developed further
in [87] for the proof of the upper bound χ′

`
(Kn) ≤ n cited above, to match

even and odd orientations which are not transitive on some clique in a fixed
clique decomposition of a given graph.) Previous significant progress was
achieved by Häggkvist [84], for the case p ≤ 2q/7. A self-contained pre-
sentation of the proof of Theorem 3.12 can be found in [171], and further
sufficient conditions for list edge colorability (where the conditions on the
edges are given by lists on the vertices, strongly motivated by problems on
Latin squares) have been published by Häggkvist [85].

It is immediately seen that the (m∆(G),m)-choosability of the line
graph of any bipartite multigraph G follows by the same argument for every
m ∈ IN. Borodin, Kostochka and Woodall [32] extend this method to prove
that if each edge e = xy of G has a list of at least max (d(x), d(y)) colors,
then L(G) admits a list coloring.

Note further that Galvin’s theorem implies χ′′
`
(G) ≤ ∆(G) + 2 for every

bipartite multigraph G. It is conjectured in [32] that a total list coloring
exists already for edge-lists of length ∆(G) + 1, provided that all vertices
have lists of ∆(G) + 2 colors. The converse (when only the vertex-lists are
shortened to ∆(G) + 1) always admits a list coloring, as shown above.

Nonbipartite multigraphs. Multiple edges seem to create lots of extra
difficulties. Until quite recently, the only improvement on the trivial upper
bound of 2∆ was Hind’s unpublished inequality χ′

`
≤ 9∆/5 in [97].

Theorem 3.13. (Borodin, Kostochka, Woodall [32]) Let G = (V,E) be
a multigraph, and suppose that the list of each edge e = xy ∈ E contains at
least

max (d(x), d(y)) +
⌊

1
2 min (d(x), d(y))

⌋

colors. Then G admits a list coloring. In particular, χ′
`
(G) ≤

⌊
3
2∆(G)

⌋
.

This result immediately implies Shannon’s tight bound [165] on the chro-
matic index of multigraphs of given maximum degree. Moreover, χ′′

`
(G) ≤⌊

3
2∆(G)

⌋
+ 2 also follows. However, this bound may not be tight :



Graph Colorings with Local Constraints — A Survey 195

Conjecture 3.14. ([32]) If G is a multigraph of maximum degree ∆ > 4,
then χ′′

`
(G) ≤

⌊
3
2∆

⌋
. Moreover, if G is connected, not complete and not

an odd cycle, then every list assignment with edge-lists of size
⌊

3
2∆

⌋
and

vertex-lists of size ∆ is colorable.

List coloring analogues of several further questions can be raised, for in-
stance whether χ′

`
≤ ∆ + µ + 1 where µ denotes the maximum edge multi-

plicity (conjectured in [119]), or whether χ′
`
(G) does not exceed the largest

of ∆(G) and

∆′(G) := max { 2|E(H)|
|V (H)|−1 H ⊆ G, |V (H)| odd}

(cf. [122, p. 12]). Explanation for the latter formula is that for multigraphs
G, the fractional chromatic index χ′∗

`
(G) equals max {∆(G),∆′(G)}, by the

Matching Polytope Theorem of Edmonds [56] (cf. e.g. [162]). This bound is
asymptotically valid :

Theorem 3.15. (Kahn [123]) For the class of multigraphs G,

χ′
`
(G) = (1 + o(1)) max {∆(G),∆′(G)}

as ∆ →∞.

An attractive conjecture of Kahn [122, 123] states that the asymptotic equal-
ity of the edge choice number and the fractional chromatic index remains
valid for r-uniform hypergraphs (or hypergraphs with maximum edge size
r, possibly with multiple edges) as well, for every fixed r ∈ IN, as, say, χ′

`
gets large.

Some upper bounds on χ′
`

and χ′′
`

in terms of ∆ plus the maximum local
average degree are presented in [32].

Regular graphs of class 1. Developing the algebraic method (cf. Sec-
tions 2.4 and 2.3) further, Ellingham and Goddyn [58] analyze the combi-
natorial meaning of the coefficients of the monomials in the expansion of
the graph polynomial. Some of their results are summarized in the next
theorem. In its second part, ‘ Kempe recoloring ’ means that in a proper
edge coloring we interchange the two colors on a 2-colored cycle, and repeat
this operation an arbitrary number of times.

Theorem 3.16. (Ellingham, Goddyn [58]) Let G be a d-regular multi-
graph with χ′(G) = d. If



196 Zs. Tuza

(i) G has an odd number of edge colorings with d colors, or

(ii) any two of its edge d-colorings have a Kempe recoloring to each other,
or

(iii) G is planar,

then χ′
`
(G) = d.

The third part states that a d-regular planar multigraph has χ′
`
(G) = d if

and only if χ′(G) = d. For the case of d = 3, this yields that the Four Color
Theorem is equivalent also to the assertion that every planar 2-connected
cubic graph is 3-edge-choosable. As noted in [58], this follows already from
the results of Scheim [160], that can in turn be deduced by combining a the-
orem of Vigneron [188] (cf. also [107]) with some ideas of Alon and Tarsi [7].

Taking another view on graphs embedded in the plane, projective plane,
torus, and the Klein bottle, Borodin, Kostochka and Woodall [32] provide
sufficient conditions for the equalities χ′

`
(G) = ∆(G) and χ′′

`
(G) = ∆(G)+1

in terms of combinations of girth and maximum degree, extending the earlier
results and methods of Borodin [31]. The larger girth, the smaller vertex
degree suffices. We recall here the case with unrestricted girth.

Theorem 3.17. ([32]) If a graph G of maximum degree ∆(G) ≥ 12 is
embeddable in a surface of nonnegative characteristic, then χ′

`
(G) = ∆(G)

and χ′′
`
(G) = ∆(G) + 1.

The equalities χ′
`

= χ′ and χ′′
`

= χ′′ for outerplanar graphs have been proved
by Juvan and Mohar [117].

The upper bound of ∆ + 1. Most of the results above verify the List
Coloring Conjecture for some graphs with χ′ = ∆. Concerning the other
case, χ′ = ∆+1, Juvan, Mohar and Škrekovski study the problem for small
maximum degree. They note that the upper bound χ′

`
(G) ≤ 4 for (simple)

graphs with ∆(G) ≤ 3 is implied by the choice version of the Brooks theorem
(indeed, to create K4 in a line graph would require a vertex of degree at
least 4 or a triangle with a multiple edge), and prove in [118] the stronger
assertion that if a subgraph E′ ⊂ E of maximum degree 2 has lists of
size 3 and the edges of E \ E′ have lists of size 4, then G is list colorable.
Subsequently, they prove in [118] that every graph of maximum degree 4
is 5-edge-choosable. Their method is strongly based on the treatment of
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so-called ‘ half-edges ’ (those incident to just one vertex), to which shorter
lists are assigned, and so an inductive proof becomes possible by cutting off
a suitably chosen small subgraph.

For unrestricted maximum degree, Kostochka [130] proved that if G
contains no cycle shorter than 8∆(log ∆ + 1.1), then χ′

`
(G) ≤ ∆ + 1.

3.4. Choice Ratio and Fractional Chromatic Number

Motivated by Problem 1.5, the study of the set

CH(G) := { k
` G is (k, `)-choosable}

leads to some interesting observations. It was first proved in Gutner’s The-
sis [81] (cf. also [4]) that the elements of CH(G) can be arbitrarily close to
χ(G).

The concept of fractional chromatic number admits a further strength-
ening in this assertion. Denote by S the collection of all independent sets
in G, and consider

χ∗(G) := inf
ϕ∗

∑

S∈S
ϕ∗(S) ,

where the infimum is taken over all functions

ϕ∗ : S → IR≥0

satisfying the condition ∑
S∈S
vi∈S

ϕ∗(S) ≥ 1

for every vertex vi ∈ V . One can show that the infimum is in fact attained
as minimum, and χ∗(G) — termed the fractional chromatic number of G
— is a rational number.

Theorem 3.18. (Alon, Tuza, Voigt [8]) For every graph G,

inf {r ∈ CH(G)} = min {r ∈ CH(G)} = χ∗(G) .

Choosing `-element color sets Ci ⊆ Li from a k-assignment L of G, and
defining ϕ∗(S(j)) := 1/` for each j ∈ IL, where S(j) := {vi j ∈ Ci}, a
fractional coloring of G with value k/` is obtained, proving that χ∗(G) is
a lower bound. The other direction for the infimum is not hard to prove
by probabilistic methods ; and for the minimum it can be deduced from a
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theorem of Huckemann, Jurkat and Shapley (mentioned in [73] and proved
also in [6]) by showing that for every fixed t and r, if the edge size of a
uniform hypergraph with t edges is divisible by a suitably chosen integer,
then the hypergraph admits a vertex partition of ‘ zero discrepancy ’ (i.e.,
equi-partitioning each edge) into r classes. This argument also yields that
the minimum is attained for infinitely many pairs (k, `). We note further
that the result remains valid in a very general setting, for induced hereditary
properties [147].

Theorem 3.18 yields that the implication given in Problem 1.5 is valid for
infinitely many m, for every fixed pair (k, `) with k/` ∈ CH(G). Moreover,
consequences for the 3-chromatic graph described in Conjecture 1.8 follow,
too.

The sufficient value obtained from hypergraph theoretic methods for the
smallest pair (k, `) attaining χ∗(G) is rather large ; the next example shows
that it can be the smallest one expected.

Example 3.19. The equality χ∗(C2t+1) = 2 + 1/t is easy to see. The
following short argument shows that C2t+1 is (2t + 1, t)-choosable for every
t ∈ IN. Assuming that the vertices v1, . . . , v2t+1 are labelled consecutively
along the cycle, suppose that {1, 2, . . . , 2t+1} ⊆ IL in the (2t+1)-assignment
L, and that each color j > 2t + 1 is missing from at least one list. Remove
the color i from Li if i ∈ Li, and remove an arbitrary color otherwise.
The consecutive occurrences of any one color induce subpaths P in the
cycle. Select this color for the 1st, 3rd, 5th, ... vertices of P (proceeding
clockwise), delete it from the 2nd, 4th, ... lists, and also delete the edges
incident to a vi when already t colors have been selected for vi. Repeating
this procedure for each color and each possible P sequentially, a subset of t
colors will eventually be selected for every vi because only those (at most) t
colors get deleted from the shortened list of size 2t which have been selected
for vi−1.

As regards bipartite graphs, Tuza and Voigt [185] showed that K2,4 is
(2m,m)-choosable if and only if m is even, and more generally they proved
that the same property holds for every minimally non-2-choosable bipartite
graph (unpublished, 1995).

3.5. The Chromatic Polynomial

Given a graph G = (V, E) and a list assignment L = (L1, . . . , Ln), de-
note by f(G,L) the number of L-colorings ϕ : V → IL. Kostochka and
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Sidorenko [131] proposed the problem of studying the function

F (G, k) := min
|L1|=...=|Ln|=k

f(G,L) ,

i.e., the minimum number of L-colorings taken over all k-assignments L.
(The maximum would obviously be kn, for all k ∈ IN.)

Denoting by P (G, k) the chromatic polynomial of G, it is clear by def-
inition that F (G, k) ≤ P (G, k) holds for every G and every k, and the
non-k-choosable k-chromatic graphs show that in some cases this inequality
is strict.

Theorem 3.20. (Donner [50]) For every graph G there exists an integer
k0 = k0(G) such that

F (G, k) = P (G, k)

holds for all integers k ≥ k0.

The starting point of the proof is an observation that allows us to compute
f(G,L) recursively for every L (not only for k-assignments). For any e =
vivj ∈ E, denote by G/e the graph obtained by contracting e (i.e., replacing
vi and vj by a new vertex v′ and joining v′ to each vertex adjacent to at
least one of vi and vj) and G − e := (V,E \ {e}). For G/e, define the list
assignment L/e to be identical to L on V \ {vi, vj}, and Lv′ := Li ∩ Lj for
the contracted vertex. One can see that that

f(G,L) = f(G− e,L)− f(G/e,L/e)

holds for all G, L, and e ∈ E. To prove f(G,L) ≥ P (G, k) for every
k-assignment L, Donner considers a computation tree based on the above
recursion, and makes estimates on the values at its leaves (each leaf is an
edgeless graph). The partial sums of those values are analyzed by distin-
guishing between the leaves according to the number of contractions on the
computation tree from the root to the leaf in question.

Problem 3.21. For which graphs G is the function F (G, k) identical to
the chromatic polynomial P (G, k) ?

Kostochka and Sidorenko [131] have observed that this equality holds for
all chordal graphs ; on the other hand, it obviously does not hold for any
G with χ

`
(G) > χ(G). In the latter case, it follows by Donner’s theorem

that F (G, k) is not a polynomial . (Since F (G, k) and P (G, k) coincide on
all sufficiently large values of k, the former is a polynomial if and only if it
is identical to the latter.)
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4. Algorithmic Complexity

In this section we discuss some algorithmic results. For terminology not
introduced here concerning algorithmic complexity, we refer to [71] or the
more recent book [37].

Note first that, since Chromatic Number is a particular case of List
Coloring (as well as of Precoloring Extension), in general the NP-
completeness of the latter follows from that of χ immediately. On the other
hand, though the reductions presented at the beginning of Section 0.4 imply
that these problems are equally hard as long as the class of all graphs is con-
sidered, this is not necessarily the case anymore for many nicely structured
subclasses.

For convenience, let us formulate the algorithmic questions as decision
problems. Keeping previous notation, the vertex set will be assumed to be
V = {v1, . . . , vn} throughout. We shall first consider

Precoloring Extension (PrExt ) :

Instance : Graph G = (V, E), subset W ⊆ V of precolored vertices, pre-
coloring ϕW : W → IN, color bound k.
Question : Does there exist a proper coloring ϕ with at most k colors
such that ϕ(v) = ϕW (v) for all v ∈ W ?

For lists of equal size, the problem is

k-List Coloring ( k-LC ) :

Instance : Graph G = (V,E), list assignment L = (L1, . . . , Ln), with
|Li| = k for all 1 ≤ i ≤ n.
Question : Does L admit a list coloring on G ?

The general case, where no restriction is put on the lengths of the lists,
will be called List Coloring, abbreviated LC.

k-Choosability ( k-CH ) :

Instance : Graph G = (V, E).
Question : Does G have a list coloring for every k-assignment L ?

Obviously, the first two problems belong to the class NP. On the other
hand, it will turn out that k-CH is located higher in the hierarchy of com-
plexity classes. (A well known fundamental open problem is whether or not
those types of complexity are indeed distinct.)
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We shall proceed in the order of increasing difficulty, considering PrExt
first, also presenting the known transparent necessary and sufficient con-
ditions ; the complexity of k-LC and the results related to k-CH will be
discussed in the third and fourth subsections. Finally, we shall discuss re-
sults on graph coloring games.

Before the results on restricted graph classes, we quote a theorem on the
running time of general list coloring algorithms.

General upper bounds. The chromatic number of a graph is a hard-to-
estimate parameter, and all known algorithms determining it exactly run in
exponential time with respect to the number n of vertices (even when the
graph in question is supposed to be 3-colorable). In particular, Lawler [140]
proposes an inductive algorithm that computes the chromatic number of G
and of all its induced subgraphs, where the total number of steps is bounded
above by ( 3

√
3 + 1)n times a polynomial of n. The method is based on the

theorem of Moon and Moser [149] who proved that no graph of order n can
have more than 3n/3 independent sets maximal under inclusion. (One also
needs the fact that the maximal independent sets can be listed efficiently,
see [180, 115].) Variants of this result, e.g. those in [104] and [65], enable
us to improve on the guaranteed running time of coloring algorithms when
restricted classes of graphs are considered. What is more, Lawler’s method
can be extended for list colorings as well, and the following result is valid.

Theorem 4.1. (Hujter, Tuza [106]) There exists a polynomial p(x) and
an algorithm A such that, for every graph G = (V, E) and every list assign-
ment L,

(i) the algorithm A decides in at most p(|V |) · |IL| · ( 3
√

3 + 1)|V | steps
whether or not G is list colorable ;

(ii) if G is triangle-free, then ( 3
√

3 + 1)|V | can be replaced by (
√

2 + 1)|V |

in the upper bound ;

(iii) and, for every fixed t ∈ IN and ε > 0, there is an n0 = n0(t, ε) such
that ( 3

√
3 + 1)|V | can be replaced by (1 + ε)|V | for every graph of order

|V | ≥ n0 that contains no induced matching of t edges.

The above bounds are similar to those for the chromatic number, the only
difference is the (necessary) presence of the factor |IL|.
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4.1. Precoloring Extension

Below we summarize the known results, grouped according to graph classes.
To make more sensitive distinctions, in some cases we shall impose restric-
tions on the precolored set W , too. For convenience, we shall assume that
the monochromatic subsets of W are W1,W2, . . . ,Wk (some of them may
be empty), and that they are labelled in a decreasing order of cardinality,
|W1| ≥ . . . ≥ |Wk|. The case of W1 = ∅ leads to the complexity of Chro-
matic Number, the literature of which will not be surveyed here ; i.e., we
assume |W1| ≥ 1 throughout. Unless otherwise stated, the given time com-
plexity refers to the original PrExt problem ; ‘ linear ’ means O(|V |+ |E|).
The graph is said to be F -free if it contains no induced subgraph isomorphic
to F .

Bipartite graphs : NP-complete in general [103], also for |W | = 3 [22],
on planar bipartite graphs with k = 3 and on P14-free bipartite graphs
with k = 5 [134], P6-free bipartite graphs with unbounded k [105] ;
linear if k = 2 (trivial), on P5-free bipartite graphs for any k [105],
and on trees and forests [105, 109].

Line graphs : NP-complete on line graphs of complete bipartite graphs
[42] ; polynomial on line graphs of multiforests [145].

Split graphs and complements of bipartite graphs : polynomial, of
the same complexity as Bipartite Matching, apart from a multi-
plicative constant [105] (fastest known algorithms of O(n2.5), see e.g.
[101]).

Interval graphs : O(n3) if |W1| = 1, and NP-complete if just |W1| = 2 is
assumed [19].

P4-free graphs (cographs) : linear [17, 105, 109].

Permutation graphs : NP-complete, already for |W1| = 1 [108].

Complements of Meyniel graphs : polynomial if |W1| = 1 [105], by
the results of Hertz [93], applying the algorithms of Grötschel, Lovász
and Schrijver [78, 79]. (A graph is said to be a Meyniel graph if each
of its odd cycles of length ≥ 5 contains at least 2 chords.)

Perfect graphs : polynomial if W3 = ∅ and |W2| ≤ 1, and NP-complete
otherwise [135].
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The NP-completeness for |W3| ≥ 1 or |W2| ≥ 2 on perfect (more explicitly,
on bipartite) graphs follows immediately from the results of [22, 134] for
k = 3. On the other hand, as mentioned in [105], the complexity of PrExt
is not known for several graph classes whose structure is well understood,
e.g. for unit interval graphs ; neither PrExt with the additional condition
|W1| = 1 for chordal (and, in particular, strongly chordal) graphs. Here is
another innocent-looking related problem :

Conjecture 4.2. (Woeginger [197]) On planar bipartite graphs, PrExt
with k = 3 and |W1| = |W2| = |W3| = 1 is solvable in polynomial time.

Woeginger notes that the condition |W1| = 1 makes the problem straight-
forward to solve on this restricted class for any other color bound. The
polynomial instances will be discussed further in the next subsection, where
structural characterizations will be given for the extendability of precolor-
ings.

Distance constraints on W . Thomassen [178] proved for planar graphs
G that if k ≥ 5 and the vertices of W are sufficiently far apart (with respect
to |W |), then every k-coloring of W can be extended to that of the entire
G. This result has recently been strengthened considerably by Albertson
[2], proving that a percoloring is extendable in either of the following cases :

(i) k > χ(G) and the distance between any two precolored vertices is at
least 4 ;

(ii) k > χ
`
(G) and the distance between any two precolored vertices is at

least 3.

In particular, in a planar graph, distance 4 and 3 suffices for the extend-
ability of a partial 5-coloring and 6-coloring, respectively. Albertson proves
analogous results for the more general case, too, where W induces the union
of vertex-disjoint cliques of sufficiently large mutual distances.
One of the interesting questions raised in [2] is whether or not distance
constraints have similar consequences for list colorings. That is, if W is
precolored, lists of given length k > χ

`
are associated to the precolorless

vertices, and we wish to extend the precoloring of W to a coloring of the
entire graph by choosing a color from each list, how large should then be
the distances between the vertices of W ? In particular, what is the smallest
distance (if any) that suffices for planar graphs and lists of length 5 ?
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Undecidable problems. Here we mention some results on infinite
graphs. Similarly to the finite case, one can ask whether a given precol-
oring on a finite subgraph is extendable to a proper k-coloring of the entire
graph, with fixed color bound k.

Burr [40] investigates this problem for a class of graphs of fairly transpar-
ent structure, called doubly-periodic graphs. The vertices of such a graph
G are labelled vij` (i, j ∈ ZZ, ` ∈ {1, . . . , n}), the subgraphs induced by
{vij1, vij2, . . . , vijn} — called cells — are isomorphic for all pairs i, j, any
other edge joins neighboring cells (i.e., cells whose i and j differ by at most
one), and both mappings i 7→ i + 1 and j 7→ j + 1 are automorphisms of G.

It is proved in [40] that, for every color bound k ≥ 3, there exists a
doubly-periodic planar graph G of maximum degree 4 and a finite precolored
set such that it is undecidable whether the precoloring can be extended to
a k-coloring of G. Dukes, Emerson and MacGillivray [53] generalize this
result to homomorphisms G → H (Burr’s theorem deals with H = Kk).
They prove undecidability for every finite, non-bipartite H, and for several
finite bipartite graphs H, too ; e.g., for H containing a cycle C of length at
least 6, such that there is a homomorphism h : H → C with h(v) = v for all
vertices v of C. It remains open, however, to characterize which H make the
problem undecidable (and, in particular, to prove or disprove decidability if
H is a tree).

4.2. Good Characterizations

There are some transparent conditions that can be checked efficiently on
fairly large graph classes and provide good characterizations for the polyno-
mial instances listed above. Most of them are collected in the paper by Huj-
ter and Tuza [105] ; and an efficient general method for perfect graphs with
restricted precolorings has been developed by Kratochv́ıl and Sebő [135].

Core Condition. A nonempty set U of pairwise adjacent precolorless
vertices is called a q-core if there are at least q−|U | distinct monochromatic
classes Wi ⊆ W such that each vertex u ∈ U has at least one neighbor in
each of those Wi. If |U | = 1, then U is also called an elementary q-core. The
Core Condition requires that the precoloring of G contains no (k + 1)-core.

Sequence Condition. Starting with a partial k-coloring of G, repeat the
following procedure until it terminates. If there is a (k+1)-core or there ex-
ists no elementary k-core, then stop ; otherwise choose an elementary k-core
{u}, and assign to it the unique color not appearing in its neighborhood.
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The Sequence Condition requires that such a procedure must not result in
a (k + 1)-core.

Independence Condition. For each precolored class Wi and each precol-
orless vertex set U , denote by α(U, i) the largest number of those mutually
nonadjacent vertices in U which have no neighbor in Wi. The Independence
Condition requires |U | ≤ ∑k

i=1 α(U, i) for all U ⊆ V \W .

It is easily seen that each of the above conditions is necessary for the
extendability of a precoloring if the color bound is k. The next statement
summarizes the known cases where they are sufficient as well.

Theorem 4.3. For the extendability of any partial coloring with color
bound k in an instance of PrExt,

(i) The Core Condition is necessary and sufficient for split graphs, com-
plements of bipartite graphs, P4-free graphs, and, if no color is repeated
in W , then also for complements of Meyniel graphs.

(ii) The Sequence Condition is necessary and sufficient for forests, and, if
k = 2, then also for bipartite graphs.

(iii) The Independence Condition is necessary and sufficient for line graphs
of multiforests.

Part (iii) has been re-stated from the paper by Marcotte and Seymour [145],
the other results appeared in [105]. The case of interval graphs, with the
assumption that no color is repeated in the precoloring, admits a character-
ization in terms of a Menger-type condition on directed graphs (constructed
from the corresponding instance of PrExt) ; see [17, 105] for details.

PrExt-perfect graphs. Motivated by the Core Condition, the following
graph operation can be introduced. Let G be a graph class closed under
induced subgraphs. For each G ∈ G and for each (proper) partial k-coloring
of G, contract each precolored color class to one new vertex, and make those
new vertices mutually adjacent. The class of graphs obtained in this way
from G will be denoted by G∗. It has been observed in [105] that if every
G ∈ G is perfect, and for every precoloring of every G ∈ G the core condition
is sufficient for precoloring extendability, then every G∗ ∈ G∗ is perfect, too.
Perfect graphs satisfying this requirement are called PrExt-perfect in [105].
Their characterization — as well as that of the corresponding class obtained
by contraction — remains an open problem.
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One of the interesting cases is the class G of P4-free graphs (cographs).
Recently, Van Bang Le [141] described G∗ for them. It follows, in particu-
lar, that the membership in this class can be decided in polynomial time.
(The cographs themselves can be recognized in linear time, see [43].) A
characterization in terms of forbidden subgraphs, however, is not known so
far.

Good characterization for PrExt on perfect graphs. We close this
subsection with the strongest known related result on the general class of
perfect graphs. For a vertex v ∈ V and a collection H of not necessarily
distinct subsets of V , dH(v) denotes the number of those sets in H which
contain v. The term ‘ω-clique ’ means ‘ complete subgraph on ω(G) ver-
tices.’

Theorem 4.4. (Kratochv́ıl, Sebő [135]) Let G = (V, E) be a perfect graph
and X, Y ⊆ V two disjoint independent sets. Then G has a proper coloring
ϕ : V → {1, . . . , ω(G)} with the properties that X is monochromatic and
ϕ(y) 6= ϕ(X) for all y ∈ Y , if and only if

|Q| ≥ |K|+ |X|
holds for every multi-family Q of cliques and every family K of at most |V |
distinct ω-cliques satisfying

dQ(v) = dK(v) ∀ v ∈ V \ (X ∪ Y )

and
dQ(v) = dK(v) + 1 ∀ v ∈ X .

The polynomial-time algorithm finding a required coloring when it exists is
combinatorial, except for the only part that it calls for a maximum clique
(for which no combinatorial algorithm of polynomial running time is known
so far on perfect graphs). For the particular case of Y = ∅, this result
answers a problem of Seymour who proved that it is NP-complete to decide
whether two independent sets X, Y of unrestricted cardinalities in a perfect
graph admit a proper coloring with ω(G) colors such that X and Y are
contained in distinct color classes [163].

4.3. List Colorings

On dense graphs, even with a very transparent structure, the List Color-
ing problem is quite hard. In fact, as Jansen and Scheffler [109] prove, it



Graph Colorings with Local Constraints — A Survey 207

is NP-complete already on complete bipartite graphs, despite it is solvable
in linear time on every graph without induced subgraphs P4 if the total
number |IL| of colors is bounded. Also, Kubale [139] observes that the NP-
completeness of LC on line graphs of complete graphs follows from that of
the Chromatic Index problem [100]. (In [139], LC is shown to be NP-
complete for bipartite graphs, too, under the further restriction that |IL| = 5
holds.) Recently, Jansen [108] proved NP-completeness for the union of two
complete graphs. It is a natural related question to investigate which are
the sparsest hard instances for LC.

Polynomially solvable cases. In both early papers [190, 62] it is ob-
served that 2-LC is easy to solve. Indeed, one can obtain a linear-time
algorithm by simply guessing the color ϕ(v) of a vertex v and check what
sort of implications this color would have for the other vertices. If ϕ(v)
occurs in the list of some neighbor u of v, then u gets forced to be asssigned
to the other color of its list ; and this forcing step may be repeated for the
neighbors of u, etc. If this procedure stops when a subgraph G′ is properly
colored while all uncolored vertices still have two colors in their lists, then
G is list colorable if and only if so is G − G′. On the other hand, if ϕ(v)
leads to a contradiction (excluding both colors from the list of some vertex),
then in any list coloring of G (if it exists), the only choice for v can be the
other color, which then either leads to a final contradiction or reduces the
problem to a smaller subgraph in linear time.

Further easy instances include the graphs of maximum degree 2, as well
as those list assignments (with arbitrarily long lists) where each color occurs
in at most two lists.

Sparse hard instances. The above examples show that the following
result is tight in several ways.

Theorem 4.5. (Kratochv́ıl, Tuza [136]) The List Coloring problem is
NP-complete when restricted to the instances where each list contains at
most 3 colors, each color occurs in at most 3 lists, and G is a planar
bipartite graph of maximum degree 3.

This result is proved by applying one of the several connections between LC
and the Satisfiability problem. Given a Boolean formula Φ in conjunctive
normal form, with a set C of clauses over the set X of variables, one can
define a graph GΦ with vertex set V = X ∪ C and edge set

E := {xc x ∈ c ∈ C or ¬x ∈ c ∈ C} .
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The symbols x and x (x ∈ X) will be taken for the colors, and the lists L(x)
and L(c) for the variable vertices x and clause vertices c will be defined as

L(x) := {x, x} ∀ x ∈ X

and
L(c) := {x x ∈ c} ∪ {x ¬x ∈ c} ∀ x ∈ X .

It can be seen that there is a one-to-one correspondence between the satis-
fying truth assignments of Φ and those color assignments of X which can
be extended to a list coloring of GΦ. (Choose color x for a variable vertex
x if and only if the variable x is false in the truth assignment ; and, con-
versely, let x be false in Φ if and only if the color x has been chosen for
x in a list coloring of GΦ.) Hence, each list coloring uniquely determines
a truth assignment, but not vice versa, because in some truth assignments
some clauses are satisfied by more than one variable, each allowing a distinct
color choice.

By this construction, the various theorems on Satisfiability (e.g., on
3-SAT) yield NP-completeness results on list colorings restricted to the cor-
responding graph classes. Note further that edges may be added to GΦ

in an arbitrary way as long as it remains bipartite, and still the two-way
mapping between colorings and truth assignments is preserved. It follows,
for instance, that LC is NP-complete on 3-regular bipartite graphs.

Note that also the degree condition in Theorem 4.5 is quite strong when
compared to the chromatic number problem. In fact, by applying the the-
orem of Brooks, we obtain that χ(G) = 3 can be decided in linear time for
graphs of maximum degree 3, since χ(G) ≤ 3 holds if and only if G contains
no connected component isomorphic to K4.

Colors in a bounded number of lists. For longer lists, the easy and
hard instances can be separated in terms of bounds on the number of how
many times a color may appear in the lists. Define the following problem
class for k, d ∈ IN :

(k, d)-LC :

Instance : Graph G = (V,E), list assignment L = (L1, . . . , Ln), |Li| = k
for all 1 ≤ i ≤ n, each color appearing in at most d lists.
Question : Does L admit a list coloring on G ?

Theorem 4.6. ([136]) Let k ≥ 3, d arbitrary.
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(i) If d ≤ k, then every instance of (k, d)-LC admits a list coloring, and
a feasible coloring can be found in O(n2.5) steps.

(ii) If d > k, then (k, d)-LC is NP-complete.

The first part of this result means that the colorability does not depend on
the actual structure of the graph in question ; i.e., one may assume G = Kn.
In this case, a list coloring exists if and only if the lists admit distinct
representatives, and therefore the problem is equally hard as Bipartite
Matching (or, more explicitly, as finding a matching that covers the smaller
vertex class of a bipartite graph).

Hall Condition. The following concept may be viewed as the LC-
analogue of the Independence Condition given in Section 4.2. For graph
G = (V, E), list assignment L, subset U ⊆ V , and color i ∈ IL, denote
by α(U, i) the largest size of an independent set in the subgraph induced
by those vertices of U whose lists contain color i. It is obvious that the
condition

|U | ≤
∑

i∈IL

α(U, i) ∀ U ⊆ V

is necessary for the existence of a list coloring. Hilton and Johnson [94] and
Gröflin [77] prove that this coindition is sufficient for all L on G if and only
if each 2-connected component of G is a complete subgraph. In the particular
case of line graphs G = L(H), the necessary and sufficient condition is that
H should be a forest (de Werra [48]). If multiple edges are also allowed, the
Hall Condition becomes sufficient on multiforests if we require that any two
parallel edges have the same list (Marcotte and Seymour [145]).

It may be noted that if all blocks are cliques, a polynomial list coloring
algorithm can be designed even without the above characterization at hand.
For this, one can take an endblock K sitting on a cut vertex vj , and check
for each color i ∈ Lj one by one whether ϕ(vj) = i can be extended to
a list coloring on the entire K. (This amounts just to testing whether
the Lj′ \ {i} in K \ {vj} have distinct representatives.) Restricting Lj to
those colors which do, the problem gets reduced to the subgraph induced
by V \ (V (K)\{vj}) which is list colorable with the modified Lj if and only
if so is the entire G with the original lists.

Hall number. An interesting related graph invariant, introduced and
studied recently by Hilton, Johnson and Wantland [96, 95], is the Hall num-
ber , defined as the smallest natural number k such that the Hall Condition
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ensures colorability for every list assignment L with |Li| ≥ k for all vertices
of the graph in question. Obviously, the Hall number cannot be larger than
the choice number. In the forthcoming papers [96, 95] the Hall number is
compared to some other important parameters, too, such as the chromatic
number and the independence ratio. Its irregular behavior is analyzed as
well, by showing that the removal of a vertex or an edge may cause a rather
large decrease or increase, respectively. The best possible results concerning
these ‘ jumps ’ with respect to vertex degrees have been obtained by Tuza
[181], showing that the Hall number of Kn − e is equal to n− 2 (while it is
1 for both Kn and Kn−1).

Subset choosability. Concerning the more general problem of choosing
subsets that are disjoint if the corresponding vertices are adjacent, the con-
cept of (p, q, r)-LC is defined in the natural way, with instance G = (V, E)
together with lists Li of cardinality p each and |Li ∪Lj | ≥ p+ r if vivj ∈ E,
and the quesiton is whether q-element subsets can be chosen that are disjoint
if the corresponding vertices are adjacent. The complexity of this problem
is completely characterized :

Theorem 4.7. (Kratochv́ıl, Tuza, Voigt [137]) The (p, q, r)-LC problem
is NP-complete for

p ≥ max {q + 2, r + 1}
and solvable in linear time for p = r ≥ q and for q ≤ p ≤ q + 1.

Graphs of bounded treewidth. One of the equivalent definitions of
treewidth is introduced in terms of chordal graphs :

tw(G) := min {ω(H)− 1} ,

where the minimum is taken over all chordal graphs H containing G as a
subgraph. Representing such an H as the intersection graph of subtrees
T1, . . . , Tn of a tree T , the sets Xz := {vi ∈ V y ∈ V (Ti)} (z ∈ V (T ))
together with T form a so-called tree decomposition of G, a very convenient
structure for algorithmic purposes. On this basis, for many NP-complete
problems there exist polynomial (and often even linear) algorithms when
restricted to graphs of treewidth less than t (often called partial t-trees),
t ∈ IN fixed ; see e.g. [12, 44]. The methods of dynamical programming can
be applied successfully for list colorings as well :

Theorem 4.8. (Jansen, Scheffler [109]) Let t ∈ IN be fixed. Then, on the
class Gt of graphs of treewidth less than t, the List Coloring problem
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is solvable in O(nt+2) time. Moreover, for every fixed k ∈ IN, if a tree
decomposition of width < t is given for any G ∈ Gt, then LC is solvable in
O(n) time.

A stronger time bound can be proved for trees. Since both the choice and
coloring number of every tree with at least one edge equals 2, one can solve
LC (similarly to PrExt) on trees in linear time without assuming any
bound on the total number of colors, firstly coloring the vertices whose list
consists of just one color, then deleting those colors from the lists of the
neighbors and continuing this procedure as long as 1-element lists occur.
If no list becomes empty at the end of this phase, then each uncolored
component is an instance of 2-LC (we may delete colors from the lists longer
than 2), and can be list-colored in linear time, by choosing an arbitrary root
with any color from its list and then proceeding from the root towards the
leaves e.g. by breadth-first search. In this way, not only the decision problem
but also the search version is solvable in linear time. Jansen and Scheffler
also note that the number of admissible list colorings can be determined in
O(kn) time, where k denotes the total number of colors.

Cardinality-constrained color classes. Let G = (V,E) with the list
assignment L be given, and suppose that for each i ∈ IL an integer ni ≥ 0
is prescribed,

∑
i ni = n. The problem is to decide whether G admits an

L-coloring in which each color i occurs precisely ni times.
Answering a problem raised by de Werra, recently Dror, Finke, Gravier

and Kubiak [51] proved that this problem is NP-complete, already for linear
forests and restricting L to 2-assignments. On the other hand, applying
dynamic programming, it is shown that if |IL| ≤ p, where p ∈ IN is fixed
(not part of the input), the problem is solvable in polynomial time on Pn

and also on the vertex-disjoint unions of paths. The case of |IL| = 3 was
solved previously by Xu [198].

It remains open to investigate the complexity of the problem on trees,
with a bounded total number of colors.

4.4. Choosability

While the hard instances of List Coloring turn out to be NP-complete,
with respect to Choosability the class Πp

2 plays the role of NP. The 2-
choosable graphs can be recognized in linear time, by the structural char-
acterization (Theorem 3.3). Apart from this ‘ smallest ’ case, essentially
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every other class of instances is provably hard. The following result gives a
complete answer to the problem formulated at the beginning of this section.

Theorem 4.9. (Gutner, Tarsi [83]) For every k ≥ 3, k-Choosability
is Πp

2-complete.

The first complexity result of this kind was due to by Rubin [62], but not
for lists of equal length. Recently, Gutner proved several similar theorems.
In order to state some of them, we need to introduce the following concept.

(2, 3)-Choosability ( (2, 3)-CH ) :

Instance : Graph G = (V, E), number `i ∈ {2, 3} for each vertex vi.
Question : Does G have a list coloring for every assignment L =
(L1, . . . , Ln) such that |Li| = `i for all 1 ≤ i ≤ n ?

Along these lines, a large class of problems parametrized by sets S of
natural numbers can also be defined, assuming that `i ∈ S and |Li| = `i

for each vertex vi in the list assignment L for which the colorability has
to be tested. With this formulation, Rubin’s theorem states that (2, 3)-CH
is Πp

2-complete on bipartite graphs. Gutner proves the following stronger
related results.

Theorem 4.10. (Gutner [82]) Each of the following problems is Πp
2-com-

plete :

(2, 3)-CH on planar bipartite graphs,
3-CH on planar triangle-free graphs,
4-CH on planar graphs,
3-CH on the union of two forests.

These results may raise the impression that choosability is always at least as
hard as list colorability. This is not at all the case, however, as shown by the
comparison of the next result with Theorem 4.7. We denote by (p, q, r)-CH
the choice version of (p, q, r)-LC.

Theorem 4.11. (Kratochv́ıl, Tuza, Voigt [137]) If 2r ≥ p and 4q > 3r +
p, and also if 2r ≤ p and 4q > 2p + r, then the (p, q, r)-CH problem is
solvable in linear time.

The complexity of (p, q, r)-CH, however, is not known in general.
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4.5. Graph Coloring Games

Several games on graphs may be viewed as on-line versions of precoloring
extension : At each step, the next player has to extend the partial coloring
to a larger one. Here we consider some two-person games of this flavor.

In the variants below, it will be assumed throughout that, already at
the beginning of the game, both players know the entire graph G = (V,E)
to be colored. Moreover, a color bound k is given. A legal move consists of
choosing a vertex v not colored so far, and assign to it an arbitrary color
i ∈ {1, . . . , k} that has not been assigned to any neighbor of v. We begin
with a framework that may be viewed as most general in some sense, and
then discuss some particular cases and variants.

Achievement and Avoidance Games. In both types, the players move
alternately, and the player to move next is obliged to color a vertex, when-
ever the partial coloring admits an extension. The Achievement Game is
won by the player who makes the last legal move ; while in the Avoidance
Game, the last-but-one move wins, i.e., the winner is the player who can
force the other one to make the last move.

Small values of k lead to some concepts interesting on their own : For
k = 2 both games end up with an inclusionwise maximal bipartite induced
subgraph (with unchangeable vertex 2-coloring in each of its components),
and for k = 1 they result in a nonextendable independent set.

These games have been considered by Harary and Tuza [92] for some
rather restricted types of graphs G (paths, cycles, Petersen graph) with
color bound k = χ(G). As may be expected, Avoidance turns out to be
more complicated than Achievement. Very little is known so far in general,
however, though it would be interesting to see various winning strategies, as
well as arguments showing that it is hard to determine the winner already
on some graph classes of a fairly transparent structure.

For small k, the game is known to be PSPACE-complete on unrestricted
graphs, by the results of Schaefer (k = 1) and Bodlaender (k = 2).

Theorem 4.12. ([158], [20]) For color bounds k = 1 and k = 2, it is
PSPACE-complete to decide who has a winning strategy in the Achievement
Game.

So far, the case of k ≥ 3 colors seems to be open. On the other hand,
more results are available under the condition that the players have to color
the vertices in a prescribed order . See Bodlaender [20] and Bodlaender and
Kratsch [23] for details on those ‘ sequential coloring ’ games.
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Symmetric strategies. The simplest example to illustrate the idea how
the symmetry of a graph can be used successfully, is the winning strategy of
the first player in the Achievement Game on the path Pn, n odd. Denoting
Pn = v0v1 · · · v2t, Player 1 colors the middle vertex vt first (with any color),
and then ‘ reflects ’ each move of Player 2 to vt ; i.e., if Player 2 colors some
vi with color j, then Player 1 assigns the same color j to the vertex v2t−i in
the next move.

In his recent work, Arroyo [13] applies this idea and its modifications in
designing winning strategies for the Achievement and/or Avoidance Games
on various types of graphs. Moreover, he considers several further variants
of these games, e.g., where each player has to use a prescribed set of colors
(those sets may be disjoint for the two players), or adjacent vertices must
get the same color, etc.

Achievement for k = 1 (Node Kayles). The game with one color
seems to be of major importance, because the case of more colors can be
reduced to it. Indeed, as Arroyo observes [13], the winner is the same on
G with k colors and on the Cartesian product G2Kk with one color. (The
vertex set of G2Kk is V (G) × {1, . . . , k}, and two of its vertices (v, i) and
(v′, i′) are adjacent if and only if i = i′ and vv′ ∈ E(G) or i 6= i′ and v = v′.)

If just one color is available, the players sequentially construct larger
and larger independent sets until a maximal one is reached, and the first
player wins if and only if the set eventually obtained has odd cardinality.
Beside the complexity result mentioned above, Schaefer [158] proves that
the bipartite version of the game is PSPACE-complete, as well, i.e., where
G is supposed to be bipartite, say with vertex partition V = V1 ∪ V2, and
player i (i = 1, 2) selects a vertex of Vi in each step.

Finbow and Hartnell [66] investigate, under which conditions is the out-
come of the game independent of the actual strategies of the players, i.e.,
when are the maximal independent sets of G all of the same parity. They
prove that for graphs of girth at least 8, the necessary and sufficient con-
dition is that every vertex of degree greater than 1 is adjacent to an odd
number of pendant vertices. (The girth condition cannot be weakened here,
as shown by the cycle C7.)

The Achievement Game with k = 1 on paths is discussed by Berlekamp,
Conway and Guy [16, pp. 88–90] in a different but equivalent form, under the
name ‘Dawson’s Chess ’ (played on a 3×n board with n white pawns and n
black pawns, initially placed in the first and third row, respectively ; capture
is obligatory). Interestingly enough, the score turns out to be ultimately
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periodic modulo 34. The second player has a winning strategy on Pn if and
only if n ≡ 4, 8, 20, 24, 28 (mod 34) or n = 14 or n = 34.

Game chromatic number. This interesting concept was introduced by
Bodlaender [20]. Depending on the parity of n = |V (G)|, the game becomes
some kind of Achievement (n odd) or avoidance (n even), but now the first
player wins if and only if the entire graph gets colored. The game chromatic
number of G, denoted χg(G), is the smallest integer k such that the first
player wins the game with color bound k. (In order to avoid some anomalies,
Kierstead et al. propose a slight change in the rules, namely that Player 2
begins but he is allowed to pass.)

Faigle, Kern, Kierstead and Trotter [64] proved χg(T ) ≤ 4 for every tree
T , and Bodlaender [20] showed that this estimate is tight, by constructing
a tree with χg = 4. (Let T be the caterpillar with 4 internal nodes along a
path, each of degree 4.) The upper bound has been generalized by Kierstead
and Tuza [127] who proved that

χg(G) ≤ 6 tw(G)− 2

holds for every graph G, where tw(G) denotes the treewidth of G (see the
definition before Theorem 4.8). It is not known, however, whether the
coefficient 6 is really necessary here, or it can be replaced by a smaller one
(with possibly a worse error term).

It was conjectured by Bodlaender [20] and proved by Kierstead and
Trotter [126] that the game chromatic number of planar graphs is bounded
above by a constant. The largest possible value of χg, however, is known
neither for planar graphs (it is between 8 and 33), nor for outerplanar graphs
(between 6 and 8). For a general upper bound, we recall the following result.

Theorem 4.13. (Kierstead, Trotter [126]) There exists a function g :
IN → IN such that, if a graph G does not contain any subgraph homeo-
morphic to Kt, then χg(G) ≤ g(t).

It follows, in particular, that the game chromatic number is bounded above
by a function of the genus.

Though there is relatively little known about the behavior of the game
chromatic number so far, it seems to offer a promising area for research,
certainly with a lot more to discover.
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[84] R. Häggkvist, Towards a solution of the Dinitz problem ? 75 (1989) 247–
251.



Graph Colorings with Local Constraints — A Survey 221
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