GENERALIZED DOMINATION, INDEPENDENCE AND IRREDUDANCE IN GRAPHS

Mieczysław Borowiecki Danuta Michalak Elżbieta Sidorowicz

Institute of Mathematics, Technical University of Zielona Góra Podgórna 50, 65–246 Zielona Góra, Poland

> e-mail: m.borowiecki@im.pz.zgora.pl d.michalak@im.pz.zgora.pl e.sidorowicz@im.pz.zgora.pl

Abstract

The purpose of this paper is to present some basic properties of \mathcal{P} -dominating, \mathcal{P} -independent, and \mathcal{P} -irredundant sets in graphs which generalize well-known properties of dominating, independent and irredundant sets, respectively.

Keywords: hereditary property of graphs, generalized domination, independence and irredundance numbers.

1991 Mathematics Subject Classification: 05C35.

1

In this paper we will consider finite undirected graphs with no multiple edges, and with no loops. For a graph G we will refer to V(G) (or V) and E(G) (or E) as the vertex and edge set, respectively.

A nonempty subset D of the vertex set V of a graph G is a dominating set if every vertex in V-D is adjacent to a member of D. If $u \in D$ and $v \in V-D$, and $uv \in E$, we say that u dominates v and v is dominated by u.

The minimum (maximum) of the cardinalities of the minimal dominating sets in G is called the *upper domination number* of G and it is denoted by $\gamma(G)$ ($\Gamma(G)$).

We write $H \leq G$ if H is an induced subgraph of G. We use the notation G[A] for the subgraph of G induced by $A \subseteq V(G)$.

A set $S \subseteq V(G)$ is said to be *independent* if G[S] is totally disconnected (i.e., G[S] is an edgeless graph). Obviously, each maximal independent set is a minimal dominating set. If S is a maximal independent set of G, then $G[S \cup \{v\}]$ contains as a subgraph K_2 , i.e., the subgraph which is forbidden for the property "to be totally disconnected".

For $v \in V$, we denote by N(v) a set of vertices adjacent to v (neighbours of v) and by N(A) a set of neighbours of vertices of A. By N[v] and N[A] we denote $N(v) \cup \{v\}$ and $N(A) \cup A$, respectively.

A set $R \subseteq V(G)$ is called *irredundant in* G, if for each vertex $v \in R$, $N[v] - N[R - \{v\}] \neq \emptyset$.

This definition fits intuitive ideas of redundancy, for in the context of communication network, any vertex that may receive a communication from some vertex x in R, may also be informed from some vertex in $R - \{x\}$, i.e., x may be removed from R without affecting the totality of accesible vertices. It is apparent that irredundance is a hereditary property and that any independent set of vertices is also an irredundant set.

The minimum (maximum) of the cardinalities of the maximal irredundant sets of G is called the *lower* (upper) irredundance number and it is denoted by ir(G), (IR(G)).

The study of domination in graphs has been initiated by Ore [6], for a survey see a special volume of the *Discrete Mathematics* **86** (1990). Applications of minimum dominating sets have been suggested by many authors. The determination of the domination number is an NP-complete problem (see [4]). It should be noted that bounds on $\gamma(G)$ do exist through the parameters which are also difficult to determine.

 $\mathbf{2}$

Let \mathcal{I} denote the class of all finite simple graphs. A graph property is a non-empty isomorphism-closed subclass of \mathcal{I} . (We also say that a graph has the property \mathcal{P} if $G \in \mathcal{P}$).

A property \mathcal{P} of graphs is said to be *induced hereditary* if whenever $G \in \mathcal{P}$ and $H \leq G$, then also $H \in \mathcal{P}$. For hereditary properties with respect to other partial order on \mathcal{I} we refer the reader to [1].

Any induced hereditary property \mathcal{P} of graphs is uniquely determined by the set of all its forbidden induced subgraphs

$$C(\mathcal{P}) = \{ H \in \mathcal{I} : H \notin \mathcal{P} \text{ but } (H - v) \in \mathcal{P} \text{ for any } v \in V(H) \}.$$

Let us denote by \mathbb{M} the set of all induced hereditary properties of graphs. According to [1] we list below some of the induced hereditary properties.

 $\mathcal{O} = \{G \in \mathcal{I} : G \text{ is totally disconnected } \}, \ C(\mathcal{P}) = \{K_2\};$

 $S_k = \{G \in \mathcal{I} : \Delta(G) \le k\}, \ C(S_k) = \{H : |V(H)| = k + 2 = \Delta(H) + 1\};$

 $\mathcal{I}_k = \{G \in \mathcal{I} : G \text{ does not contain } K_{k+2}\}, \ \boldsymbol{C}(\mathcal{I}_k) = \{K_{k+2}\}.$

3

Let $\mathcal{P} \in \mathbb{M}$ and G = (V, E) be a graph. Two vertices u and v of G are called \mathcal{P} -adjacent if there is an induced subgraph H' of G containing u and v such that $H' \simeq H \in C(\mathcal{P})$.

For a vertex $v \in V$, by $N_{\mathcal{P}}(v)$ we denote the \mathcal{P} -neighbourhood of v, i.e., $N_{\mathcal{P}}(v) = \{u \in V : u \text{ is } \mathcal{P}\text{-adjacent to } v\}$ and $N_{\mathcal{P}}[v] = N_{\mathcal{P}}(v) \cup \{v\}$. For a set $X \subseteq V$, let $N_{\mathcal{P}}(X) = \bigcup_{v \in X} N_{\mathcal{P}}(v)$ and $N_{\mathcal{P}}[X] = N_{\mathcal{P}}(X) \cup X$. Especially, $N(v) = N_{\mathcal{O}}(v)$.

Next, for a vertex $v \in V(G)$ we denote the set of all forbidden subgraphs containing v by $C_{G,\mathcal{P}}(v) = \{H' \leq G : v \in V(H'), H' \simeq H \in C(\mathcal{P})\}.$

The number $|C_{G,\mathcal{P}}(v)|$ is called \mathcal{P} -degree of v in G and is denoted by $\deg_{G,\mathcal{P}}(v)$.

If $\deg_{G,\mathcal{P}}(v) = 1$, then v is said to be \mathcal{P} -pendant in G and if $\deg_{G,\mathcal{P}}(v) = 0$, then v is said to be \mathcal{P} -isolated in G.

A set $D \subseteq V$ is said to be \mathcal{P} -dominating in G if $N_{\mathcal{P}}(v) \cap D \neq \emptyset$ for any $v \in V - D$.

A set $D \subseteq V$ is said to be *strongly* \mathcal{P} -dominating in G if for each $v \in V - D$ there is $H' \leq G$ containing v such that $H' \simeq H \in C(\mathcal{P})$ and $V(H') - \{v\} \subset D$.

The minimum (maximum) of the cardinalities of the minimal \mathcal{P} -dominating sets in G is called the *lower*, (upper) \mathcal{P} -domination number of G and it is denoted by $\gamma_{\mathcal{P}}(G)$, $(\Gamma_{\mathcal{P}}(G))$, respectively.

The minimum (maximum) of the cardinalities of the minimal strongly \mathcal{P} -dominating sets in G is called the *lower* (upper) strong \mathcal{P} -dominating number and it is denoted by $\gamma'_{\mathcal{P}}(G)$, $(\Gamma'_{\mathcal{P}}(G))$, respectively.

If $\mathcal{P} = \mathcal{I}_{n-2}$, then the \mathcal{I}_{n-2} -dominating sets are also called K_n -dominating sets in G (see [5]).

A set $R \subseteq V$ is called \mathcal{P} -irredundant if for every vertex $v \in R$, $N_{\mathcal{P}}[v] - N_{\mathcal{P}}[R - \{v\}] \neq \emptyset$.

The minimum (maximum) of the cardinalities of the maximal \mathcal{P} -irredundant sets is called the lower (upper) \mathcal{P} -irredundance number of G and is denoted by $ir_{\mathcal{P}}(G)$ ($IR_{\mathcal{P}}(G)$), respectively.

A set $S \subseteq V(G)$ is \mathcal{P} -independent in G if $G[S] \in \mathcal{P}$. A set $S \subseteq V(G)$ is said to be strongly \mathcal{P} -independent in G if for every $v \in S$, $N_{\mathcal{P}}(v) \cap S = \emptyset$.

The minimum (maximum) of the cardinalities of the maximal strongly \mathcal{P} -independent sets in G, is called the *strong* \mathcal{P} -independence number of G and it is denoted by $i'_{\mathcal{P}}(G)$, $(\alpha'_{\mathcal{P}}(G))$.

The minimum (maximum) of the cardinalities of the maximal \mathcal{P} -independent sets in G, is called the \mathcal{P} -independence number of G and it is denoted by $i_{\mathcal{P}}(G)$, $(\alpha_{\mathcal{P}}(G))$.

Notice, that if $\mathcal{P} = \mathcal{O}$, then \mathcal{P} -dominating and strongly \mathcal{P} -dominating sets in G are dominating sets, \mathcal{P} -independent and strongly \mathcal{P} -independent sets are independent sets, also \mathcal{P} -irredundant sets are irredundant sets in an ordinary sense.

4

The following theorem generalizes a clasical result of Ore [6].

Theorem 1. Let D be a \mathcal{P} -dominating set of a graph G. Then D is a minimal \mathcal{P} -dominating set of G if and only if for each vertex $d \in D$, d has one of the following properties:

- (i) there exists a vertex $v \in V D$ such that $N_{\mathcal{P}}(v) \cap D = \{d\}$,
- (ii) $N_{\mathcal{P}}(d) \cap D = \emptyset$.

Proof. Suppose that D is a minimal \mathcal{P} -dominating set of G. Then for each vertex $d \in D$, the set $D - \{d\}$ is not a \mathcal{P} -dominating set of G. Hence, there is a vertex $v \in V - (D - \{d\})$ that is \mathcal{P} -adjacent to no vertex of $D - \{d\}$. If v = d, d is \mathcal{P} -adjacent to no vertex of D, while if $v \in V - D$, then since D is a \mathcal{P} -dominating set of G, $N_{\mathcal{P}}(v) \cap D = \{d\}$.

Conversely, if every vertex $d \in D$ has at least one of the properties (i) or (ii), then $D - \{d\}$ is not a \mathcal{P} -dominating set of G.

Theorem 2. If G is a graph without \mathcal{P} -isolated vertices, then there exists a minimum \mathcal{P} -dominating set of vertices of G in which every vertex has property (i).

Proof. Among all the \mathcal{P} -dominating sets of G with cardinality equal to $\gamma_{\mathcal{P}}(G)$, let D be chosen so that D contains the maximum possible numbers of vertices which are \mathcal{P} -adjacent to some vertex of D in G. Suppose there exists a vertex $d \in D$, that d has no property (i). However, by Theorem 1, d has the property (ii). This implies that d is \mathcal{P} -adjacent to no vertex

of D. Since G is a graph without isolated vertices, then there exists a vertex $w \in N_{\mathcal{P}}(d)$ and $w \in V(G) - (D - \{d\})$. The vertex w is \mathcal{P} -adjacent to some vertex of $D - \{d\}$. Let $D' = (D - \{d\}) \cup \{w\}$. Necessarilly D' is a \mathcal{P} -dominating set of G with $|D'| = \gamma_{\mathcal{P}}(G)$ and the set D' contains more vertices than the set D which are \mathcal{P} -adjacent to some vertices of D'. This contradicts our choice of D.

Now we shall establish some properties of \mathcal{P} -dominating, strongly \mathcal{P} -dominating, \mathcal{P} -independent and strongly \mathcal{P} -independent sets, and \mathcal{P} -irredudant sets.

Proposition 3. If $D \subseteq V(G)$ is a minimal strongly \mathcal{P} -dominating set in G, then D is \mathcal{P} -dominating in G.

Proposition 3 implies the following inequality.

For any graph G,

(1)
$$\gamma_{\mathcal{P}}(G) \le \gamma_{\mathcal{P}}'(G).$$

Proposition 4. Let G be a graph. If X is a maximal \mathcal{P} -independent set in G, then X is a minimal strongly \mathcal{P} -dominating set in G.

Proof. For each vertex $v \in V - X$ a subgraph $G[X \cup \{v\}]$ has no property \mathcal{P} . Hence, there exists an induced subgraph H' of $G, H' \simeq H, H \in C(\mathcal{P})$, such that $V(H') \cap X = V(H') - \{v\}$. It implies that X is the strongly \mathcal{P} -dominating set. Moreover, for each vertex $x \in X$ the set $X - \{x\}$ is not strongly \mathcal{P} -dominating. It follows from the fact that there is no induced subgraph $H' \simeq H \in C(\mathcal{P})$ containing the vertex x and $V(H') \subseteq X$. Thus, X is a minimal strongly \mathcal{P} -dominating set.

From Proposition 4, we obtain the following inequalities.

For any graph G,

(2)
$$\gamma_{\mathcal{P}}'(G) \le i_{\mathcal{P}}(G) \le \alpha_{\mathcal{P}}(G) \le \Gamma_{\mathcal{P}}'(G).$$

Proposition 5. Let G be a graph. If X is a maximal strongly \mathcal{P} -indepedent set, then X is a minimal \mathcal{P} -dominating set.

Proof. Let X be a maximal strongly \mathcal{P} -independent set in G. Suppose there exists a vertex $v \in V - X$ such that each induced subgraph H' of G such that $v \in V(H')$, $H' \simeq H \in C(\mathcal{P})$ has no common vertices with the set X,

thus $X \cup \{v\}$ is strongly \mathcal{P} -independent, a contradiction. Hence, for each vertex $v \in V - X$ there is $H' \leq G, H' \simeq H, v \in V(H'), H \in \mathbf{C}(\mathcal{P})$ such that $N_{\mathcal{P}}(v) \cap X \neq \emptyset$. Hence, X is \mathcal{P} -dominating. Moreover, by the definition of a strongly \mathcal{P} -independent set, for each $x \in X, N_{\mathcal{P}}(x) \cap (X - \{x\}) = \emptyset$, thus, X is a minimal \mathcal{P} -dominating set in G.

Proposition 5 implies the following property.

For any graph G,

(3)
$$\gamma_{\mathcal{P}}(G) \le i'_{\mathcal{P}}(G) \le \alpha'_{\mathcal{P}}(G) \le \Gamma_{\mathcal{P}}(G).$$

Proposition 6. Let G be a graph without \mathcal{P} -isolated vertices. If S is a maximal strongly \mathcal{P} -independent set in G, then V-S is strongly \mathcal{P} -dominating.

Proof. By the definition of the strongly \mathcal{P} -independet set, for each vertex $v \in S$ there is a subgraph $H', H' \leq G$ such that $v \in V(H'), H' \simeq H \in \mathbf{C}(\mathcal{P})$ and $V(H') \cap (V - S) = V(H') - \{v\}$.

Therefore, we obtain.

Let G be a graph without \mathcal{P} -isolated vertices. Then

(4)
$$\gamma_{\mathcal{P}}'(G) \le |V(G)| - i_{\mathcal{P}}'(G).$$

Proposition 7. Let G be a graph. If D is a minimal \mathcal{P} -dominating set, then D is maximal \mathcal{P} -irredundant.

Proof. Let D be a minimal \mathcal{P} -dominating. By Theorem 1, every vertex $d \in D$ has one of the properties (i) or (ii).

Assume d has the property (i). Thus there exists vertex $v \in V - D$ such that $N_{\mathcal{P}}(v) \cap D = \{d\}$, then $v \in N_{\mathcal{P}}[d]$ and $v \notin N_{\mathcal{P}}[D - \{d\}]$. It implies that $v \in (N_{\mathcal{P}}[d] - N_{\mathcal{P}}[D - \{d\}])$.

Suppose that d has the property (ii) and d has no property (i). Therefore, $d \notin N_{\mathcal{P}}[D - \{d\}]$ and $d \in (N_{\mathcal{P}}[d] - N_{\mathcal{P}}[D - \{d\}])$. Thus, D is an irredundant set in G. Moreover, $N_{\mathcal{P}}(D) = V(G)$ and hence for each $v \in V - D$, the set $D \cup \{v\}$ is not \mathcal{P} -irredundant. Hence, D is a maximal \mathcal{P} -irredundant set.

From this theorem we have.

For any graph G,

(5)
$$ir_{\mathcal{P}}(G) \le \gamma_{\mathcal{P}}(G) \le \Gamma_{\mathcal{P}}(G) \le IR_{\mathcal{P}}(G).$$

Theorem 8. For any graph G we have the following inequalities:

- (6) $ir_{\mathcal{P}}(G) \le \gamma_{\mathcal{P}}(G) \le i'_{\mathcal{P}}(G) \le \alpha'_{\mathcal{P}}(G) \le \Gamma_{\mathcal{P}}(G) \le IR_{\mathcal{P}}(G).$
- (7) $ir_{\mathcal{P}}(G) \le \gamma_{\mathcal{P}}(G) \le \gamma'_{\mathcal{P}}(G) \le i_{\mathcal{P}}(G) \le \alpha_{\mathcal{P}}(G) \le \Gamma'_{\mathcal{P}}(G).$

Proof. (6) is obtained from (3) and (5) and (7) from (1), (2), (5).

Remark 1. Notice that the inequalities (6) are generalizations of results of Cokayne and Hedetniemi [3].

Remark 2. We know that some of the inequalities are strict for some properties and some graphs.

References

- [1] M. Borowiecki and P. Mihók, *Hereditary Properties of Graphs*, in: Advances in Graph Theory (Vishwa Inter. Publications, 1991) 41–68.
- [2] E.J. Cockayne and S.T. Hedetniemi, *Independence graphs*, in: Proc. 5th Southeast Conf. Combinatorics, Graph Theory and Computing, Utilitas Mathematica (Winnepeg, 1974) 471–491.
- [3] E.J. Cockayne, S.T. Hedetniemi and D.J. Miller, *Properties of hereditary hypergraphs and middle graphs*, Canad. Math. Bull. **21** (1978) 461–468.
- [4] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completness (W.H. Freeman, San Francisco, CA, 1979).
- [5] M.A. Henning and H.C. Swart, Bounds on a generalized domination parameter, Quaestiones Math. 13 (1990) 237–253.
- [6] O. Ore, Theory of Graphs (Amer. Math. Soc. Colloq. Publ. 38, Providence, R. I., 1962).

Received 26 February 1997 Revised 3 April 1997