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Abstract

Gallai and Roy proved that a graph is k-colorable if and only if it
has an orientation without directed paths of length k. We initiate the
study of analogous characterizations for the existence of generalized
graph colorings, where each color class induces a subgraph satisfying a
given (hereditary) property. It is shown that a graph is partitionable
into at most k independent sets and one induced matching if and only
if it admits an orientation containing no subdigraph from a family of
k + 3 directed graphs.
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1. Introduction

In the late 1960s, Gallai [4] and Roy [7] proved that a graph is k-colorable
(i.e., its vertex set can be partitioned into at most k independent sets) if
and only if it admits an orientation of the edges such that every directed
path has length at most k− 1. A characterization of similar flavor, in terms
of avoidable types of orientations on cycles, was given by Minty [6]. As a
common extension of those two classic results, the second author [8] proved
that a graph is k-colorable (k ≥ 2) if and only if it has an orientation such
that, for all ` ≡ 1 (mod k), ` ≥ 3, every cycle of length ` contains more than
`/k oriented edges in each direction. For the chromatic sum (sometimes also
called the color cost), a characterization with weights of directed paths was
found by Caro [3], and his result was extended in [9] for a general coloring
concept that includes, as particular cases, both the chromatic number and
the chromatic sum.

Motivated by those results, the following problem is raised among vari-
ous questions in Section 3 of [9] :

Problem 1 [9]. Let k be a positive integer. For which properties P does
there exist a finite family A(P, k) of directed graphs such that a graph can
be (vertex) partitioned into at most k induced subgraphs of property P if and
only if it admits an orientation containing no subdigraph isomorphic to any
~A ∈ A(P, k)?

More generally, we can put the analogous question where the combination
of several properties is considered. Let P1, . . . ,Pk be graph properties such
that each Pi is hereditary (if G ∈ Pi and G′ ⊂ G, then G′ ∈ Pi also holds)
and additive (G ∈ Pi if and only if each connected component of G has
property Pi). A vertex partition V1 ∪ · · · ∪ Vk = V of G = (V,E) will
be called a (P1, . . . ,Pk)-coloring if the subgraph G[Vi] of G induced by Vi

satisfies property Pi, for all 1 ≤ i ≤ k. If such a partition exists, G is caled
(P1, . . . ,Pk)-colorable. This will also be written as G ∈ P1

◦ . . . ◦ Pk; and if
P1 = . . . = Pk = P, then the shorthand Pk will be applied for P1

◦ . . . ◦ Pk.
A systematic study of hereditary and additive properties has been ini-

tiated by Mihók [5]. For an extensive account on the literature, we refer to
the recent survey [1].

For colorings with respect to non-identical properties, we now raise the
following generalization of Problem 1.
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Problem 2. For which properties P1, . . . ,Pk does there exist a finite family
A = A(P1, . . . ,Pk) of directed graphs such that a graph has a (P1, . . . ,Pk)-
coloring if and only if it admits an orientation containing no subdigraph
isomorphic to any ~A ∈ A?

For short, let us call a graph G A-orientable if admits an A-avoiding ori-
entation; i.e., an orientation without any subdigraph ~A ∈ A.

The aim of this paper is to make the first modest step towards the
solution of Problem 2, investigating the following two properties :

O := the graph has no edges,
O1 := the graph has maximum degree 1.

Hence, O1 means that the graph consists of isolated edges and isolated
vertices; and, with the notation introduced above, G ∈ Ok is equivalent to
saying that the chromatic number of G is at most k.

The main result of this paper, Theorem 1, is a necessary and sufficient
condition for the (Ok ◦O1)-colorability of graphs. This characterization is
formulated in the next section (where another — formally weaker but still
equivalent — condition is also given), and will be proved in Section 3. Some
related conjectures are presented in the concluding section.

2. Avoidable Oriented Subgraphs

In this section we describe the necessary and sufficient conditions for G ∈
Ok ◦O1.

Consider the following collection Ak = { ~A0, ~A1, . . . , ~Ak+2} of k + 3 di-
graphs :

• ~A0 is the directed path ~Pk+3 of length k + 2,
• for 1 ≤ i ≤ k + 1, the digraph ~Ai is obtained from two directed paths

v1v2 · · · vk+2 and v′1v′2 · · · v′k+2 by identifying vj with v′j for all 1 ≤ j < i
and j = k + 2,

• ~Ak+2 is the directed path v1v2 · · · vk+1 with two pendant vertices vk+2

and v′k+2, both dominated by vk+1.

The digraph ~Ak+2 may be veiwed as a construction similar to the graphs
~A1, . . . , ~Ak+1, obtained by the identification of vj and v′j for all j < i = k+2,
with the only difference that vk+2 and v′k+2 are not identified in ~Ak+2. The
family A2 is exhibited in Figure 1.
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Figure 1. The family A2; avoidable subdigraphs for O ◦O ◦O1, orienting all edges
downwards.

In the next section we shall prove the following result.

Theorem 1. A graph is (Ok ◦O1)-colorable if and only if it has an orien-
tation containing no subdigraph ~A ∈ Ak.

A similar but more restrictive and easier-to-prove necessary and sufficient
condition can be obtained by considering the acyclic orientations only.

Proposition 1. A graph is (Ok ◦O1)-colorable if and only if it has an
acyclic orientation containing no subdigraph ~A ∈ Ak.

Proof of ‘if ’. The case of k = 0 (i.e., O1-colorability) is obvious, because
excluding A0 (two adjacent edges with all the three possible orientations)
yields a graph of maximum degree 1, even without the exclusion of directed
circuits.

Let k > 0, and consider any graph G = (V, E) with an Ak-avoiding
acyclic orientation ~G. For i = 1, . . . , k we select the sets Vi recursively as
follows. Setting V ′

0 := V , and assuming that V ′
i−1 has already been defined

(for some i < k), let Vi ⊆ V ′
i−1 be the set of those vertices which have in-

degree 0 in the induced subgraph ~G[V ′
i−1]. At the end, we define Vk+1 := V ′

k.
Note that V ′

i−1 6= ∅ implies Vi 6= ∅, because ~G is acyclic.
It is clear by definition that Vi is an independent set for all 1 ≤ i ≤ k.

Moreover, each v ∈ V ′
i of degree 0 in ~G[V ′

i ], 1 < i ≤ k+1 (and, in particular,
each v ∈ Vi for 1 < i ≤ k), is dominated by some v′ ∈ Vi−1, because v has
positive in-degree in ~G[V ′

i−1].
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We have to prove that ~G[Vk+1] ∈ O1. Suppose on the contrary that Vk+1

induces at least two adjacent edges, say a subgraph ~A0 ∈ A0 occurs. We
can assume, without loss of generality, that the one or two vertices vk+1 of
in-degree 0 in ~A0 have in-degree 0 also in ~G[Vk+1]. (If this property is not
valid in the ~A0 chosen originally, then ~G[Vk+1] always contains a suitable
path of length 2.) By the observations above, for this (or, each of these two)
vk+1, we can choose a dominating vertex vk ∈ Vk, then a vertex vk−1 ∈ Vk−1

dominating vk, and so on, until the sequence of vertices vi ∈ Vi is chosen for
all 1 ≤ i ≤ k. After all, we obtain a subdigraph of ~G isomorphic to some
~A ∈ Ak, contradicting the assumption that the orientation is Ak-avoiding.
Consequently, G is indeed (Ok ◦O1)-colorable.

The argument for the converse assertion (‘ only if ’) is identical to the one
given for Theorem 1 in the next section.

Since the long directed paths are avoidable in either case, the acyclic
characterization can be interpreted as one in terms of the avoidable family
A′k = Ak ∪ {~Ci | 3 ≤ i ≤ k + 3}, where ~Ci denotes the directed circuit of
length i. In this way the condition of acyclicity is eliminated.

3. Proof for Unrestricted Orientations

In this section we prove Theorem 1.

Proof of avoidability. Suppose that V1∪· · ·∪Vk+1 = V is an (Ok ◦O1)-
coloring of the graph G = (V, E), where the sets V1, . . . , Vk are independent
and Vk+1 induces a subgraph of maximum degree 1. For 1 ≤ i < j ≤ k + 1,
orient all edges joining Vi and Vj from the former to the latter; and, inside
Vk+1, orient the edges arbitrarily. Denote by ~G the digraph obtained.

To see that this orientation is A-avoiding, observe that in every directed
path P , the set V ′ := V1 ∪ · · · ∪ Vk meets P in a (possibly empty) subpath
which is an initial segment of P , and V ′ and P share at most k vertices. As
G[Vk+1] contains no pair of consecutive edges, this implies ~A0 6⊂ ~G.

Suppose next, for a contradiction, that ~A` ⊂ ~G for some 1 ≤ ` ≤ k + 2.
Since all edges are oriented from the partition classes Vi to Vj with a larger
subscript, it follows that vi+1, vi+2, v

′
i+1, v

′
i+2 ∈ Vi+1. But just one pair of

those four vertices has been identified in ~A`, implying that G[Vk+1] contains
a vertex of in-degree at least 2 (for ` ∈ {1, . . . , k + 1}) or out-degree at
least 2 (for ` = k + 2). This contradiction proves that ~G is an A-avoiding
orientation of G.



142 J. Szigeti and Zs. Tuza

It is immediately seen that the orientation defined above is acyclic, therefore
the ‘ only if ’ part of Proposition 1 has been proved as well.

Proof of colorability. Suppose that ~G is an A-avoiding orientation of
the graph G = (V, E). We define a vertex partition V1 ∪ · · · ∪ Vk+1 in the
following way. First, consider all those oriented subforests ~T ⊆ ~G (i.e., the
subdigraphs whose edges form an acyclic subgraph T in G) in which every
vertex has in-degree at most 1. In each such ~T , for every vertex v ∈ V ,
denote by hT (v) the maximum number of vertices in a subpath of ~T that
ends in v. (Actually, there is just one longest path ending in v, by the
in-degree condition.) Assume ~T has been chosen such that

H0 :=
∑

v∈V

hT (v)

is as large as possible. Define now

v ∈ Vi ⇐⇒
{

1 ≤ i ≤ k ∧ hT (v) = i,

i = k + 1 ∧ hT (v) > k.

We are going to show that this partition is an (Ok ◦O1)-coloring of G.
First, we prove that Vi is independent for all 1 ≤ i ≤ k. Suppose on

the contrary that hT (v) = hT (v′) ≤ k for some vv′ ∈ E, and let the edge
vv′ be oriented from v to v′ in ~G. If v′ has in-degree 0 in ~T , then we
add vv′ to ~T . We claim that ~T ∪ vv′ remains acyclic in G. Indeed, let
P = v0v1 · · · vp ⊂ T , v0 = v′, vp = v, be any undirected path. Since its
first edge is oriented towards v1, and ~T satisfies the in-degree condition, it
follows by induction that P is in fact a directed path in ~T . This would imply
hT (v) = hT (v′)− p < hT (v′), however, contradicting our assumption. Thus,
the edge vv′ may be added to ~T without violating the conditions; but then
the value of hT (v′), and thus also of H0, is increased, a contradiction to the
choice of ~T .

On the other hand, if v′ has in-degree 1 in ~T , then let v′′ be the unique
predecessor of v. We replace the edge v′′v′ by vv′ in ~T . This transformation
respects the in-degree condition, moreover it increases the value of hT (w)
by 1 for every w to which there is a directed path from v′ in ~T (including v′

itself as well), because the first hT (v′)−1 vertices of the longest path ending
in w are replaced by the hT (v) = hT (v′) vertices of the longest path ending
in v. Hence, a contradiction to the maximality of H0 is obtained, implying
that Vi is independent for all i ≤ k.
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Consider now the subgraph G′ induced by V ′ := Vk+1. Suppose, for a
contradiction, that G′ /∈ O1; i.e., there exist three vertices v, v′, v′′ ∈ V ′

such that one of the following cases holds :
1. vv′, v′v′′ ∈ E(~G)
2. vv′, vv′′ ∈ E(~G),
3. v′v, v′′v ∈ E(~G).

In the first two cases we may assume, without loss of generality, that hT (v) =
k + 1; i.e., the predecessor of v in ~T belongs to Vk. Then v is the endpoint
of a directed path P of length k, all of whose vertices different from v are
contained in V1∪· · ·∪Vk. This P together with the corresponding two edges
listed above would yield ~A0 (in Case 1) or ~Ak+2 (in Case 2).

On the other hand, in Case 3, the predecessors of v′ and v′′ can be
supposed to belong to Vk, otherwise Vk+1 contains a directed path of length
2 and we are back to Case 1. Thus, there exist directed paths P ′ and P ′′

of length k that end in v′ and v′′, respectively, with all their vertices but v′

and v′′ being in V1∪ · · · ∪Vk. Consider the subgraph ~A formed by the union
of P ′, P ′′, the vertex v, and the two edges v′v and v′′v. If P ′ and P ′′ are
vertex disjoint, then ~A ∼= ~A1; and if they share a vertex, say i is the largest
subscript such that P ′ and P ′′ meet in Vi (1 ≤ i ≤ k), then ~A contains a
subdigraph isomorphic to ~Ai+1 ∈ Ak. This final contradiction completes the
proof of Theorem 1.

4. Concluding Remarks and Open Problems

Concerning the characterization of generalized colorability in terms of fi-
nite families of avoidable digraphs, several natural questions arise. The one
related most closely to the above results seems to be :

Problem 3. Find a characterization for the property Ok ◦O`
1 in terms of

a finite set of avoidable digraphs, for k ≥ 0, ` ≥ 2.

We can show that O2
1 does have such a characterization, but we do not

include it here because our avoidable family contains more than 20 digraphs,
and perhaps there exists a more elegant description, also in the general case.

The comparison of Theorem 1 and Proposition 1 leads to the question
whether there are properties P for which the unrestricted orientations be-
have differently from the acyclic ones; i.e., every avoidable family character-
izing P is infinite, but there is a finite family A such that G ∈ P if and only
if G admits an orientation containing no subdigraph ~A ∈ A ∪ {~Ci i ∈ IN}.



144 J. Szigeti and Zs. Tuza

In the paper [10] it is shown that this is indeed the case : several graph
classes demonstrate that a rather small avoidable family suffices for acyclic
orientations, while the unrestricted case requires infinite avoidable families.

Generalizing the ‘ existence ’ aspect of Problem 3 concerning finite char-
acterizations for the products of O and O1, we raise

Conjecture 1. If both P and Q are characterizable by finite avoidable fam-
ilies, then so is P ◦Q as well.

The particular case P = Q in this conjecture would also be of interest to
settle.

Finally we note that, for any fixed family A of digraphs, the class of
A-orientable graphs is hereditary and additive. That is, if a graph G admits
an A-avoiding orientation, then so does every G′ ⊂ G, and its connected
components are A-orientable if and only if so is the entire G. This simple
remark motivates the following problem.

Conjecture 2. If a family A(P1, . . . ,Pk) satisfying the requirements of
Problem 2 exists, then Pi is hereditary and additive, for all 1 ≤ i ≤ k.

The validity of this conjecture would be implied immediately by an affir-
mative answer to the following more general problem, raised first by Mihók
and later independently by the second author.

Problem 4. Let P1, . . . ,Pk be graph properties such that P1
◦ . . . ◦ Pk is

additive and hereditary. Is then Pi additive and hereditary for all 1 ≤ i ≤ k.

Clearly, if the answer is affirmative for k = 2, then the same holds for all k
as well, by induction. The following related result has been proved by Bucko
et al. [2] : for the so-called degenerate properties P (i.e., those for which
there exist bipartite graphs not satisfying P), the additivity of a property
Q follows whenever both P and P ◦Q are additive.
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