Discussiones Mathematicae Graph Theory 17(1997) 127–132

ON GENERALIZED LIST COLOURINGS OF GRAPHS

MIECZYSŁAW BOROWIECKI

Institute of Mathematics Technical University of Zielona Góra Podgórna 50, 65–246 Zielona Góra, Poland **e-mail:** m.borowiecki@im.pz.zgora.pl

IZAK BROERE

Department of Mathematics Rand Afrikaans University P.O. Box 524, Auckland Park, 2006 South Africa e-mail: ib@rau3.rau.ac.za

AND

Peter Mihók

Mathematical Institute of Slovak Academy of Sciences Grešákova 6, 040 01 Košice, Slovakia e-mail: mihok@kosice.upjs.sk

Abstract

Vizing [15] and Erdös et al. [8] independently introduce the idea of considering list-colouring and k-choosability. In the both papers the choosability version of Brooks' theorem [4] was proved but the choosability version of Gallai's theorem [9] was proved independently by Thomassen [14] and by Kostochka et al. [11]. In [3] some extensions of these two basic theorems to (\mathcal{P}, k) -choosability have been proved.

In this paper we prove some extensions of the well-known bounds for the \mathcal{P} -chromatic number to the (\mathcal{P}, k) -choice number and then an extension of Brooks' theorem.

Keywords: hereditary property of graphs, list colouring, vertex partition number.

1991 Mathematics Subject Classification: 05C15, 05C70.

1. INTRODUCTION AND NOTATION

All graphs considered in this paper are simple, i.e., finite, undirected, loopless and without multiple edges. The notation $(H \leq G) H \subseteq G$ means that *H* is (an induced) subgraph of *G*. We say that *G* contains *H* whenever *G* contains (an induced) subgraph isomorphic to *H*.

For undefined concepts we refer the reader to [6, 10].

We denote by \mathcal{I} the class of all finite simple graphs. A graph property is a nonempty isomorphism-closed subclass of \mathcal{I} . (We also say that a graph has the property \mathcal{P} if $G \in \mathcal{P}$.) A property \mathcal{P} of graphs is called (*induced*) hereditary if it is closed under (induced) subgraphs, i.e., if $(H \leq G) H \subseteq G$ and $G \in \mathcal{P}$ imply $H \in \mathcal{P}$. A property \mathcal{P} is called *additive* if it is closed under disjoint unions of graphs, i.e., if every graph has the property \mathcal{P} provided all of its connected components have this property.

Many known properties of graphs are both hereditary and additive. According to [1], [2] we list some of them to introduce the necessary notions which will be used in the paper.

In what follows it is convenient to work with an arbitrary nonnegative integer k.

- $\mathcal{O} = \{ G \in \mathcal{I} : G \text{ is edgeless, i.e., } E(G) = \emptyset \},\$
- $\mathcal{D}_k = \{ G \in \mathcal{I} : G \text{ is } k \text{-degenerate, i.e., the minimum degree } \delta(H) \le k \text{ for each } H \subseteq G \},$
- $\mathcal{T}_{k} = \{ G \in \mathcal{I} : G \text{ contains no subgraph homeomorphic to } K_{k+2} \\ \text{ or } K_{\lfloor \frac{k+3}{2} \rfloor, \lceil \frac{k+3}{2} \rceil} \},$

$$\mathcal{SP} = \{G \in \mathcal{I} : G \text{ contains no subgraph homeomorphic to } K_4 \}$$

We have $\mathcal{D}_1 = \mathcal{T}_1$ to be the class of all forests, \mathcal{T}_2 and \mathcal{T}_3 the class of all outerplanar and all planar graphs, respectively and $S\mathcal{P}$ the class of all series-parallel graphs.

Let us denote by (\mathbb{M}) , \mathbb{L} and (\mathbb{M}^a) , \mathbb{L}^a the set of all (induced) hereditary and additive (induced) hereditary properties, respectively. It can be proved that (\mathbb{L}, \subseteq) is a proper sublattice of (\mathbb{M}, \subseteq) . For more details, see [1].

A hereditary property $\mathcal{P} \in \mathbb{M}$ is said to be nontrivial if $\mathcal{P} \neq \mathcal{I}$. Let $\delta(\mathcal{P}) = \min\{\delta(H) : H \in \mathcal{C}(\mathcal{P})\}$, where $\mathcal{C}(\mathcal{P}) = \{H \in \mathcal{I} : H \notin \mathcal{P} \text{ but } (H-v) \in \mathcal{P} \text{ for any } v \in V(H)\}.$

A \mathcal{P} -partition (colouring) of a graph G is a partition (V_1, \ldots, V_n) of V(G) such that the subgraph $G[V_i]$ induced by the set V_i has the property \mathcal{P} for

each i = 1, ..., n. If $(V_1, ..., V_n)$ is a \mathcal{P} -partition of a graph G, then the corresponding vertex colouring f is defined by f(v) = i whenever $v \in V_i$, for i = 1, ..., n. The smallest integer n for which G has a \mathcal{P} -partition is called the \mathcal{P} -chromatic (or \mathcal{P} -vertex-partition) number of G and is denoted by $\chi_{\mathcal{P}}(G)$. The \mathcal{O} -chromatic number is the ordinary chromatic number. See [1], [2] for a survey and more details.

Let G be a graph and let L(v) be a list of colours (say, positive integers) prescribed for the vertex v, and $\mathcal{P} \in \mathbb{M}$. A (\mathcal{P}, L) -colouring is a graph \mathcal{P} -colouring f(v) with the additional requirement that for all $v \in V(G)$, $f(v) \in$ L(v). If G admits a (\mathcal{P}, L) -colouring, then G is said to be (\mathcal{P}, L) -colourable. The graph G is (\mathcal{P}, k) -choosable if it is (\mathcal{P}, L) -colourable for every list assignment L of G satisfying |L(v)| = k for every $v \in V(G)$. The \mathcal{P} -choice number $ch_{\mathcal{P}}(G)$ is the smallest natural number k such that G is (\mathcal{P}, k) -choosable.

For a nontrivial property $\mathcal{P} \in \mathbb{M}$ a graph G is said to be (\mathcal{P}, L) -critical if G has no (\mathcal{P}, L) -colouring but G - v is (\mathcal{P}, L) -colourable for all $v \in V(G)$. A graph G is said to be (vertex) (\mathcal{P}, k) -choice critical if $ch_{\mathcal{P}}(G) = k \geq 2$ but $ch_{\mathcal{P}}(G - v) < k$ for all vertices v of G. According to the previous definitions, it follows immediately that if G is $(\mathcal{P}, k+1)$ -choice critical, then G is (\mathcal{P}, L) critical for some list assignment with |L(v)| = k for all $v \in V(G)$.

The idea of considering (\mathcal{O}, L) -colouring and (\mathcal{O}, k) -choosability has been introduced independently by Vizing [15] and Erdös, Rubin and Taylor [8]. In both papers the choosability version of Brooks' theorem [4] was proved. The choosability version of Gallai's theorem [9] was proved independently by Thomassen [14] and by Kostochka et al. [11]. In [3] some extensions of these two basic theorems to (\mathcal{P}, k) -choosability, have been proved.

The aim of this paper is to prove some extensions of the well-known bounds for the \mathcal{P} -chromatic number [2], [3], [4] to the (\mathcal{P}, k) -choice number and an extension of Brooks' theorem for this number.

2. Results

Let us recall two results which we will use later.

Lemma 1 [3]. Let $\mathcal{P} \in \mathbb{M}$ and G be (\mathcal{P}, L) critical. Then $d_G(v) \geq \delta(\mathcal{P}) \mid L(v) \mid for any vertex v of G.$

Theorem 1 [3]. Let $\mathcal{P} \in \mathbb{M}^a$ and G be a connected graph other than

- (i) a complete graph of order $n\delta(\mathcal{P}) + 1, n \ge 0$,
- (ii) a $\delta(\mathcal{P})$ -regular graph belonging to $\mathcal{C}(\mathcal{P})$,
- (iii) an odd cycle if $\mathcal{P} = \mathcal{O}$.

Then

$$\operatorname{ch}_{\mathcal{P}}(G) \leq \left\lceil \frac{\Delta(G)}{\delta(\mathcal{P})} \right\rceil.$$

Theorem 2. Let $\mathcal{P} \in \mathbb{M}, \delta(\mathcal{P}) \geq 1$, and let f be a real valued function on graphs $G \in \mathcal{I}$ with properties

(a) $f(H) \leq f(G)$, for any induced subgraph H of G,

(b) $f(G) \ge \delta(G)$, for each graph.

Then

$$\operatorname{ch}_{\mathcal{P}}(G) \leq \left\lfloor \frac{f(G)}{\delta(\mathcal{P})} \right\rfloor + 1.$$

Proof. Obviously, the theorem holds for G with $ch_{\mathcal{P}}(G) = 1$. Let $ch_{\mathcal{P}}(G) = t + 1 \ge 2$, and let H be a $(\mathcal{P}, t + 1)$ -choice critical induced subgraph of G. Thus there exists a list assignment with |L(v)| = t for all $v \in V(G)$ and H is (\mathcal{P}, L) -critical. Lemma 1 implies $\delta(H) \ge t\delta(\mathcal{P})$, and (a) yields that $f(H) \le f(G)$. Thus, by (b) we have $t\delta(\mathcal{P}) \le \delta(H) \le f(H) \le f(G)$. Hence,

$$\operatorname{ch}_{\mathcal{P}}(G) = t + 1 \le \left\lfloor \frac{f(G)}{\delta(\mathcal{P})} \right\rfloor + 1.$$

Corollary 1. Let $\rho(G) = \max{\{\delta(H): H \leq G\}}$. Then

$$\operatorname{ch}_{\mathcal{P}}(G) \leq \left\lfloor \frac{\rho(G)}{\delta(\mathcal{P})} \right\rfloor + 1.$$

Proof. It easy to see that $\rho(G)$ satisfies (a) and (b) of the above theorem.

Corollary 2. Let $\mathcal{P} = \mathcal{D}_r$ and $G \in \mathcal{D}_k$, $r \leq k$. Then

$$\operatorname{ch}_{\mathcal{P}}(G) \le \left\lfloor \frac{k}{r+1} \right\rfloor + 1.$$

Proof. The statement follows by the previous corollary because $\rho(G) \leq k$ for every k-degenerate graph G and $\delta(\mathcal{D}_r) = r + 1$.

Corollary 3. Let $G \in \mathcal{T}_3$. Then $ch_{\mathcal{D}_1}(G) \leq 3$.

Proof. The statement follows by the previous corollary because any planar graph is 5-degenerate.

Corollary 3 implies the well-known result of Chartrand and Kronk [5]: *The vertex-arboricity of any planar graph is at most* 3.

Similarly as above, we have a corresponding result for series-parallel and outerplanar graphs which are 2-degenerate. This Corollary implies Dirac's [7] result: $SP \subset D_1^2$.

130

ON GENERALIZED LIST COLOURINGS OF GRAPHS

Corollary 4. Let $G \in SP$. Then $ch_{\mathcal{D}_1}(G) \leq 2$.

In [12] Mihók obtained an extension of Brooks' theorem. From the previous results and the following Mihók's lemma we derive a choosability version of his result.

Lemma 2 [12]. Let G be a connected graph with $\delta(G) \ge k \ge 1$, other than K_{k+1} . Then G contains as a subgraph every tree on k+2 vertices, except for $T = K_{1,k+1}$ if G is k-regular.

Theorem 3. Let $\mathcal{P} \in \mathbb{L}^a$ with $\delta(\mathcal{P}) \geq 1$. If a connected graph G does not contain a given tree T on k + 2 vertices, $k \geq 3$, as a subgraph, then G is $(\mathcal{P}, \lceil k/\delta(\mathcal{P}) \rceil)$ -choosable unless $G = K_{k+1}$.

Proof. Assume that G is a connected graph $\neq K_{k+1}$ and G does not contain a given tree T on k+2 vertices. If $T = K_{1,k+1}$, then by Theorem 1, G is $(\mathcal{P}, \lceil k/\delta(\mathcal{P}) \rceil)$ -choosable. If $T \neq K_{1,k+1}$, then by Lemma 2, G must be (k-1)-degenerate, otherwise G contains T. Thus by Corollary 1, G is $(\mathcal{P}, \lceil k/\delta(\mathcal{P}) \rceil)$ -choosable, too.

References

- M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discussiones Mathematicae Graph Theory 17 (1997) 5–50.
- [2] M. Borowiecki and P. Mihók, *Hereditary Properties of Graphs*, in: Advances in Graph Theory (Vishwa International Publications, 1991) 41–68.
- [3] M. Borowiecki, E. Drgas-Burchardt, *Generalized list colourings of graphs*, Discussiones Math. Graph Theory 15 (1995) 185–193.
- [4] R.L. Brooks, On colouring the nodes of a network, Proc. Cambridge Phil. Soc. 37 (1941) 194–197.
- [5] G. Chartrand and H.H. Kronk, The point arboricity of planar graphs, J. London Math. Soc. 44 (1969) 612–616.
- [6] G. Chartrand and L. Lesniak, Graphs and Digraphs, Second Edition, (Wadsworth & Brooks/Cole, Monterey, 1986).
- [7] G. Dirac, A property of 4-chromatic graphs and remarks on critical graphs, J. London Math. Soc. 27 (1952) 85–92.

- [8] P. Erdös, A.L. Rubin and H. Taylor, *Choosability in graphs*, in: Proc. West Coast Conf. on Combin., Graph Theory and Computing, Congressus Numerantium XXVI (1979) 125–157.
- [9] T. Gallai, Kritiche Graphen I, Publ. Math. Inst. Hung. Acad. Sci. 8 (1963) 373–395.
- [10] T.R. Jensen and B. Toft, Graph Colouring Problems, (Wiley-Interscience Publications, New York, 1995).
- [11] A.V. Kostochka, M. Stiebitz and B. Wirth, The colour theorems of Brooks and Gallai extended, Discrete Math. 162 (1996) 299–303.
- [12] P. Mihók, An extension of Brooks' theorem, in: Proc. Fourth Czechoslovak Symp. on Combin., Combinatorics, Graphs, Complexity (Prague, 1991) 235–236.
- [13] S.K. Stein, B-sets and planar graphs, Pacific J. Math. 37 (1971) 217–224.
- [14] C. Thomassen, Color-critical graphs on a fixed surface (Report, Technical University of Denmark, Lyngby, 1995).
- [15] V.G. Vizing, Colouring the vertices of a graph in prescribed colours, Diskret. Analiz 29 (1976) 3–10 (in Russian).

Received 25 January 1997