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Abstract

Let P1, . . . ,Pn be properties of graphs. A (P1, . . . ,Pn)-partition of
a graph G is a partition {V1, . . . , Vn} of V (G) such that, for each i =
1, . . . , n, the subgraph of G induced by Vi has property Pi. If a graph G
has a unique (P1, . . . ,Pn)-partition we say it is uniquely (P1, . . . ,Pn)-
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1. Introduction and Notation

All graphs considered in this paper are finite, undirected, loopless and with-
out multiple edges. For undefined concepts we refer the reader to [5] and [2].

We denote the set of all mutually non-isomorphic graphs by I. If P is
a non-empty proper subset of I, then P will also denote the property that
a graph is a member of the set P. We shall use the terms set of graphs and
property of graphs interchangeably.

A property P is called additive if for each graph G all of whose compo-
nents have property P it follows that G ∈ P too. A property P is hereditary
whenever it is closed with respect to the relation ⊆ to be a subgraph.

In the sequel we shall concentrate on the following concrete hereditary
properties (we used the notation of [2, 9]):

O = {G ∈ I : G is totally disconnected},
Ok = {G ∈ I : each component of G has at most k + 1 vertices},
Sk = {G ∈ I : ∆(G) ≤ k},
Qk = {G ∈ I : the length of the longest path in G does not exceed k},
Dk = {G ∈ I : G is k-degenerate},
Ik = {G ∈ I : G does not contain Kk+2}.

Let P be a hereditary property, P 6= I. Then there is a nonnegative integer
c(P) such that Kc(P)+1 ∈ P but Kc(P)+2 /∈ P, called the completeness of P.
Obviously

c(Ok) = c(Sk) = c(Qk) = c(Dk) = c(Ik) = k

and c(P) = 0 if and only if P = O.
It is easy to verify that Ok ⊆ Sk ⊆ Dk ⊆ Ik and Ok ⊆ Qk ⊆ Dk.
If P ⊆ I is a hereditary property, we define the set of minimal forbidden

subgraphs of P as follows:

F (P) = {G ∈ I : G /∈ P but each proper subgraph of G belongs to P}.
Lemma 1.1. Let P be a hereditary property. Then G ∈ P if and only if no
subgraph of G is in F (P).

Thus any hereditary property is uniquely determined by its set of minimal
forbidden subgraphs.

An alternative way is to characterize P by the set of graphs containing
all the graphs in P as subgraphs. To be more accurate, let us define the set
of P-maximal graphs by
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M(P) = {G ∈ P : G + e /∈ P for each e ∈ E(G)}
and the set of P-maximal graphs of order n by

M(n,P) = {G ∈ P : |V (G)| = n and G + e /∈ P for each e ∈ E(G)}.

We say that a graph G is the join of n graphs G1, . . . , Gn and write G =
G1 + · · ·+ Gn if

V (G) =
n⋃

i=1

V (Gi) and

E(G) = {xy : xy ∈ E(Gi) for some i or x ∈ V (Gi) and y ∈ V (Gj); i 6= j}.

If a graph G is a join of non-empty graphs, we say that G is decomposable;
otherwise, G is indecomposable.

If P is a hereditary property then, clearly, the only P-maximal graphs
of order less than c(P)+2 are complete graphs and thus they are decompos-
able or trivial. The next two results, concerning indecomposable nontrivial
P-maximal graphs of smallest possible order for certain properties P, are
proved in [4].

Proposition 1.2. If P is any additive, hereditary property with c(P) =
k ≥ 1 and F (P) contains some tree of order k+2, then the graph Kk+1∪K1

is an indecomposable P-maximal graph of order c(P) + 2.

Properties that satisfy the conditions of Proposition 1.2 are, for example,
Ok, Sk and Qk. However, F (Ik) contains no trees, and for Ik we have

Theorem 1.3. If G is an indecomposable nontrivial Ik-maximal graph, then
|V (G)| ≥ 2k + 3, with equality only if G = C2k+3.

Let n be a positive integer and let P1, . . . ,Pn be properties of graphs.
A (P1, . . . ,Pn)-partition of a graph G is a partition {V1, . . . , Vn} of V (G)
such that, for each i = 1, . . . , n, the induced subgraph G[Vi] has property Pi.

If P1 = · · · = Pn, we shall call a (P1, . . . ,Pn)-partition a (Pn)-partition.
The property R = P1◦ · · · ◦Pn is defined as the set of all graphs having

a (P1, . . . ,Pn)-partition. If P1 = · · · = Pn = P, we write R = Pn.
A graph G is said to be uniquely (P1, . . . ,Pn)-partitionable if and only

if G has a unique (P1, . . . ,Pn)-partition (permutation of partition sets
are allowed). Note that, if G is uniquely (P1, . . . ,Pn)-partitionable and
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{V1, . . . , Vn} is the unique (P1, . . . ,Pn)-partition of G, then Vi 6= ∅ for
i = 1, . . . , n. We denote the class of all uniquely (P1, . . . ,Pn)-partitionable
graphs by U(P1◦ · · · ◦Pn), and if P1 = · · · = Pn, we also write it as U(Pn)
(see [4, 7, 8]).

We shall show that, for certain properties, joins of indecomposable
maximal graphs yield uniquely partitionable graphs, and then we shall use
Proposition 1.2 and Theorem 1.3 to establish best lower bounds for the
order of uniquely (P1, . . . ,Pn)-partitionable graphs, for various properties
P1, . . . ,Pn.

2. Maximal Uniquely Partitionable Graphs

We say that G is a maximal uniquely (P1, . . . ,Pn)-partitionable graph if
G ∈ U(P1◦ · · · ◦Pn) but G + e /∈ P1◦ · · · ◦Pn for any e ∈ E(G)).

Proposition 2.1. If G is a maximal uniquely (P1, . . . ,Pn)-partitionable
graph, then

G=G1+· · ·+Gn where Gi ∈ M(Pi) and |V (Gi)| ≥ c(Pi)+1 for i = 1, . . . , n.

Proof. Let {V1, . . . , Vn} be the (P1, . . . ,Pn)-partition of G. Put Gi =
G[Vi] for i = 1, . . . , n. If a vertex x of Gi is non-adjacent to a vertex y
of Gj ; i 6= j, then {V1, . . . , Vn} is also a (P1, . . . ,Pn)-partition of G + xy,
and hence G + xy ∈ P1◦ · · · ◦Pn, contradicting the maximality of G. Thus
G = G1 + · · ·+ Gn. If Gi /∈ M(Pi) for some i, then there is an edge e in Gi

such that Gi + e ∈ Pi, and then G+ e ∈ P1◦ · · · ◦Pn, again contradicting the
maximality of G. If |V (Gi)| ≤ c(Pi), then another (P1, . . . ,Pn)-partition
of G can be obtained from {V1, . . . , Vn} by removing a vertex from any Vj ;
j 6= i, and adding it to Vi.

The converse of Proposition 2.1 is not true, i.e. if Gi ∈ M(Pi); i = 1, . . . , n
and |V (Gi)| ≤ c(Pi)+1, then G1+· · ·+Gn need not be uniquely (P1, . . . ,Pn)-
partitionable. However, we shall show that, if at least n − 1 of the graphs
Gi are indecomposable and the properties satisfy certain requirements, then
G1+· · ·+Gn is uniquely (P1, . . . ,Pn)-partitionable. First, we need a lemma.

Lemma 2.2. Let P be any hereditary property and suppose G is an inde-
composable P-maximal graph. If V1 and V2 are non-empty subsets of V (G)
such that V (G) = V1 ∪ V2, then G[V1] + G[V2] is not in P.

Proof. Since G is indecomposable there is a vertex v1 in V1 and a vertex
v2 in V2 such that v1v2 is not in E(G). Therefore, since G is P-maximal,
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G + v1v2 is not in P. But G + v1v2 is a subgraph of G[V1] + G[V2] and
therefore, since P is hereditary, G[V1] + G[V2] is also not in P.

Theorem 2.3. If G1, . . . , Gn are graphs such that Gi is an Iki-maximal
graph of order at least ki + 1 for i = 1, . . . , n and Gi is indecomposable
for i = 1, . . . , n − 1, then the join G1 + · · · + Gn is a maximal uniquely
(Ik1 , . . . , Ikn)-partitionable graph.

Proof. Let G = G1+· · ·+Gn and suppose {V1, . . . , Vn} is an (Ik1 , . . . , Ikn)-
partition of V (G) different from {V (G1), . . . , V (Gn}. Then at least one of
the Vi, say Vn, contains vertices from at least two different Gi’s. Let

Wi = V (Gi) ∩ Vn for i = 1, . . . , n.

Suppose Wi 6= ∅ for i = 1, . . . , r ; 1 ≤ r ≤ n− 1 and Wi = ∅ if r < i < n.
Then Vn = (∪r

i=1Wi) ∪Wn and hence

G[Vn] = G[W1] + · · ·+ G[Wr] + G[Wn].

(Note that Wn may be empty.)
It follows from Lemma 2.2 that (Gi−Wi) + Wi is not in Iki , and hence

ω(Gi −Wi) + ω(G[Wi]) ≥ ki + 2

for i = 1, . . . , r, n. Now

ω(G− Vn) = ω[(G1 −W1) + · · ·+ (Gr −Wr)
+Gr+1 + · · ·+ Gn−1 + (Gn −Wn)]

=
r∑

i=1

ω(Gi −Wi) +
n−1∑

i=r+1

ω(Gi) + ω(Gn −Wn)

≥
r∑

i=1

(ki + 2− ω(G[Wi])) +
n−1∑

i=r+1

(ki + 1) + kn + 1− ω(G[Wn])

=
n∑

i=1

(ki + 1)− ω(G[W1] + · · ·+ G[Wr] + G[Wn]) + r

≥
n∑

i=1

(ki + 1)− (kn + 1) + r (since ω(G[Vn]) ≤ kn + 1)

=
n−1∑

i=1

(ki + 1) + r.
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However, G− Vn is a subgraph of G[V1] + · · ·+ G[Vn−1] and hence

ω(G− Vn) ≤
n−1∑

i=1

ω(G[Vi])

≤
n−1∑

i=1

(ki + 1).

This contradiction implies that {V (G1), . . . , V (Gn)} is the only
(Ik1 , . . . , Ikn)-partition of G.

We call a graph invariant γ plus-preserving if

γ(G1 + G1) = γ(G1) + γ(G2) for all G1, G2 ∈ I.

If γ is any plus-preserving invariant and P1, . . . ,Pn are hereditary, additive
properties such that

Pi = {G ∈ I : γ(G) ≤ ki}; i = 1, . . . , n

then Theorem 2.3 also holds if Ik1 , . . . , Ikn are replaced by P1, . . . ,Pn.
The following theorem is proved in [1].

Theorem 2.4. If G1, . . . , Gn are Qk-maximal graphs of order at least k +1
each, and at least n−1 of them have no universal vertices, then G1+· · ·+Gn

is a maximal uniquely (Qn
k)-partitionable graph.

The following result is proved in [4].

Lemma 2.5. A nontrivial Qk-maximal graph is indecomposable if and only
if it contains no universal vertices.

As a corollary of the last two results, we have

Theorem 2.6. A graph G is a maximal uniquely (Qn
k)-partitionable graph

if and only if G = G1 + · · ·+ Gn, where G1, . . . , Gn are Qk-maximal graphs
of order at least k + 1, and at least n− 1 of the Gi are indecomposable.

Proof. The “if”-part follows directly from Theorem 2.4 and Lemma 2.5.
For the “only if”-part, suppose G is a maximal uniquely (Qn

k)-partitionable
graph. Then, by Proposition 2.1, G = G1 + · · · + Gn, where Gi is a Qk-
maximal graph of order at least k +1; i = 1, . . . , n and {V (G1), . . . , V (Gn)}
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is the only (Qn
k)-partition of G. Now suppose G1 and G2 are both decom-

posable. Then, by Lemma 2.5, Gi has a universal vertex xi, i = 1, 2. But
then another (Qn

k)-partition of G can be obtained from {V (G1), . . . , V (Gn)}
by interchanging x1 and x2.

3. The Order of Uniquely Partitionable Graphs

Theorem 3.1. Let P1, . . . ,Pn, n ≥ 2, be hereditary properties of graphs
and suppose G is a uniquely (P1, . . . ,Pn)-partitionable graph. Then

| V (G) |≥
n∑

i=1

(c(Pi) + 2)− 1.

Proof. Let {V1, . . . , Vn} be the unique (P1, . . . ,Pn)-partition of V (G). Sup-
pose that |Vi| ≤ c(Pi) for some i. Then, by the definition of c(Pi), we have
G[Vi∪{x}] ∈ Pi for any x ∈ V (G)−Vi. Thus another (P1, . . . ,Pn)-partition
of V (G) can be obtained from {V1, . . . , Vn} by removing a vertex from Vj

for some j 6= i and adding this vertex to Vi. This contradiction implies that
|Vi| ≥ c(Pi) + 1 for i = 1, . . . , n.

Now suppose that |Vi| = c(Pi) + 1 and |Vj | = c(Pj) + 1 for some i and
j with i 6= j. Then another (P1, . . . ,Pn)-partition of V (G) can be obtained
from {V1, . . . , Vn} by interchanging a vertex of Vi with a vertex of Vj . Thus
|Vi| ≥ c(Pi)+2 for every i ∈ {1, . . . , n} except perhaps for one i. The result
follows.

Our next theorem will show that the bound of Theorem 3.1 is the best
possible for certain properties. First, we need a lemma.

Lemma 3.2. If a graph G has a subgraph A = Kk, and two distinct vertices
v1 and v2 of V (G) − A are adjacent to distinct vertices a1 and a2 of A
respectively, then G contains every tree of order k + 2.

Proof. Let T be any tree of order k + 2 and let x and y be any two end
vertices of T . Then T − {x, y} is a subgraph of A, and the result follows.

Theorem 3.3. Suppose P1, . . . ,Pn are additive, hereditary properties such
that F (Pi) contains some tree Ti of order c(Pi) + 2 for each i = 1, . . . , n.
Then there exists a uniquely (P1, . . . ,Pn)-partitionable graph G with

|V (G)| =
n∑

i=1

(c(Pi) + 2)− 1.
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Proof. Let c(Pi) = ki and put

Gi = Kki+1 ∪K1 for i = 1, . . . , n− 1,

Gn = Kkn+1

and G = G1 + · · ·+ Gn.

Let xi denote the isolated vertex of Gi; i = 1, . . . , n − 1 and let X =
{x1, . . . , xn−1}.

Clearly, {V (G1), . . . , V (Gn)} is a (P1, . . . ,Pn)-partition of G. Now sup-
pose {V1, . . . , Vn} is another (P1, . . . ,Pn)-partition of G. Note that, if
|Vi ∩ X| = ∅ for some i, then G[Vi] is a complete graph and then, since
c(Pi) = ki, it follows that |Vi| ≤ ki + 1.

Now suppose that

|Vi| = ki + si; i = 1, . . . , n.

If si ≥ 2 then |Vi ∩X| ≥ 1, otherwise G[Vi] would contain a Kki+2.
If si ≥ 3, then |Vi ∩ X| ≥ si + 1, otherwise the vertices of Vi that are

not in X would induce a Kki in G and two of the vertices of |Vi ∩X| will be
adjacent to different vertices of this Kki , so that, by Lemma 3.2, Ti will be
a subgraph of V [Gi].

Suppose

si ≥ 3 for i = 1, . . . , l,

si = 2 for i = l + 1, . . . , m,

si ≤ 1 for i = m + 1, . . . , n.

Then
|Vi ∩X| ≥ si + 1 for i = 1, . . . , l

and hence, since |X| = n− 1, at least 1 +
∑l

i=1 si of the Vi contain at least
one element of X. Thus

n−m ≥ 1 +
l∑

i=1

si

and therefore
n∑

i=1

|Vi| ≤
l∑

i=1

(ki + si) +
m∑

i=l+1

(ki + 2) +
n∑

i=m+1

(ki + 1)

=
n∑

i=1

(ki + 2) +
l∑

i=1

si − 2l − (n−m)
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≤
n∑

i=1

(ki + 2) + n−m− 1− 2l − (n−m)

=
n∑

i=1

(ki + 2)− 1− 2l.

Since |V (G)| =
∑n

i=1(ki + 2) − 1, this proves that l = 0 so that si ≤ 2 for
i = 1, . . . , n.

Suppose |Vi| ≤ ki + 1 for some index i. Then we must have that |Vi| =
ki+1 for only one index and |Vi| = ki+2 for the remaining indices. It follows
that Vi ∩ X = ∅ for only one index and that |Vi ∩ X| = 1 for n − 1 of the
indices. If, for one of these n−1 indices there are vertices from two different
Gj ’s in Vi, then it follows from Lemma 3.2 that Ti is a subgraph of G[Vi].
Thus each Vi is contained in some V (Gj), and hence {V (G1), . . . , V (Gn)} is
the only (P1, . . . ,Pn)-partition of G.

Hence we may assume that |Vi| = ki + 2 for each i. But then
n∑

i=1

|Vi| =
n∑

i=1

(ki + 2),

a contradiction.

Theorem 3.3 can be applied, for example, if Pi = Oki , Qki or Ski ; i =
1, . . . , n. However, if Pi = Iki with ki ≥ 1 for i = 1, . . . , n, the bound of
Theorem 3.1 is not best possible. In order to establish the best bound in
this case, we need some definitions and lemmas.

An elementary homomorphism of a graph is an identification of two non-
adjacent vertices of the graph. Following [6], we call a graph G k-replete if
ω(G) = k and ω(φ(G)) > k for every elementary homomorpism φ of G. The
following result is proved in [6].

Lemma 3.4. If G is a (k +1)-replete graph without universal vertices, then
|V (G)| ≥ 2k + 3, with equality only if G = C2k+3.

Lemma 3.5. If G is uniquely (Ik1 , . . . , Ikn)-partitionable and φ is an ele-
mentary homomorphism of G such that φ(G) ∈ Ik1

◦ · · · ◦Ikn, then φ(G) is
also uniquely (Ik1 , . . . , Ikn)-partitionable.

Proof. Let {V1, . . . , Vn} be any (Ik1 , . . . , Ikn)-partition of φ(G). Let x and
y be the two non-adjacent vertices of G that are identified by φ. Suppose
φ(x) = φ(y) ∈ V1. Then ω(φ−1(V1)) ≤ ω(V1), and hence {φ−1(V1), . . . , Vn}
is an (Ik1 , . . . , Ikn)-partition of G. Since G has a unique (Ik1 , . . . , Ikn)-
partition, it follows that φ(G) also has a unique (Ik1 , . . . , Ikn)-partition.
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Theorem 3.6 If G is a uniquely (Ik1 , . . . , Ikn)-partitionable graph and
kn ≥ ki for i = 1, . . . , n, then

|V (G)| ≥
n−1∑

i=1

(2ki + 3) + kn + 1,

with equality only if

G = C2k1+3 + · · ·+ C2kn−1+3 + Kkn+1.

Proof. First, we note that, since C2ki+3 is an indecomposable Iki-maximal
graph, it follows from Theorem 2.3 that the graph C2k1+3 + · · ·+C2kn−1+3 +
Kkn+1 is indeed a maximal uniquely (Ik1 , . . . , Ikn)-partitionable graph.

Now let G be a maximal uniquely (Ik1 , . . . , Ikn)-partitionable graph of
smallest possible order, and let {V1, . . . , Vn} be the unique (Ik1 , . . . , Ikn)-
partition of G. Put

G = G1 + . . . + Gn.

Now suppose Gi is not (ki + 1)-replete for some i ∈ {1, . . . , n}. Then
there is an elementary homomorphism φ of Gi such that ω(φ(Gi)) ≤
ki + 1. Now φ can also be regarded as an elementary homomor-
phism of G, and {V (G1), . . . , V (Gi−1), V (φ(Gi), V (Gi+1), . . . V (Gn)} is an
(Ik1 , . . . , Ikn)-partition of φ(G). Thus φ(G) ∈Ik1

◦ · · · ◦Iknand hence, by
Lemma 3.5, φ(G) is a uniquely (Ik1 , . . . , Ikn)-partitionable graph of order
less than |V (G)|. This contradiction proves that each Gi is a replete graph.

Now suppose that Gi as well as Gj have a universal vertex, for i 6= j.
Then these two vertices can be interchanged in such a way that we obtain an
(Ik1 , . . . , Ikn)-partition of G different from {V1, . . . , Vn}. This proves that
at most one of the Gi contains a universal vertex, and the result now follows
from Proposition 2.1 and Lemma 3.4.
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