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Abstract

Let P1, . . . ,Pn be properties of graphs. A (P1, . . . ,Pn)-partition of
a graph G is a partition of the vertex set V (G) into subsets V1, . . . , Vn

such that the subgraph G[Vi] induced by Vi has property Pi; i =
1, . . . , n. A graph G is said to be uniquely (P1, . . . ,Pn)-partitionable
if G has exactly one (P1, . . . ,Pn)-partition. A property P is called
hereditary if every subgraph of every graph with property P also has
property P. If every graph that is a disjoint union of two graphs that
have property P also has property P, then we say that P is additive.
A property P is called degenerate if there exists a bipartite graph that
does not have property P. In this paper, we prove that if P1, . . . ,Pn

are degenerate, additive, hereditary properties of graphs, then there
exists a uniquely (P1, . . . ,Pn)-partitionable graph.
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1. Notation and Background

All graphs considered in this paper are finite and simple. In general, we
follow the notation and terminology of [15].

We denote the set of all mutually nonisomorphic graphs by I. Each
nonempty subset P ⊆ I is also said to be a property of graphs. A property
P is said to be hereditary if G ∈ P and H ⊆ G implies H ∈ P. A property
P is additive if G1, G2 ∈ P implies that the disjoint union G1 ∪ G2 is also
in P. We shall denote the set of all hereditary properties by L, and the set of
all additive, hereditary properties by La. We list some additive, hereditary
properties in Table 1. (We use the notation of [6] for most of them).

Table 1

The The graphs which have the property
property

O G ∈ I; G is totally disconnected
Sk G ∈ I; ∆(G) ≤ k

Wk G ∈ I; the length of the longest path in G does not exceed k

Dk G ∈ I; G is k-degenerate i.e., δ(H) ≥ k for H ⊆ G

Tk G ∈ I; G contains no subgraph homeomorphic to Kk+2

or Kb k+3
2
c,d k+3

2
e

Ik G ∈ I; G does not contain Kk+2 as a subgraph

Any hereditary property P is uniquely determined by the set

F (P) = {G ∈ I| G 6∈ P but each proper subgraph of G belongs to P}

of minimal forbidden subgraphs (see [6], [14], [16], [18]), or by the set of
so-called P-maximal graphs

M(P) = {G ∈ P|G + e 6∈ P for every e ∈ G},

(see [6], [24], [29]).
The join of two vertex disjoint graphs G1 and G2 is obtained by joining

every vertex of G1 to every vertex of G2, and is denoted by G1 + G2.
A graph G is said to be P-strict if G ∈ P and G + K1 6∈ P.
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Let P be a hereditary property, P 6= I. Then there is a nonnegative integer
c(P) such that Kc(P)+1 ∈ P but Kc(P)+2 6∈ P, called the completeness of P.
Clearly, every P-maximal graph G with |V (G)| ≥ c(P) + 1 is P-strict.

For any property P we define the minimum degree of P as

δ(P) = min{δ(G)| G ∈ F (P)},

and the chromatic number of P as

χ(P) = min{χ(G)| G ∈ F (P)}.

Let P1, . . . ,Pn be properties of graphs. A (P1, . . . ,Pn)-partition of a graph
G is a partition {V1, . . . , Vn} of V (G) such that the subgraph G[Vi] induced
by Vi has property Pi for i = 1, . . . , n. The property R = P1◦. . .◦Pn is
defined as the set of all graphs that have a (P1, . . .Pn)-partition.

If P1 = · · · = Pn, the property P1◦· · ·◦Pn will be denoted by Pn. For
example, the class of all n-colourable graphs is denoted by On.

If there exist properties P and Q such that R = P◦Q, then R is said to
be a reducible property and P, and Q are said to divide R; otherwise R is
called irreducible (see e.g., [6], [20], [23]). Different generalizations of regular
colouring of the vertices of graphs (see e.g. [1], [2], [8], [9], [10], [11], [12],
[20], [21], [22], [25], [26], [31]) can be expressed using the notion of reducible
properties.

We shall need the following two lemmas concerning reducible properties.

Lemma 1. If P1 and P2 are (additive) hereditary properties of graphs, then
the property R = P1◦P2 is also (additive) hereditary.

Lemma 2. Let P1 and P2 be hereditary properties of graphs and let G be
a P1◦P2-maximal graph. If {V1, V2} is any (P1,P2)-partition of G, then

G = G[V1] + G[V2]

and the graph G[Vi] are Pi-maximal, i = 1, 2.

Proof. Suppose that there exists an edge e = (x, y) such that x ∈ V1 and
y ∈ V2 and e 6∈ E(G). Then the graph G + e ∈ P1◦P2, contradicting our
assumption that G ∈ M(P1◦P2). This proves that G = G[V1] + G[V2].

Now suppose G[V1] is not P1-maximal. Then G[V1] + e ∈ P1 for some
e ∈ E(G[V1]). But then, again, G + e ∈ P1◦P2. This contradiction proves
that G[V1] is P1-maximal. Likewise, G[V2] is P2-maximal.
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A graph G ∈ P1◦. . .◦Pn is said to be uniquely (P1, . . . ,Pn)-partitionable
if G has exactly one (P1,P2, . . . ,Pn)-partition. The set of all uniquely
(P1, . . . ,Pn)-partitionable graphs will be denoted by U(P1◦. . .◦Pn), e.g.,
U(On) denotes the set of all uniquely n-colourable graphs (see [4], [19],
[17]); U(Sn

k ) denotes the set of all uniquely (m, k)∆-colourable graphs (see
[12], [13], [32]); U(Wn

k ) has been studied in [12], [3] and U(Dn
k ) in [5], [27],

and U(In
k ) in [7], [12] The basic properties of U(Pn) have been investi-

gated in [5], [23]. Another generalization of uniquely colourable graphs was
introduced by X. Zhu in [33].

The notion of degenerate hereditary property appeared with regards to
the famous Erdös-Simonovits formula

ext(n,P) =
χ(P)− 2
χ(P)− 1

(
n

2

)
+ o(n2),

where
ext(n,P) = max{|E(G)| | G ∈ P and |V (G)| = n},

A property P ∈ La is said to be degenerate if χ(P) = 2, i.e., if F (P) contains
some bipartite graph (see [29], [30]). Obviously, O,Sk,Qk,Ok,Dk and Tk

are degenerate properties of graphs, but the property Ik is not degenerate.
In [23] it is proved that if the property P is a reducible property of

graphs, then U(Pn) = ∅ and we also proved that U(Pn) 6= ∅ for every
degenerate property P, which means that every degenerate property is ir-
reducible. In Section 4 of this paper, we generalize this result by proving
that U(P1◦. . .◦Pn) 6= ∅ if P1, . . . ,Pn are degenerate, additive, hereditary
properties.

In Section 2 we present some basic properties of uniquely (P1, . . . ,Pn)-
partitionable graphs, generalizing results known to hold for uniquely
colourable graphs.

In Section 3 we provide a necessary and sufficient condition for one
hereditary property to be divisible by another. This result is used to prove
our main result, Theorem 3, which gives a necessary and sufficient condition
for the existence of uniquely P◦Q-partitionable graphs, when P and Q are
additive, hereditary properties and Q is degenerate.

2. Basic Properties of Uniquely Partitionable Graphs

The results on uniquely Pn-partitionable graphs obtained in [23] can
be directly generalized to obtain the properties of uniquely (P1, . . . ,Pn)-
partitionable graphs presented in the following two theorems.
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Theorem 1. Let P1 . . . ,Pn be hereditary properties of graphs, n ≥ 2. If G
is a uniquely (P1, . . . ,Pn)-partitionable graph and {V1, . . . , Vn} is the unique
(P1, . . . ,Pn)-partition of V (G), then

1. G 6∈ P1◦. . .Pj−1◦Pj+1◦. . .◦Pn for j = 1, . . . , n,
2. the subgraphs G[Vi] are Pi-strict, i = 1, 2, . . . , n,
3. if {i1, . . . , ik} ⊆ {1, . . . , n}, then Vi1 ∪ . . . ∪ Vik induces a uniquely

(Pi1 , . . . ,Pin)-partitionable subgraph of G,

4. δ(G) ≥ max
j

n∑
i=1, i 6=j

δ(Pi),

5. |V (G)| ≥
n∑

i=1
(c(Pi) + 2)− 1,

6. the graph G = G[V1]+· · ·+G[Vn] is uniquely (P1, . . . ,Pn)-partitionable.

Theorem 2. Let P1, . . .Pn be hereditary properties of graphs. If G ∈
P1◦P2◦. . .◦Pn and U(P1◦P2◦. . .◦Pn) 6= ∅, then G is an induced subgraph
of some uniquely (P1, . . . ,Pn)-partitionable graph.

3. Divisibility and Uniquely (P,Q)-Partitionable Graphs

Lemma 3. If P and Q are properties of graphs such that one of the follow-
ing holds:

1. P divides Q
2. Q divides P
3. there exists a property S such that S divides both P and Q,

then U(P◦Q) = ∅.
Proof. 1. Suppose Q = P◦Q∗ for some property Q∗. Let G ∈ P◦Q and
let {V1, V2} be a (P,Q)-partition of G, with V1, V2 6= ∅. Since G[V2] ∈ Q =
P◦Q∗, there exists a partition {V21, V22} of G[V2], with V21, V22 6= ∅, such
that G[V21] ∈ P and G[V22] ∈ Q∗. But then G[V1 ∪ V22] ∈ P◦Q∗ = Q, and
thus {V21, V1 ∪V22} is a (P,Q)-partition of G different from {V1, V2}, which
implies that G is not uniquely (P,Q)-partitionable.

Cases (2) and (3) can be proved in an analogous way.

If P and Q are additive hereditary properties and Q is also degenerate, then
converse of Lemma 1 also holds. In order to prove this, we introduce the
concept of an extendible set.
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Let P and Q be hereditary properties of graphs and let G ∈ P. If S is a
subset of V (G) such that G[S] ∈ Q and for every graph T ∈ Q the graph
T + (G− S) ∈ P, then S is said to be a (Q,P)-extendible set of G.
We shall need the following lemma.

Lemma 4. Let P and Q be hereditary properties of graphs. If H is a graph
with property P that has no (Q,P)-extendible set, then there exists a P-strict
graph G such that G has no (Q,P)-extendible set.

Proof. Let H be a graph with property P such that H has no (Q,P)-
extendible set. Let G be a P-strict graph such that H ⊆ G. Suppose, to
the contrary, that G contains a (Q,P)-extendible set S. Let S′ = S∩V (H).
Let T be any graph with property Q. Then

T + (G− S) ∈ P.

Since T + (H − S′) ⊆ T + (H − S) and P is hereditary, this implies that
T + (H − S′) ∈ P, so that S′ is an extendible set of H.

We have the following connection between divisibility and the existence of
an extendible set.

Theorem 3. Let P and Q be hereditary properties of graphs. Then Q
divides P if and only if every P-maximal graph contains a (Q,P)-extendible
set.

Proof. Suppose Q divides P. Then there is a property P∗ such that
P = Q◦P∗. Let G ∈ P and let {V1, V2} be a (Q,P∗)-partition of G. Let T
be any graph with property Q. Then {V (T ), V2} is a (Q,P∗)-partition of
T +G[V2], and hence T +G[V2] ∈ P. Since G[V2] = G−V1, this proves that
V1 is a (Q,P)-extendible set of G.

To prove the converse, suppose every P-maximal graph contains
a (Q,P)-extendible set. Let

S(G) = {S ⊆ V (G)|S is an extendible set of G}

and put
P ′ = {G− S|G ∈ M(P), S ∈ S(G)}.

Now let P∗ be the property consisting of all subgraphs of graphs in P ′. Then
P∗ is a hereditary property. We shall prove that P = Q◦P∗.

Suppose G ∈ M(P). Then, by our assumption, G has a (Q,P)-
extendible set. Let S be such a set. Then G − S ∈ P∗, by the definition
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of P∗. Thus {S, G − S} is a (Q,P∗)-partition of G, so that G ∈ Q◦P∗.
This proves that M(P) ⊆ Q◦P∗. But Q◦P∗ is a hereditary property by
Lemma 2, and hence P ⊆ Q◦P∗.

Now suppose G ∈ M(Q◦P∗). Let {V1, V2} be a (Q,P∗)-partition of G.
Then it folllows from Lemma 2 that G[V1] ∈ M(Q), G[V2] ∈ M(P∗) and
G = G[V1] + G[V2]. By the definition of P∗ there exists a P-maximal graph
F and a (Q,P)-extendible set S of F such that G[V2] ⊆ F − S. But then,
since G[V1] ∈ Q, we have G[V1] + F − S ∈ P. But G ⊆ G[V1] + F − S, and
hence G ∈ P. This proves that Q◦P∗ ⊆ P.

Theorem 4. Let P,Q ∈ La and let Q be a degenerate property. Then
U(Q◦P) 6= ∅ if and only if Q does not divide P.

Proof. If U(Q◦P) 6= ∅ then, by Lemma 3, Q does not divide P.
To prove the converse, suppose Q does not divide P. Then it follows from
Theorem 3 and Lemma 4 that there exists a P-strict graph H that contains
no (Q,P)-extendible set. Let

Z = {S|S ⊆ V (H) and H[S] ∈ Q}.

Then, for every S ∈ Z, there exists a Q-strict graph T (S) such that

T (S) + (H − S) 6∈ P.

Now let
T = ∪S∈ZT (S).

Since Q is a degenerate property, there is an integer q such that Kq,q 6∈ Q.
Let

G1 = qT, G2 = qH, and G = G1 + G2.

Since P and Q are additive properties, G1 ∈ P and G2 ∈ Q, and thus
G ∈ P◦Q.

Now let {W1,W2} be any (P,Q)-partition of G. Suppose each of the q
copies of H in G2 has at least one vertex in W1. Then

|V (G2) ∩W1| ≥ q.

Now let H0 be a specific copy of H in G2, and let S0 = V (H0) ∩W1. Then
H0[S0] ∈ Q and hence, by the definition of T , we have

T + H0 − S0 6∈ P.
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Since V (H0)− S0 ∈ W2, it follows that none of the q copies of T in G1 has
all its vertices in W2. Thus

|V (G1) ∩W1)| ≥ q.

But then Kq,q ⊆ G[W1]. This contradiction proves that at least one of
the q copies of H in G2 has all its vertices in W2. Since H is P-strict, it
follows that W2 ∩ V (G1) = ∅. But G1 is Q-strict, and hence W1 = G(V1),
which implies that {V (G1), V (G2)} is the only (Q,P)-partition of G. Thus
G ∈ U(Q◦P).

4. Construction of Uniquely (P1, . . .Pn)-Partitionable Graphs
for Degenerate Properties

Uniquely (Pn)-partitionable graphs have been proved to exist for several
specific degenerate properties P (see [5], [23], [28]). The following theorem
generalizes those results.

Theorem 5. Let P1, . . . ,Pn, be degenerate, additive, hereditary properties
of graphs. Then there exists a uniquely (P1, . . . ,Pn)-partitionable graph.

Proof. We may assume, without loss of generality, that the properties
P1, . . . ,Pn are ordered in such a way that Pi 6⊂ Pj if i < j and, if Pi = Pj

and i < k < j, then Pi = Pk. Then there exist graphs H1, . . . ,Hn such that
Hi is Pi-strict for i = 1, . . . , n and, if i < j, then Hi 6∈ Pj unless Pi = Pj .
Since P1, . . . ,Pn are degenerate properties, there exists an integer q such
that Kq,q 6∈ Pi for i = 1, . . . , n. Now let

Gi = (n(q − 1) + 1)Hi for i = 1, . . . , n.

and
G = G1 + · · ·+ Gn.

We shall prove, by induction on n, that the graph G thus constructed is
uniquely (P1, . . . ,Pn)-partitionable.

The result is true for n = 1.
Now let n ≥ 2. Put

Vi = V (Gi), i = 1, . . . , n.

Let {W1, . . . , Wn} be any (P1, . . . ,Pn)-partition of G. Since |V (Gi)| ≥
n(q − 1) + 1 for each i = 1, . . . , n, we have that, for each i ∈ {1, . . . , n}

|Vi ∩Wj | ≥ q for at least one j ∈ {1, . . . , n}.
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Now suppose two different members of {W1, . . . ,Wn} each contain at least
q vertices of V1. Then there are at least n+1 sets of the form Vi∩Wj whose
cardinality is at least q. Then, by Dirichlet’s principle, there exist integers
i, r, s ∈ {1, . . . , n} with r 6= s such that

|Wi ∩ Vr| ≥ q and |Wi ∩ Vs| ≥ q,

and thus
Kq,q ⊆ G[Wi].

This contradiction proves that only one of the Wi, say Wt, contains at least
q vertices of V1. Since G[V1] contains n(q− 1) + 1 copies of H1, at least one
of these copies has all its vertices in Wt. Our assumption on the ordering
of the properties P1, . . . ,Pn, implies that H1 6∈ Pi for i = 2, . . . , n unless
Pi = P1. We may therefore assume, without loss of generality, that t = 1.
Since H1 is P1-strict, it then follows that

W1 ∩ Vi = ∅ for i = 2, . . . , n.

By our induction hypothesis, the graph G2 + · · · + Gn is uniquely
(P2, . . . ,Pn)-partitionable, so that {V2, . . . , Vn} is the only (P2, . . . ,Pn)-
partition of G2+· · ·+Gn. Thus, for each i ∈ {2, . . . , n}, we have that Wi ⊇ Vi

and hence, since Gi is Pi-strict, Wi = Vi. This implies that {W1, . . . , Wn}
={V1, . . . , Vn}, and hence G is uniquely (P1, . . . ,Pn)-partitionable.
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