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Abstract

A linear forest is a forest in which every component is a path. It
is known that the set of vertices V(G) of any outerplanar graph G
can be partitioned into two disjoint subsets Vi, V5 such that induced
subgraphs (V1) and (Va) are linear forests (we say G has an (LF, LF)-
partition). In this paper, we present an extension of the above result
to the class of planar graphs with a given number of internal vertices
(i.e., vertices that do not belong to the external face at a certain fixed
embedding of the graph G in the plane). We prove that there exists
an (LF, LF)-partition for any plane graph G when certain conditions
on the degree of the internal vertices and their neighbourhoods are
satisfied.
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1. INTRODUCTION AND NOTATION

Let 7 denote the set of all finite simple graphs. A graph property P is
a nonempty isomorphism-closed subclass of Z. We also say that a graph G
has the property P if G € P. A property P of graphs is said to be (induced)
hereditary if whenever G € P and H is a (vertex induced) subgraph of G,
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then also H € P. A property P is called additive if for each graph G
all of whose components have the property P it follows that G has the
property P, too. A hereditary property P can be characterized in terms of
forbidden subgraphs. The set of minimal forbidden subgraphs of P is defined
as follows:

F(P)={G €Z:G ¢ P but each proper subgraph H of G belongs to P}.

In general, we use the notation and terminology of [1]. Let us mention
selected hereditary properties of graphs:

O = {GeTI:Gisedgeless, ie., E(G) =10},

7. = {G €T :G contains no subgraph homeomorphic to Ko

or K ki3 rktsq},
I_ 2 Jv( 2 -‘
Dy = {G€Z:G isk-degenerate},
Sk = {GeZ:AG) <k}

It is easy to see that Dy = T3 = {G : G is a forest}, LF = D1 NSy is
the linear forest, while 75 and 73 are the classes of all outerplanar and all
planar graphs, respectively. For LF the set of minimal forbidden subgraphs
is given by

F(Ef) == {K173, Cn with n 2 3}

Let P1,P2,...,Pn, n > 1 be any properties and let G belong to Z. A
vertex (P1,Pa, . .., Pn)-partition of the graph G is a partition (V1, Vs, ..., V)
of V(G) such that each subgraph (V;) of the graph G induced by V; has
the property P;,i = 1,2,...,n. A problem of partitioning planar graphs
into linear forests has been extensively studied in many papers. Broere [3],
Wang [8] and Mihdk [6] proved that any outerplanar graph has an (LF, LF)-
partition. Some extensions of the result given above and an algorithm can
be found in [2]. The result of Poh [7] and Goddard [4] is that any planar
graph has an (LF, LF, LF)- partition (i.e., into three linear forests).

2. RESULTS

Let W be a subset of the vertex set V(G) such that (W) is connected.
By the operation of contraction of the vertex set W to the vertex u we
will understand the removal of all the vertices belonging to W, addition of
a new vertex u and all the edges required to satisfy the following condition
N(u) = UpewN(w), where N(v) denotes the neighbourhood of the vertex v
in G.
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Let us define a set Int(G) of all internal vertices of a planar graph G as a set
of vertices not belonging to the external face at a certain fixed embedding
of the graph G in the plane. Let int(G) = min |Int(G)| over all embeddings
of the graph G in the plane. If int(G) = 0, then the graph G is outerplanar.

Theorem 1. Let G be a plane graph and v € V(G)\Int(G) an arbitrarily
chosen vertex. If the following conditions are satisfied:

(i) for any x,y € Int(G), (z,y) ¢ E(G),
(ii) for any vertex x € Int(G)\N(v), d(z) > 4,
(iii) for any vertex x € Int(G) N N(v), d(x) > 3,
then there exists a (V1, Va)-partition of V(G) such that (V;) € LF fori=1,2
and v € V1, N(v) C Va.

Proof. Without loss of generality, we assume that G is maximal in the
sense that graph G + e does not satisfy one of the conditions (i)—(iii). The
proof is by induction on the order of G. Let |V (G)| = 3. Then the Theorem
is true. Assume that the Theorem holds for all graphs of order less than k.
Let |V(G)| = k. Let the graph G* be obtained from G by contraction of the
set N[v] =N(v) U{v} to the vertex w. We are going to prove that the graph
G* satisfies conditions (i)—(iii).

Claim 1. The graph G* satisfies conditions (i)—(iii).
Proof. The proof falls into three cases.

Case 1. 1t is easy to see that for any x,y € Int(G*) if (z,y) ¢ E(G),
then (x,y) ¢ E(G*), too. Thus the condition (i) is satisfied.

Case 2. From the definition of contraction of the set N[v] to the vertex
w, it immediately follows that a degree of any vertex x € Int(G) such that
N(v)NN(z) = 0 cannot be affected and dg(x) = dg+ (). Thus, for any = €
Int(G*)\N(w), d(z) > 4 and the condition (ii) is satisfied.

Case 3. If for the vertex v there exists a vertex x € Int(G) such that
da(z) > 4 and N(v)NN(z) # 0, then |[N(v)NN(z)| < 2. If ¢ N(v), then
an operation of contraction of the set N(v) may decrease the degree of the
vertex x by at most 1. If x € N(v), then x will be contracted to the vertex
w ¢ Int(G*). Thus, for any = € Int(G*)NN(w), d(z) > 3 and the condition
(iii) is satisfied.

Hence, we get the graph G* which satisfies conditions (i)-(iii).
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Since |V(G*)| < k then G* has a (V}*, V5)-partition of V(G*) such that
(V¥) € LF for i = 1,2 and w € V{*, N(w) C V5. Let Vi = V5 U {v},
Vo = (Vi"\{w})UN(v). We are going to prove that V; and V» have the
property LF.

Claim 2. (N(v))g has the property LF.

Proof. Assuming that H = (N(v)) has not the property £F implies that
H contains a cycle or a vertex of degree greater than 2. Thus, we have the
following cases:

Cuase 1. Let us assume that H contains a cycle C, of length & > 3. Since,
Cr + ({v}), where + denotes the join, contains a subgraph homeomorphic
to K4, then it is not outerplanar. Thus, there exists a vertex = € N(v) such
that € Int(G). From (iii) it follows that dg(z) > 3, which implies an
existence of the vertex y such that (z,y) € E(G) and y € Int(G), contrary
to (i).

Case 2. Let us assume that there exists a vertex u € V(H) such that
dg(u) > 2 (ie., H contains K;3 as a subgraph). Since Kj3 + ({v}) is
not outerplanar, then there exists a vertex = € N(u) such that x € Int(G).
From (iii) it follows that dg(z) > 3, thus there exists a vertex y such that
(x,y) € E(G) and y € Int(G), contrary to (i).

Thus, (N(v))g has the property LF.

Since N(w) C V5, then no vertex from N(v) has the neighbour in the set
Vi'\{w}. Hence, as Vj* and (N(v))s both have the property LF, it comes
out that V5 has the property LF, too. Obviously, Vi belongs to LF and
v has no adjacent vertex in Vi. Thus, the partition (Vi,V2) is the required
(LF, LF)-partition of G. |

Corollary 1. If a graph G is outerplanar, then for every vertex v € V(G)
there exists an (LF, LF)-partition of G, say (Vi,Va), such that v € Vi and
N(v) C Va.

Theorem 2. Let G be a plane graph, R C V(G) and Int(G) be a proper
subset of R. If a subgraph of the graph G induced by R is a path, then the
graph G has an (LF, LF)-partition.

Proof. Contracting the set R to a vertex w, we get an outerplanar
graph G*. Hence, G* has an (LF,LF)-partition (Vi*,V5") of V(G*) such
that w € Vi and N(w) C V5. No vertex from R has a neighbour in the
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set Vi'\{w}. Let Vi = Vi'\{w} UR, V5 = V5. Since (V") and (R) both
have the LF property, then V; belongs to LF, too. Obviously, (Vi,V2) is
an (LF, LF)-partition of G. |

Corollary 2. Let G be a maximal outerplanar graph with an outer-cycle C'.
Let P < C be an induced path of C. Then G has an (LF,LF)-partition
(V1,V2) of V(G) such that V(P) C V;.

Theorem 3. FEvery planar graph G with int(G) < 2 has an (LF,LF)-
partition.

Proof. The proof falls naturally into three cases.

Case 1. int(G) = 0.
If int(G) = 0, then the graph G is outerplanar and it has an (LF,LF)-
partition.

Case 2. int(G) = 1.
Let v € Int(G) and u € N(v). It is easy to notice that u ¢ Int(G). According
to Theorem 2, if R = {v,u}, then the graph G has an (LF, LF)-partition.

Case 3. int(G) = 2.
We can consider a maximal plane graph G with Int(G) = {ry,r2}.

Subcase 3.1. ry is adjacent to ro.
There exists a vertex u adjacent to r1 such that u is not adjacent to ro. Ac-
cording to Theorem 2, if R = {u, 71,72}, then the graph G has an (LF, LF)-
partition.

Subcase 3.2. 71 is not adjacent to rs.
Let R contain all the vertices belonging to the shortest path from ry to rs.
Since (R) is a path and R contains at least one vertex not belonging to
Int(G), i.e., Int(G) is a proper subgraph of R, then according to Theorem 2,
the graph G has an (LF, LF)-partition. [

Theorem 4. Let G be a planar graph of order n < 9 with int(G) = 3. Then
G has an (LF, LF)-partition.

Proof. If int(G) < 2, then by Theorem 3, independently of the order n,
the graph G has an (LF, LF)-partition.

Let us consider a planar graph with int(G) = 3, where Int(G) = {r1,r2,r3}.
Without loss of generality we assume that G is a near-triangulation, i.e.,
G is a plane graph which consists of an outer-cycle Cj : vivs...vgv1 in
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clockwise order and vertices and edges inside C) such that each bounded
face is bounded by a triangle. Since the graph G is of order n < 9 and
int(G) = 3, then 3 < k < 6. Let S(r;) = N(r;) N V(Ck) be the set of
the vertices of the cycle C} that are adjacent to the vertex r; € Int(G)
and s; = |S(r;)|. Then we have to consider four cases. Cases 1 and 2
are considered under the assumption that C} is a chordless cycle. But, if
there is a chord, then it divides the graph G into G and Ga, such that
Int(G1) = {r1,re,r3} and G is outerplanar. Then an (LF, LF)-partition
of (G can be easily extended to G.

Case 1. (Int(G)) = K3.
Let the vertices rq1, 79,73 be in clockwise order and s; < s9 and s1 < s3.

If S(Tl) - {Uh cee 71)51}7 S(TQ) - {Usla o 7vs1+82—1}7 S(T3) - {U81+82—17
...,v1}, then the partition (V1,V3) can be obtained as follows:

Vi={rs,vi,..., s, 4552}, Vo ={r1,72, 06, 450—1,---, Uk}

Case 2. (Int(G)) = Ps.
Let N(rg) D {r1,73} and s1 < s3. Then we have two subcases.

Case 2.1. s3 = 2.
If s3 = 2, then there exists a vertex v € Cj such that v € N(r;)NN(r2)\N(r3).
Then Vi = {ro,r3,v} and Vo = {r;} U (Cx\{v}).

Case 2.2. s3 > 2.
If s3 > 2, then there exists a vertex v € C}, such that v € N(r3)\(N(r1)U
N(r2)). Then Vi = {ry,re,73,v} and Vo = Ci\{v}.

Case 3. (Int(G)) = K.
It is easy to see that for any graph G considered in this case |V(G)| > 8
and the cycle Cy has at least two chords. If |V(G)| = 9, then we have eight
graphs. Their (LF, LF)-partitions are shown in Figure 1.

There is only one graph H such that |V(H)| = 8. It is easy to see that
H is a subgraph of two graphs presented at the bottom line of Figure 1.

Case 4. (Int(G)) = Ps.
In this case C} has at least one chord. Thus, G is divided by this chord into
two graphs G; with int(G;) = ¢, i = 1,2. Each of them has an (LF, LF)-
partition which can be extended to the other one. The details are left to the
reader. [ ]
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Theorem 5. For every integer n > 10 there exists a planar graph G of
order n with int(G) = 3, which does not have an (LF, LF)-partition.

Proof.
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Let us partition the set V(G) of the graph G in Figure 2 into two sub-
sets V1 and V5. Assuming that a € Vi, at least one of the vertices from
{b,c,d},{e, f,g} and {h,i,j} must belong to V. Otherwise, (V). would
have contained a cycle. But the set Vi constructed in this way induces
a subgraph containing a vertex of a degree greater than 2. Thus, any

planar graph containing the graph G as its subgraph does not have an
(LF, LF)-partition. |



102 P. BOROWIECKI AND M. HALUSZCZAK

Acknowledgement

The authors of this paper wish to thank the refree for his suggestions and
critical comments that were found very helpful.

References

[1] M. Borowiecki, P. Mih6k, Hereditary properties of graphs, in: Advances in
Graph Theory (Vishwa International Publications, 1991) 41-68.

[2] P. Borowiecki, P-Bipartitions of Graphs, Vishwa International J. Graph
Theory 2 (1993) 109-116.

. Broere, C.M. Mynhardt, Generalized colourings of outerplanar and planar

3] I.B C.M. Mynhardt, G lized colouri f l d pl
graphs, in: Graph Theory with Applications to Algorithms and Computer
Science (Wiley, New York, 1985) 151-161.

[4] W. Goddard, Acyclic colourings of planar graphs, Discrete Math. 91 (1991)
91-94.

[5] T.R. Jensen and B. Toft, Graph Colouring Problems (Wiley-Interscience Pub-
lications, New York, 1995).

[6] P. Mihék, On the vertex partition numbers, in: M. Fiedler, ed., Graphs and
Other Combinatorial Topics, Proc. Third Czech. Symp. Graph Theory, Prague,
1982 (Teubner-Verlag, Leipzig, 1983) 183-188.

[7] K.S. Poh, On the Linear Vertex-Arboricity of a Planar Graph, J. Graph Theory
14 (1990) 73-75.

[8] J. Wang, On point-linear arboricity of planar graphs, Discrete Math. 72 (1988)
381-384.

Received 3 January 1997
Revised 25 February 1997


http://www.tcpdf.org

