PARTITIONS OF SOME PLANAR GRAPHS INTO TWO LINEAR FORESTS

Piotr Borowiecki
AND
Mariusz HaŁuszczak
Institute of Mathematics
Technical University of Zielona Góra
Podgórna 50, 65-246 Zielona Góra, Poland
e-mail: p.borowiecki@im.pz.zgora.pl
m.haluszczak@im.pz.zgora.pl

Abstract

A linear forest is a forest in which every component is a path. It is known that the set of vertices $V(G)$ of any outerplanar graph G can be partitioned into two disjoint subsets V_{1}, V_{2} such that induced subgraphs $\left\langle V_{1}\right\rangle$ and $\left\langle V_{2}\right\rangle$ are linear forests (we say G has an $(\mathcal{L F}, \mathcal{L F})$ partition). In this paper, we present an extension of the above result to the class of planar graphs with a given number of internal vertices (i.e., vertices that do not belong to the external face at a certain fixed embedding of the graph G in the plane). We prove that there exists an $(\mathcal{L} \mathcal{F}, \mathcal{L F})$-partition for any plane graph G when certain conditions on the degree of the internal vertices and their neighbourhoods are satisfied.

Keywords: linear forest, bipartition, planar graphs.
1991 Mathematics Subject Classification: 05C15, 05C70.

1. Introduction and Notation

Let \mathcal{I} denote the set of all finite simple graphs. A graph property \mathcal{P} is a nonempty isomorphism-closed subclass of \mathcal{I}. We also say that a graph G has the property \mathcal{P} if $G \in \mathcal{P}$. A property \mathcal{P} of graphs is said to be (induced) hereditary if whenever $G \in \mathcal{P}$ and H is a (vertex induced) subgraph of G,
then also $H \in \mathcal{P}$. A property \mathcal{P} is called additive if for each graph G all of whose components have the property \mathcal{P} it follows that G has the property \mathcal{P}, too. A hereditary property \mathcal{P} can be characterized in terms of forbidden subgraphs. The set of minimal forbidden subgraphs of \mathcal{P} is defined as follows:

$$
\boldsymbol{F}(\mathcal{P})=\{G \in \mathcal{I}: G \notin \mathcal{P} \text { but each proper subgraph } H \text { of } G \text { belongs to } \mathcal{P}\}
$$

In general, we use the notation and terminology of [1]. Let us mention selected hereditary properties of graphs:

$$
\begin{aligned}
\mathcal{O}= & \{G \in \mathcal{I}: G \text { is edgeless, i.e., } E(G)=\emptyset\}, \\
\mathcal{T}_{k}= & \left\{G \in \mathcal{I}: G \text { contains no subgraph homeomorphic to } K_{k+2}\right. \\
& \text { or } \left.K_{\left\lfloor\frac{k+3}{2}\right\rfloor,\left\lceil\frac{k+3}{2}\right\rceil}\right\} \\
\mathcal{D}_{k}= & \{G \in \mathcal{I}: G \text { is } k \text {-degenerate }\}, \\
\mathcal{S}_{k}= & \{G \in \mathcal{I}: \Delta(G) \leq k\} .
\end{aligned}
$$

It is easy to see that $\mathcal{D}_{1}=\mathcal{T}_{1}=\{G: G$ is a forest $\}, \mathcal{L F}=\mathcal{D}_{1} \cap \mathcal{S}_{2}$ is the linear forest, while \mathcal{T}_{2} and \mathcal{T}_{3} are the classes of all outerplanar and all planar graphs, respectively. For $\mathcal{L \mathcal { F }}$ the set of minimal forbidden subgraphs is given by

$$
\boldsymbol{F}(\mathcal{L} \mathcal{F})=\left\{K_{1,3}, C_{n} \text { with } n \geq 3\right\}
$$

Let $\mathcal{P}_{1}, \mathcal{P}_{2}, \ldots, \mathcal{P}_{n}, n>1$ be any properties and let G belong to \mathcal{I}. A $\operatorname{vertex}\left(\mathcal{P}_{1}, \mathcal{P}_{2}, \ldots, \mathcal{P}_{n}\right)$-partition of the graph G is a partition $\left(V_{1}, V_{2}, \ldots, V_{n}\right)$ of $V(G)$ such that each subgraph $\left\langle V_{i}\right\rangle$ of the graph G induced by V_{i} has the property $\mathcal{P}_{i}, i=1,2, \ldots, n$. A problem of partitioning planar graphs into linear forests has been extensively studied in many papers. Broere [3], Wang [8] and Mihók [6] proved that any outerplanar graph has an $(\mathcal{L} \mathcal{F}, \mathcal{L} \mathcal{F})$ partition. Some extensions of the result given above and an algorithm can be found in [2]. The result of Poh [7] and Goddard [4] is that any planar graph has an $(\mathcal{L} \mathcal{F}, \mathcal{L} \mathcal{F}, \mathcal{L} \mathcal{F})$ - partition (i.e., into three linear forests).

2. Results

Let W be a subset of the vertex set $V(G)$ such that $\langle W\rangle$ is connected. By the operation of contraction of the vertex set W to the vertex u we will understand the removal of all the vertices belonging to W, addition of a new vertex u and all the edges required to satisfy the following condition $\mathrm{N}(u)=\bigcup_{w \in W} \mathrm{~N}(w)$, where $\mathrm{N}(v)$ denotes the neighbourhood of the vertex v in G.

Let us define a set $\operatorname{Int}(G)$ of all internal vertices of a planar graph G as a set of vertices not belonging to the external face at a certain fixed embedding of the graph G in the plane. Let $\operatorname{int}(G)=\min |\operatorname{Int}(G)|$ over all embeddings of the graph G in the plane. If $\operatorname{int}(G)=0$, then the graph G is outerplanar.

Theorem 1. Let G be a plane graph and $v \in V(G) \backslash \operatorname{Int}(G)$ an arbitrarily chosen vertex. If the following conditions are satisfied:
(i) for any $x, y \in \operatorname{Int}(G),(x, y) \notin E(G)$,
(ii) for any vertex $x \in \operatorname{Int}(G) \backslash \mathrm{N}(v), d(x)>4$,
(iii) for any vertex $x \in \operatorname{Int}(G) \cap \mathrm{N}(v), d(x)>3$,
then there exists a $\left(V_{1}, V_{2}\right)$-partition of $V(G)$ such that $\left\langle V_{i}\right\rangle \in \mathcal{L F}$ for $i=1,2$ and $v \in V_{1}, \mathrm{~N}(v) \subseteq V_{2}$.

Proof. Without loss of generality, we assume that G is maximal in the sense that graph $G+e$ does not satisfy one of the conditions (i)-(iii). The proof is by induction on the order of G. Let $|V(G)|=3$. Then the Theorem is true. Assume that the Theorem holds for all graphs of order less than k. Let $|V(G)|=k$. Let the graph G^{*} be obtained from G by contraction of the set $\mathrm{N}[v]=\mathrm{N}(v) \cup\{v\}$ to the vertex w. We are going to prove that the graph G^{*} satisfies conditions (i)-(iii).

Claim 1. The graph G^{*} satisfies conditions (i)-(iii).
Proof. The proof falls into three cases.
Case 1. It is easy to see that for any $x, y \in \operatorname{Int}\left(G^{*}\right)$ if $(x, y) \notin E(G)$, then $(x, y) \notin E\left(G^{*}\right)$, too. Thus the condition (i) is satisfied.

Case 2. From the definition of contraction of the set $\mathrm{N}[v]$ to the vertex w, it immediately follows that a degree of any vertex $x \in \operatorname{Int}(G)$ such that $\mathrm{N}(v) \cap \mathrm{N}(x)=\emptyset$ cannot be affected and $d_{G}(x)=d_{G^{*}}(x)$. Thus, for any $x \in$ $\operatorname{Int}\left(G^{*}\right) \backslash \mathrm{N}(w), d(x)>4$ and the condition (ii) is satisfied.

Case 3. If for the vertex v there exists a vertex $x \in \operatorname{Int}(G)$ such that $d_{G}(x)>4$ and $\mathrm{N}(v) \cap \mathrm{N}(x) \neq \emptyset$, then $|\mathrm{N}(v) \cap \mathrm{N}(x)| \leq 2$. If $x \notin \mathrm{~N}(v)$, then an operation of contraction of the set $\mathrm{N}(v)$ may decrease the degree of the vertex x by at most 1 . If $x \in \mathrm{~N}(v)$, then x will be contracted to the vertex $w \notin \operatorname{Int}\left(G^{*}\right)$. Thus, for any $x \in \operatorname{Int}\left(G^{*}\right) \cap \mathrm{N}(w), d(x)>3$ and the condition (iii) is satisfied.

Hence, we get the graph G^{*} which satisfies conditions (i)-(iii).

Since $\left|V\left(G^{*}\right)\right|<k$ then G^{*} has a $\left(V_{1}^{*}, V_{2}^{*}\right)$-partition of $V\left(G^{*}\right)$ such that $\left\langle V_{i}^{*}\right\rangle \in \mathcal{L F}$ for $i=1,2$ and $w \in V_{1}^{*}, \mathrm{~N}(w) \subseteq V_{2}^{*}$. Let $V_{1}=V_{2}^{*} \cup\{v\}$, $V_{2}=\left(V_{1}^{*} \backslash\{w\}\right) \cup \mathrm{N}(v)$. We are going to prove that V_{1} and V_{2} have the property $\mathcal{L \mathcal { F }}$.

Claim 2. $\langle\mathrm{N}(v)\rangle_{G}$ has the property $\mathcal{L \mathcal { F }}$.
Proof. Assuming that $H=\langle\mathrm{N}(v)\rangle_{G}$ has not the property $\mathcal{L} \mathcal{F}$ implies that H contains a cycle or a vertex of degree greater than 2 . Thus, we have the following cases:

Case 1. Let us assume that H contains a cycle C_{k} of length $k \geq 3$. Since, $C_{k}+\langle\{v\}\rangle$, where + denotes the join, contains a subgraph homeomorphic to K_{4}, then it is not outerplanar. Thus, there exists a vertex $x \in \mathrm{~N}(v)$ such that $x \in \operatorname{Int}(G)$. From (iii) it follows that $d_{G}(x)>3$, which implies an existence of the vertex y such that $(x, y) \in E(G)$ and $y \in \operatorname{Int}(G)$, contrary to (i).

Case 2. Let us assume that there exists a vertex $u \in V(H)$ such that $d_{H}(u)>2$ (i.e., H contains $K_{1,3}$ as a subgraph). Since $K_{1,3}+\langle\{v\}\rangle$ is not outerplanar, then there exists a vertex $x \in \mathrm{~N}(u)$ such that $x \in \operatorname{Int}(G)$. From (iii) it follows that $d_{G}(x)>3$, thus there exists a vertex y such that $(x, y) \in E(G)$ and $y \in \operatorname{Int}(G)$, contrary to (i).
Thus, $\langle\mathrm{N}(v)\rangle_{G}$ has the property $\mathcal{L \mathcal { F }}$.
Since $\mathrm{N}(w) \subseteq V_{2}^{*}$, then no vertex from $\mathrm{N}(v)$ has the neighbour in the set $V_{1}^{*} \backslash\{w\}$. Hence, as V_{1}^{*} and $\langle\mathrm{N}(v)\rangle_{G}$ both have the property $\mathcal{L} \mathcal{F}$, it comes out that V_{2} has the property $\mathcal{L F}$, too. Obviously, V_{1} belongs to $\mathcal{L \mathcal { F }}$ and v has no adjacent vertex in V_{1}. Thus, the partition $\left(V_{1}, V_{2}\right)$ is the required $(\mathcal{L} \mathcal{F}, \mathcal{L} \mathcal{F})$-partition of G.

Corollary 1. If a graph G is outerplanar, then for every vertex $v \in V(G)$ there exists an $(\mathcal{L F}, \mathcal{L F})$-partition of G, say $\left(V_{1}, V_{2}\right)$, such that $v \in V_{1}$ and $\mathrm{N}(v) \subseteq V_{2}$.

Theorem 2. Let G be a plane graph, $R \subseteq V(G)$ and $\operatorname{Int}(G)$ be a proper subset of R. If a subgraph of the graph G induced by R is a path, then the graph G has an $(\mathcal{L F}, \mathcal{L F})$-partition.

Proof. Contracting the set R to a vertex w, we get an outerplanar graph G^{*}. Hence, G^{*} has an $(\mathcal{L \mathcal { F }}, \mathcal{L \mathcal { F }})$-partition $\left(V_{1}^{*}, V_{2}^{*}\right)$ of $V\left(G^{*}\right)$ such that $w \in V_{1}^{*}$ and $\mathrm{N}(w) \subseteq V_{2}^{*}$. No vertex from R has a neighbour in the
set $V_{1}^{*} \backslash\{w\}$. Let $V_{1}=V_{1}^{*} \backslash\{w\} \cup R, V_{2}=V_{2}^{*}$. Since $\left\langle V_{1}^{*}\right\rangle_{G}$ and $\langle R\rangle_{G}$ both have the $\mathcal{L \mathcal { F }}$ property, then V_{1} belongs to $\mathcal{L \mathcal { F }}$, too. Obviously, $\left(V_{1}, V_{2}\right)$ is an $(\mathcal{L F}, \mathcal{L} \mathcal{F})$-partition of G.

Corollary 2. Let G be a maximal outerplanar graph with an outer-cycle C. Let $P \leq C$ be an induced path of C. Then G has an $(\mathcal{L} \mathcal{F}, \mathcal{L} \mathcal{F})$-partition $\left(V_{1}, V_{2}\right)$ of $V(G)$ such that $V(P) \subseteq V_{1}$.

Theorem 3. Every planar graph G with $\operatorname{int}(G) \leq 2$ has an $(\mathcal{L} \mathcal{F}, \mathcal{L} \mathcal{F})$ partition.

Proof. The proof falls naturally into three cases.
Case 1. $\operatorname{int}(G)=0$.
If $\operatorname{int}(G)=0$, then the graph G is outerplanar and it has an $(\mathcal{L F}, \mathcal{L} \mathcal{F})$ partition.

Case 2. $\operatorname{int}(G)=1$.
Let $v \in \operatorname{Int}(G)$ and $u \in \mathrm{~N}(v)$. It is easy to notice that $u \notin \operatorname{Int}(G)$. According to Theorem 2, if $R=\{v, u\}$, then the graph G has an $(\mathcal{L} \mathcal{F}, \mathcal{L} \mathcal{F})$-partition.

Case 3. $\operatorname{int}(G)=2$.
We can consider a maximal plane graph G with $\operatorname{Int}(G)=\left\{r_{1}, r_{2}\right\}$.
Subcase 3.1. r_{1} is adjacent to r_{2}.
There exists a vertex u adjacent to r_{1} such that u is not adjacent to r_{2}. According to Theorem 2 , if $R=\left\{u, r_{1}, r_{2}\right\}$, then the graph G has an $(\mathcal{L} \mathcal{F}, \mathcal{L} \mathcal{F})$ partition.

Subcase 3.2. r_{1} is not adjacent to r_{2}.
Let R contain all the vertices belonging to the shortest path from r_{1} to r_{2}. Since $\langle R\rangle_{G}$ is a path and R contains at least one vertex not belonging to $\operatorname{Int}(G)$, i.e., $\operatorname{Int}(G)$ is a proper subgraph of R, then according to Theorem 2, the graph G has an $(\mathcal{L F}, \mathcal{L F})$-partition.

Theorem 4. Let G be a planar graph of order $n \leq 9$ with $\operatorname{int}(G)=3$. Then G has an $(\mathcal{L} \mathcal{F}, \mathcal{L} \mathcal{F})$-partition.

Proof. If $\operatorname{int}(G) \leq 2$, then by Theorem 3, independently of the order n, the graph G has an $(\mathcal{L F}, \mathcal{L F})$-partition.
Let us consider a planar graph with $\operatorname{int}(G)=3$, where $\operatorname{Int}(G)=\left\{r_{1}, r_{2}, r_{3}\right\}$. Without loss of generality we assume that G is a near-triangulation, i.e., G is a plane graph which consists of an outer-cycle $C_{k}: v_{1} v_{2} \ldots v_{k} v_{1}$ in
clockwise order and vertices and edges inside C_{k} such that each bounded face is bounded by a triangle. Since the graph G is of order $n \leq 9$ and $\operatorname{int}(G)=3$, then $3 \leq k \leq 6$. Let $S\left(r_{i}\right)=\mathrm{N}\left(r_{i}\right) \cap V\left(C_{k}\right)$ be the set of the vertices of the cycle C_{k} that are adjacent to the vertex $r_{i} \in \operatorname{Int}(G)$ and $s_{i}=\left|S\left(r_{i}\right)\right|$. Then we have to consider four cases. Cases 1 and 2 are considered under the assumption that C_{k} is a chordless cycle. But, if there is a chord, then it divides the graph G into G_{1} and G_{2}, such that $\operatorname{Int}\left(G_{1}\right)=\left\{r_{1}, r_{2}, r_{3}\right\}$ and G_{2} is outerplanar. Then an $(\mathcal{L} \mathcal{F}, \mathcal{L} \mathcal{F})$-partition of G_{1} can be easily extended to G.

Case 1. $\langle\operatorname{Int}(G)\rangle=K_{3}$.
Let the vertices r_{1}, r_{2}, r_{3} be in clockwise order and $s_{1} \leq s_{2}$ and $s_{1} \leq s_{3}$. If $S\left(r_{1}\right)=\left\{v_{1}, \ldots, v_{s_{1}}\right\}, S\left(r_{2}\right)=\left\{v_{s_{1}}, \ldots, v_{s_{1}+s_{2}-1}\right\}, S\left(r_{3}\right)=\left\{v_{s_{1}+s_{2}-1}\right.$, $\left.\ldots, v_{1}\right\}$, then the partition $\left(V_{1}, V_{2}\right)$ can be obtained as follows:

$$
V_{1}=\left\{r_{3}, v_{1}, \ldots, v_{s_{1}+s_{2}-2}\right\}, V_{2}=\left\{r_{1}, r_{2}, v_{s_{1}+s_{2}-1}, \ldots, v_{k}\right\}
$$

Case 2. $\langle\operatorname{Int}(G)\rangle=P_{3}$.
Let $\mathrm{N}\left(r_{2}\right) \supseteq\left\{r_{1}, r_{3}\right\}$ and $s_{1} \leq s_{3}$. Then we have two subcases.
Case 2.1. $s_{3}=2$.
If $s_{3}=2$, then there exists a vertex $v \in C_{k}$ such that $v \in \mathrm{~N}\left(r_{1}\right) \cap \mathrm{N}\left(r_{2}\right) \backslash \mathrm{N}\left(r_{3}\right)$. Then $V_{1}=\left\{r_{2}, r_{3}, v\right\}$ and $V_{2}=\left\{r_{1}\right\} \cup\left(C_{k} \backslash\{v\}\right)$.

Case 2.2. $s_{3}>2$.
If $s_{3}>2$, then there exists a vertex $v \in C_{k}$ such that $v \in \mathrm{~N}\left(r_{3}\right) \backslash\left(\mathrm{N}\left(r_{1}\right) \cup\right.$ $\left.\mathrm{N}\left(r_{2}\right)\right)$. Then $V_{1}=\left\{r_{1}, r_{2}, r_{3}, v\right\}$ and $V_{2}=C_{k} \backslash\{v\}$.

Case 3. $\langle\operatorname{Int}(G)\rangle=\overline{K_{3}}$.
It is easy to see that for any graph G considered in this case $|V(G)| \geq 8$ and the cycle C_{k} has at least two chords. If $|V(G)|=9$, then we have eight graphs. Their $(\mathcal{L} \mathcal{F}, \mathcal{L} \mathcal{F})$-partitions are shown in Figure 1.

There is only one graph H such that $|V(H)|=8$. It is easy to see that H is a subgraph of two graphs presented at the bottom line of Figure 1.

Case 4. $\langle\operatorname{Int}(G)\rangle=\overline{P_{3}}$.
In this case C_{k} has at least one chord. Thus, G is divided by this chord into two graphs G_{i} with $\operatorname{int}\left(G_{i}\right)=i, i=1,2$. Each of them has an $(\mathcal{L} \mathcal{F}, \mathcal{L} \mathcal{F})$ partition which can be extended to the other one. The details are left to the reader.

Figure 1
Theorem 5. For every integer $n \geq 10$ there exists a planar graph G of order n with $\operatorname{int}(G)=3$, which does not have an $(\mathcal{L F}, \mathcal{L F})$-partition.
Proof.

Figure 2
Let us partition the set $V(G)$ of the graph G in Figure 2 into two subsets V_{1} and V_{2}. Assuming that $a \in V_{1}$, at least one of the vertices from $\{b, c, d\},\{e, f, g\}$ and $\{h, i, j\}$ must belong to V_{1}. Otherwise, $\left\langle V_{2}\right\rangle_{G}$ would have contained a cycle. But the set V_{1} constructed in this way induces a subgraph containing a vertex of a degree greater than 2 . Thus, any planar graph containing the graph G as its subgraph does not have an $(\mathcal{L F}, \mathcal{L F})$-partition.

Acknowledgement

The authors of this paper wish to thank the refree for his suggestions and critical comments that were found very helpful.

References

[1] M. Borowiecki, P. Mihók, Hereditary properties of graphs, in: Advances in Graph Theory (Vishwa International Publications, 1991) 41-68.
[2] P. Borowiecki, P-Bipartitions of Graphs, Vishwa International J. Graph Theory 2 (1993) 109-116.
[3] I. Broere, C.M. Mynhardt, Generalized colourings of outerplanar and planar graphs, in: Graph Theory with Applications to Algorithms and Computer Science (Wiley, New York, 1985) 151-161.
[4] W. Goddard, Acyclic colourings of planar graphs, Discrete Math. 91 (1991) 91-94.
[5] T.R. Jensen and B. Toft, Graph Colouring Problems (Wiley-Interscience Publications, New York, 1995).
[6] P. Mihók, On the vertex partition numbers, in: M. Fiedler, ed., Graphs and Other Combinatorial Topics, Proc. Third Czech. Symp. Graph Theory, Prague, 1982 (Teubner-Verlag, Leipzig, 1983) 183-188.
[7] K.S. Poh, On the Linear Vertex-Arboricity of a Planar Graph, J. Graph Theory 14 (1990) 73-75.
[8] J. Wang, On point-linear arboricity of planar graphs, Discrete Math. 72 (1988) 381-384.

Received 3 January 1997
Revised 25 February 1997

