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Abstract

We prove that for any two minor hereditary properties P1 and P2,
such that P2 covers P1, and for any graph G ∈ P2 there is a P1-
bipartition of G. Some remarks on minimal reducible bounds are also
included.
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1. Introduction and Notation

According to [3] we denote by I the class of all finite simple graphs. A graph
property is a nonempty isomorphism-closed subclass of I. We also say that a
graph has the property P if G ∈ P. For properties P1,P2 of graphs a vertex
(P1,P2)-partition of a graph G is a partition (V1, V2) of V (G) such that the
subgraph G[Vi] induced by the set Vi has the property Pi for each i = 1, 2.
The class of all vertex (P1,P2)-partitionable graphs is denoted by P1◦P2. If
P1 = P2 = P, then a (P1,P2)-partition (as in [4]) we call a P-bipartition.
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Let be given a graph G ∈ I. A contraction of the graph G is a graph
obtained from G by repeated contractions of edges, where contraction of an
edge (v1, v2) of the graph G is obtained by deleting v1 and v2 and all incident
edges from G and adding a new vertex u and all the edges required to satisfy
the following condition N(u) =N(v1)∪N(v2)\{v1, v2}.

A graph H obtained from G by deletions of vertices or edges, or con-
tractions of edges is called a minor of G. So, the graph H is a minor of the
graph G if H is a subgraph of G or can be obtained from a subgraph of G
by contractions of edges. We express this relation between the graphs H
and G by H < G.

A property P of graphs is called minor hereditary (hereditary) if it is
closed under minors (subgraphs), i.e., if whenever G ∈ P and H is a minor
(subgraph) of G, then also H ∈ P.

Any minor hereditary property P can be uniquely determined by the
set of forbidden minors which can be defined in the following way:
FM (P) = {G ∈ I : G /∈ P but each minor H of G, H 6= G, belongs to P}.
A property P is called additive if it is closed under disjoint union of graphs,
i.e., if for each graph G all of whose connected components have a property
P it follows that G has a property P, too. It is easy to see that a minor
hereditary property P is additive if and only if all minors H ∈ FM (P) are
connected.

Many well-known properties of graphs are both minor hereditary and
additive. According to [2], [3] we list some of them to introduce the neccesary
notions which will be used in the paper. It is convenient to work with an
arbitrary nonnegative integer k.
O = {G ∈ I : G is edgeless, i.e., E(G) = ∅},
D1 = {G ∈ I : G is 1-degenerate, i.e., the minimum degree δ(H) ≤ 1

for each H ⊆ G},
Tk = {G ∈ I : G contains no subgraph homeomorphic to Kk+2

or Kb k+3
2
c,d k+3

2
e}, k ≤ 3,

SP = {G ∈ I : G contains no subgraph homeomorphic to K4}.
We have D1 = T1 to be the class of all forests, T2 and T3 the class of
all outerplanar and all planar graphs, respectively and SP the class of all
series-parallel graphs.

For the properties given above we have:
FM (O) = {K2},
FM (D1) = {K3},
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FM (T2) = {K4, K2,3},
FM (T3) = {K5, K3,3},
FM (SP) = {K4}.

Let us define the next properties.
FM (LF) = {K3,K1,3},
FM (S) = {K4,K1,3 + K1}.

All additive minor hereditary (hereditary) properties of graphs, partially
ordered by a set-inclusion, form a lattice Ta, ( La) with ∩ as a meet operation
and O as the smallest element (see [2]).

All the above listed properties form in Ta the following chain:
O ⊂ LF ⊂ D1 ⊂ T2 ⊂ S ⊂ SP ⊂ T3.

2. P-Bipartition Theorem

Definition. Let P1 and P2 be two additive minor hereditary properties.
We say that P2 covers P1 whenever for every graph G1 ∈ FM (P1) there
exists a graph G2 ∈ FM (P2) such that G2 − v is a minor of G1 for some
vertex v ∈ V (G2).

Theorem 1. If P2 covers P1, then the vertex set of a graph G ∈ P2 can be
partitioned into two subsets such that each of them induces a subgraph of G
belonging to P1.

Proof. Let us consider a given graph G ∈ P2 with an arbitrarily choosen
vertex v. It is sufficient to consider a case when G is connected. We define
the subsets Uk = {u ∈ V (G) : d(v, u) = k}, where d(u, v) is the length
of the shortest path between v and u. Put e = max{k : Uk 6= ∅}. Then
U0, U1, . . . , Ue is a partition of V (G) into e + 1 pairwise disjoint subsets.
Moreover, a subgraph induced by U0 = {v} belongs to P1. Now, let us
assume to the contrary, that one of the subsets Uk, k = 1, . . . , e, induces
a subgraph of G, which is not in P1. Thus there is a minor H of G[Uk]
belonging to FM (P1). Since the subgraph of G induced by U

′
=

⋃k−1
i=0 Ui

is connected and every vertex of Uk is adjacent to a vertex of Uk−1 ⊆ U
′
,

then the graph H + K1 is a minor of G. Since P2 covers P1, then FM (P2)
contains a graph H

′
such that H

′ − u is a minor of H, for some u ∈ V (H
′
).

Obviously, H
′
is a minor of H + K1. Hence, since H + K1 is a minor of G,

then H
′
is a minor of G, contrary to G ∈ P2. Therefore, each of the subsets

Ui, i = 0, 1, . . . , e induces a subgraph of G belonging to P1. Since vertices
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u ∈ Ui and w ∈ Uj , for |i − j| > 1 are non-adjacent in G, then both of the
sets V1 =

⋃de/2e
i=1 U2i−1 and V2 =

⋃be/2c
i=0 U2i induce subgraphs of G belonging

to P1, i.e., the partition (V1, V2) is the required P1-bipartition of V (G).

From the theorem given above, a series of well-known results follows:
(a) D1 ⊂ O2,
(b) T2 ⊂ LF2

proved by Mihók [10], Broere and Mynhardt [5], Wang [13], and God-
dard [8],

(c) SP ⊂ D1
2

which is the result of Dirac [7],
(d) T3 ⊂ T2

2

proved by Broere and Mynhardt [5], Wang [13] and Poh [12].

The new conclusions can be drawn, too. For the class S defined by FM (S) =
{K4,K1,3 + K1} we have:

(e) S ⊂ LF2.

3. Minimal Reducible Bounds

An additive hereditary property R is called reducible in La, if there exist
additive hereditary properties P1,P2 such that P = P1◦P2, and it is called
irreducible, otherwise.

For a given property P, a reducible property R is called minimal re-
ducible bound for P if P ⊂ R and there is no reducible property R′ ⊂ R
satisfying P ⊆ R′. The set of all minimal reducible bounds for P will
be denoted by B(P). The notion of minimal reducible bounds have been
introduced in [11]. In this paper Mihók proved that the class T2 of out-
erplanar graphs has exactly two minimal reducible bounds, i.e., B(T2) =
{LF2,O◦D1}. A similar results for SP and D2 can be found in [1], namely,
B(SP)=B(D2) = {O◦D1}.
By the transitivity and Mihók’s proof (see [11]) we have the following min-
imal reducible bounds for the property S ⊃ T2.

Theorem 2. B(S) = {LF2,O◦D1}.
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hereditary properties of graphs, Discussiones Mathematicae Graph Theory 17
(1997) 5–50.
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