Discussiones Mathematicae Graph Theory 17(1997) 89–93

P-BIPARTITIONS OF MINOR HEREDITARY PROPERTIES

PIOTR BOROWIECKI

Institute of Mathematics Technical University Podgórna 50, 65–246 Zielona Góra, Poland **e-mail:** p.borowiecki@im.pz.zgora.pl

AND

JAROSLAV IVANČO

Department of Geometry and Algebra P.J. Šafárik University Jesenná 5, 041 54 Košice, Slovakia e-mail: ivanco@duro.upjs.sk

Abstract

We prove that for any two minor hereditary properties \mathcal{P}_1 and \mathcal{P}_2 , such that \mathcal{P}_2 covers \mathcal{P}_1 , and for any graph $G \in \mathcal{P}_2$ there is a \mathcal{P}_1 bipartition of G. Some remarks on minimal reducible bounds are also included.

Keywords: minor hereditary property of graphs, generalized colouring, bipartitions of graphs.

1991 Mathematics Subject Classification: 05C70, 05C15.

1. INTRODUCTION AND NOTATION

According to [3] we denote by \mathcal{I} the class of all finite simple graphs. A graph property is a nonempty isomorphism-closed subclass of \mathcal{I} . We also say that a graph has the property \mathcal{P} if $G \in \mathcal{P}$. For properties $\mathcal{P}_1, \mathcal{P}_2$ of graphs a vertex $(\mathcal{P}_1, \mathcal{P}_2)$ -partition of a graph G is a partition (V_1, V_2) of V(G) such that the subgraph $G[V_i]$ induced by the set V_i has the property \mathcal{P}_i for each i = 1, 2. The class of all vertex $(\mathcal{P}_1, \mathcal{P}_2)$ -partitionable graphs is denoted by $\mathcal{P}_1 \circ \mathcal{P}_2$. If $\mathcal{P}_1 = \mathcal{P}_2 = \mathcal{P}$, then a $(\mathcal{P}_1, \mathcal{P}_2)$ -partition (as in [4]) we call a \mathcal{P} -bipartition. Let be given a graph $G \in \mathcal{I}$. A contraction of the graph G is a graph obtained from G by repeated contractions of edges, where contraction of an edge (v_1, v_2) of the graph G is obtained by deleting v_1 and v_2 and all incident edges from G and adding a new vertex u and all the edges required to satisfy the following condition $N(u) = N(v_1) \cup N(v_2) \setminus \{v_1, v_2\}$.

A graph H obtained from G by deletions of vertices or edges, or contractions of edges is called a *minor* of G. So, the graph H is a minor of the graph G if H is a subgraph of G or can be obtained from a subgraph of Gby contractions of edges. We express this relation between the graphs Hand G by H < G.

A property \mathcal{P} of graphs is called *minor hereditary* (*hereditary*) if it is closed under minors (subgraphs), i.e., if whenever $G \in \mathcal{P}$ and H is a minor (subgraph) of G, then also $H \in \mathcal{P}$.

Any minor hereditary property \mathcal{P} can be uniquely determined by the set of *forbidden minors* which can be defined in the following way:

 $F_{M}(\mathcal{P}) = \{ G \in \mathcal{I} : G \notin \mathcal{P} \text{ but each minor } H \text{ of } G, H \neq G, \text{ belongs to } \mathcal{P} \}.$

A property \mathcal{P} is called *additive* if it is closed under disjoint union of graphs, i.e., if for each graph G all of whose connected components have a property \mathcal{P} it follows that G has a property \mathcal{P} , too. It is easy to see that a minor hereditary property \mathcal{P} is additive if and only if all minors $H \in \mathbf{F}_{\mathbf{M}}(\mathcal{P})$ are connected.

Many well-known properties of graphs are both minor hereditary and additive. According to [2], [3] we list some of them to introduce the neccesary notions which will be used in the paper. It is convenient to work with an arbitrary nonnegative integer k.

- $\mathcal{O} = \{G \in \mathcal{I} : G \text{ is edgeless, i.e., } E(G) = \emptyset\},\$
- $\mathcal{D}_1 = \{ G \in \mathcal{I} : G \text{ is 1-degenerate, i.e., the minimum degree } \delta(H) \le 1$ for each $H \subseteq G \},$
- $\begin{array}{ll} \mathcal{T}_k &=& \{G \in \mathcal{I} : G \text{ contains no subgraph homeomorphic to } K_{k+2} \\ & \text{ or } K_{\lfloor \frac{k+3}{2} \rfloor, \lceil \frac{k+3}{2} \rceil} \}, k \leq 3, \end{array}$
- $SP = \{G \in \mathcal{I} : G \text{ contains no subgraph homeomorphic to } K_4\}.$

We have $\mathcal{D}_1 = \mathcal{T}_1$ to be the class of all forests, \mathcal{T}_2 and \mathcal{T}_3 the class of all outerplanar and all planar graphs, respectively and $S\mathcal{P}$ the class of all series-parallel graphs.

For the properties given above we have:

$$F_{\boldsymbol{M}}(\mathcal{O}) = \{K_2\}, F_{\boldsymbol{M}}(\mathcal{D}_1) = \{K_3\},$$

$$F_{M}(\mathcal{T}_{2}) = \{K_{4}, K_{2,3}\}, F_{M}(\mathcal{T}_{3}) = \{K_{5}, K_{3,3}\}, F_{M}(\mathcal{SP}) = \{K_{4}\}.$$

Let us define the next properties.

$$F_{M}(\mathcal{LF}) = \{K_3, K_{1,3}\}, F_{M}(\mathcal{S}) = \{K_4, K_{1,3} + K_1\}.$$

All additive minor hereditary (hereditary) properties of graphs, partially ordered by a set-inclusion, form a lattice \mathbf{T}^{a} , (\mathbb{L}^{a}) with \cap as a meet operation and \mathcal{O} as the smallest element (see [2]).

All the above listed properties form in \mathbf{T}^a the following chain: $\mathcal{O} \subset \mathcal{LF} \subset \mathcal{D}_1 \subset \mathcal{T}_2 \subset \mathcal{S} \subset \mathcal{SP} \subset \mathcal{T}_3.$

2. \mathcal{P} -Bipartition Theorem

Definition. Let \mathcal{P}_1 and \mathcal{P}_2 be two additive minor hereditary properties. We say that \mathcal{P}_2 covers \mathcal{P}_1 whenever for every graph $G_1 \in \mathbf{F}_{\mathbf{M}}(\mathcal{P}_1)$ there exists a graph $G_2 \in \mathbf{F}_{\mathbf{M}}(\mathcal{P}_2)$ such that $G_2 - v$ is a minor of G_1 for some vertex $v \in V(G_2)$.

Theorem 1. If \mathcal{P}_2 covers \mathcal{P}_1 , then the vertex set of a graph $G \in \mathcal{P}_2$ can be partitioned into two subsets such that each of them induces a subgraph of G belonging to \mathcal{P}_1 .

Proof. Let us consider a given graph $G \in \mathcal{P}_2$ with an arbitrarily choosen vertex v. It is sufficient to consider a case when G is connected. We define the subsets $U_k = \{u \in V(G) : d(v, u) = k\}$, where d(u, v) is the length of the shortest path between v and u. Put $e = \max\{k : U_k \neq \emptyset\}$. Then U_0, U_1, \ldots, U_e is a partition of V(G) into e + 1 pairwise disjoint subsets. Moreover, a subgraph induced by $U_0 = \{v\}$ belongs to \mathcal{P}_1 . Now, let us assume to the contrary, that one of the subsets $U_k, k = 1, \ldots, e$, induces a subgraph of G, which is not in \mathcal{P}_1 . Thus there is a minor H of $G[U_k]$ belonging to $\mathbf{F}_{\mathbf{M}}(\mathcal{P}_1)$. Since the subgraph of G induced by $U' = \bigcup_{i=0}^{k-1} U_i$ is connected and every vertex of U_k is adjacent to a vertex of $U_{k-1} \subseteq U'$, then the graph $H + K_1$ is a minor of G. Since \mathcal{P}_2 covers \mathcal{P}_1 , then $\mathbf{F}_{\mathbf{M}}(\mathcal{P}_2)$ contains a graph H' such that H' - u is a minor of H, for some $u \in V(H')$. Obviously, H' is a minor of $H + K_1$. Hence, since $H + K_1$ is a minor of G, then H' is a minor of G, contrary to $G \in \mathcal{P}_2$. Therefore, each of the subsets $U_i, i = 0, 1, \ldots, e$ induces a subgraph of G belonging to \mathcal{P}_1 . Since vertices $u \in U_i$ and $w \in U_j$, for |i - j| > 1 are non-adjacent in G, then both of the sets $V_1 = \bigcup_{i=1}^{\lceil e/2 \rceil} U_{2i-1}$ and $V_2 = \bigcup_{i=0}^{\lfloor e/2 \rfloor} U_{2i}$ induce subgraphs of G belonging to \mathcal{P}_1 , i.e., the partition (V_1, V_2) is the required \mathcal{P}_1 -bipartition of V(G).

From the theorem given above, a series of well-known results follows:

- (a) $\mathcal{D}_1 \subset \mathcal{O}^2$,
- (b) *T*₂ ⊂ *LF*² proved by Mihók [10], Broere and Mynhardt [5], Wang [13], and Goddard [8],
- (c) $SP \subset D_1^2$ which is the result of Dirac [7],
- (d) $\mathcal{T}_3 \subset \mathcal{T}_2^2$ proved by Broere and Mynhardt [5], Wang [13] and Poh [12].

The new conclusions can be drawn, too. For the class S defined by $F_M(S) = \{K_4, K_{1,3} + K_1\}$ we have:

(e) $\mathcal{S} \subset \mathcal{LF}^2$.

3. MINIMAL REDUCIBLE BOUNDS

An additive hereditary property \mathcal{R} is called *reducible* in \mathbb{L}^a , if there exist additive hereditary properties $\mathcal{P}_1, \mathcal{P}_2$ such that $\mathcal{P} = \mathcal{P}_1 \circ \mathcal{P}_2$, and it is called *irreducible*, otherwise.

For a given property \mathcal{P} , a reducible property \mathcal{R} is called *minimal reducible bound* for \mathcal{P} if $\mathcal{P} \subset \mathcal{R}$ and there is no reducible property $\mathcal{R}' \subset \mathcal{R}$ satisfying $\mathcal{P} \subseteq \mathcal{R}'$. The set of all minimal reducible bounds for \mathcal{P} will be denoted by $\mathbf{B}(\mathcal{P})$. The notion of minimal reducible bounds have been introduced in [11]. In this paper Mihók proved that the class \mathcal{T}_2 of outerplanar graphs has exactly two minimal reducible bounds, i.e., $\mathbf{B}(\mathcal{T}_2) =$ $\{\mathcal{LF}^2, \mathcal{O} \circ \mathcal{D}_1\}$. A similar results for \mathcal{SP} and \mathcal{D}_2 can be found in [1], namely, $\mathbf{B}(\mathcal{SP}) = \mathbf{B}(\mathcal{D}_2) = \{\mathcal{O} \circ \mathcal{D}_1\}$.

By the transitivity and Mihók's proof (see [11]) we have the following minimal reducible bounds for the property $S \supset T_2$.

Theorem 2. $B(S) = \{\mathcal{LF}^2, \mathcal{O} \circ \mathcal{D}_1\}.$

References

M. Borowiecki, I. Broere and P. Mihók, *Minimal reducible bounds for planar graphs* (submitted).

- [2] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discussiones Mathematicae Graph Theory 17 (1997) 5–50.
- [3] M. Borowiecki and P. Mihók, *Hereditary Properties of Graphs*, in: Advances in Graph Theory (Vishwa Intern. Publications, 1991) 41–68.
- [4] P. Borowiecki, *P-Bipartitions of Graphs*, Vishwa Intern. J. Graph Theory 2 (1993) 109–116.
- [5] I. Broere and C.M. Mynhardt, Generalized colourings of outerplanar and planar graphs, in: Graph Theory with Applications to Algorithms and Computer Science (Willey, New York, 1985) 151–161.
- [6] G. Chartrand and L. Lesniak, Graphs and Digraphs (Second Edition, Wadsworth & Brooks/Cole, Monterey, 1986).
- [7] G. Dirac, A property of 4-chromatic graphs and remarks on critical graphs, J. London Math. Soc. 27 (1952) 85–92.
- [8] W. Goddard, Acyclic colorings of planar graphs, Discrete Math. 91 (1991) 91–94.
- [9] T.R. Jensen and B. Toft, Graph Colouring Problems (Wiley-Interscience Publications, New York, 1995).
- [10] P. Mihók, On the vertex partition numbers of graphs, in: M. Fiedler, ed., Graphs and Other Combinatorial Topics, Proc. Third Czech. Symp. Graph Theory, Prague, 1982 (Teubner-Verlag, Leipzig, 1983) 183–188.
- P. Mihók, On the minimal reducible bound for outerplanar and planar graphs, Discrete Math. 150 (1996) 431–435.
- [12] K.S. Poh, On the Linear Vertex-Arboricity of a Planar Graph, J. Graph Theory 14 (1990) 73–75.
- [13] J. Wang, On point-linear arboricity of planar graphs, Discrete Math. 72 (1988) 381–384.

Received 25 February 1997