P-BIPARTITIONS OF MINOR HEREDITARY PROPERTIES #### PIOTR BOROWIECKI Institute of Mathematics Technical University Podgórna 50, 65–246 Zielona Góra, Poland e-mail: p.borowiecki@im.pz.zgora.pl #### AND #### Jaroslav Ivančo Department of Geometry and Algebra P.J. Šafárik University Jesenná 5, 041 54 Košice, Slovakia e-mail: ivanco@duro.upjs.sk #### Abstract We prove that for any two minor hereditary properties \mathcal{P}_1 and \mathcal{P}_2 , such that \mathcal{P}_2 covers \mathcal{P}_1 , and for any graph $G \in \mathcal{P}_2$ there is a \mathcal{P}_1 -bipartition of G. Some remarks on minimal reducible bounds are also included. **Keywords:** minor hereditary property of graphs, generalized colouring, bipartitions of graphs. 1991 Mathematics Subject Classification: 05C70, 05C15. #### 1. Introduction and Notation According to [3] we denote by \mathcal{I} the class of all finite simple graphs. A graph property is a nonempty isomorphism-closed subclass of \mathcal{I} . We also say that a graph has the property \mathcal{P} if $G \in \mathcal{P}$. For properties $\mathcal{P}_1, \mathcal{P}_2$ of graphs a vertex $(\mathcal{P}_1, \mathcal{P}_2)$ -partition of a graph G is a partition (V_1, V_2) of V(G) such that the subgraph $G[V_i]$ induced by the set V_i has the property \mathcal{P}_i for each i = 1, 2. The class of all vertex $(\mathcal{P}_1, \mathcal{P}_2)$ -partitionable graphs is denoted by $\mathcal{P}_1 \circ \mathcal{P}_2$. If $\mathcal{P}_1 = \mathcal{P}_2 = \mathcal{P}$, then a $(\mathcal{P}_1, \mathcal{P}_2)$ -partition (as in [4]) we call a \mathcal{P} -bipartition. Let be given a graph $G \in \mathcal{I}$. A contraction of the graph G is a graph obtained from G by repeated contractions of edges, where contraction of an edge (v_1, v_2) of the graph G is obtained by deleting v_1 and v_2 and all incident edges from G and adding a new vertex u and all the edges required to satisfy the following condition $N(u) = N(v_1) \cup N(v_2) \setminus \{v_1, v_2\}$. A graph H obtained from G by deletions of vertices or edges, or contractions of edges is called a *minor* of G. So, the graph H is a minor of the graph G if H is a subgraph of G or can be obtained from a subgraph of G by contractions of edges. We express this relation between the graphs H and G by H < G. A property \mathcal{P} of graphs is called *minor hereditary* (hereditary) if it is closed under minors (subgraphs), i.e., if whenever $G \in \mathcal{P}$ and H is a minor (subgraph) of G, then also $H \in \mathcal{P}$. Any minor hereditary property \mathcal{P} can be uniquely determined by the set of *forbidden minors* which can be defined in the following way: $$F_M(\mathcal{P}) = \{G \in \mathcal{I} : G \notin \mathcal{P} \text{ but each minor } H \text{ of } G, H \neq G, \text{ belongs to } \mathcal{P}\}.$$ A property \mathcal{P} is called *additive* if it is closed under disjoint union of graphs, i.e., if for each graph G all of whose connected components have a property \mathcal{P} it follows that G has a property \mathcal{P} , too. It is easy to see that a minor hereditary property \mathcal{P} is additive if and only if all minors $H \in F_M(\mathcal{P})$ are connected. Many well-known properties of graphs are both minor hereditary and additive. According to [2], [3] we list some of them to introduce the necessary notions which will be used in the paper. It is convenient to work with an arbitrary nonnegative integer k. ``` \mathcal{O} = \{G \in \mathcal{I} : G \text{ is edgeless, i.e., } E(G) = \emptyset\},\ ``` $\mathcal{D}_1 = \{G \in \mathcal{I} : G \text{ is 1-degenerate, i.e., the minimum degree } \delta(H) \leq 1 \text{ for each } H \subseteq G\},$ $\begin{array}{rcl} \mathcal{T}_k &=& \{G \in \mathcal{I} : G \text{ contains no subgraph homeomorphic to } K_{k+2} \\ & \text{ or } K_{\left \lfloor \frac{k+3}{2} \right \rfloor, \left \lceil \frac{k+3}{2} \right \rceil} \}, k \leq 3, \end{array}$ $\mathcal{SP} = \{G \in \mathcal{I} : G \text{ contains no subgraph homeomorphic to } K_4 \}.$ We have $\mathcal{D}_1 = \mathcal{T}_1$ to be the class of all forests, \mathcal{T}_2 and \mathcal{T}_3 the class of all outerplanar and all planar graphs, respectively and \mathcal{SP} the class of all series-parallel graphs. For the properties given above we have: $$F_{\mathbf{M}}(\mathcal{O}) = \{K_2\},$$ $F_{\mathbf{M}}(\mathcal{D}_1) = \{K_3\},$ $$F_{M}(T_{2}) = \{K_{4}, K_{2,3}\},\ F_{M}(T_{3}) = \{K_{5}, K_{3,3}\},\ F_{M}(\mathcal{SP}) = \{K_{4}\}.$$ Let us define the next properties. $$F_{M}(\mathcal{LF}) = \{K_3, K_{1,3}\},\$$ $F_{M}(S) = \{K_4, K_{1,3} + K_1\}.$ All additive minor hereditary (hereditary) properties of graphs, partially ordered by a set-inclusion, form a lattice \mathbf{T}^a , (\mathbb{L}^a) with \cap as a meet operation and \mathcal{O} as the smallest element (see [2]). All the above listed properties form in \mathbf{T}^a the following chain: $$\mathcal{O} \subset \mathcal{LF} \subset \mathcal{D}_1 \subset \mathcal{T}_2 \subset \mathcal{S} \subset \mathcal{SP} \subset \mathcal{T}_3.$$ #### 2. \mathcal{P} -Bipartition Theorem **Definition.** Let \mathcal{P}_1 and \mathcal{P}_2 be two additive minor hereditary properties. We say that \mathcal{P}_2 covers \mathcal{P}_1 whenever for every graph $G_1 \in \mathbf{F}_{\mathbf{M}}(\mathcal{P}_1)$ there exists a graph $G_2 \in \mathbf{F}_{\mathbf{M}}(\mathcal{P}_2)$ such that $G_2 - v$ is a minor of G_1 for some vertex $v \in V(G_2)$. **Theorem 1.** If \mathcal{P}_2 covers \mathcal{P}_1 , then the vertex set of a graph $G \in \mathcal{P}_2$ can be partitioned into two subsets such that each of them induces a subgraph of G belonging to \mathcal{P}_1 . **Proof.** Let us consider a given graph $G \in \mathcal{P}_2$ with an arbitrarily choosen vertex v. It is sufficient to consider a case when G is connected. We define the subsets $U_k = \{u \in V(G) : d(v,u) = k\}$, where d(u,v) is the length of the shortest path between v and u. Put $e = \max\{k : U_k \neq \emptyset\}$. Then U_0, U_1, \ldots, U_e is a partition of V(G) into e+1 pairwise disjoint subsets. Moreover, a subgraph induced by $U_0 = \{v\}$ belongs to \mathcal{P}_1 . Now, let us assume to the contrary, that one of the subsets U_k , $k=1,\ldots,e$, induces a subgraph of G, which is not in \mathcal{P}_1 . Thus there is a minor H of $G[U_k]$ belonging to $F_M(\mathcal{P}_1)$. Since the subgraph of G induced by $U' = \bigcup_{i=0}^{k-1} U_i$ is connected and every vertex of U_k is adjacent to a vertex of $U_{k-1} \subseteq U'$, then the graph $H + K_1$ is a minor of G. Since \mathcal{P}_2 covers \mathcal{P}_1 , then $F_M(\mathcal{P}_2)$ contains a graph H' such that H' - u is a minor of H, for some $u \in V(H')$. Obviously, H' is a minor of H, thence, since $H + K_1$ is a minor of H, then H' is a minor of H, contrary to H is a minor of H. Since vertices H is a subgraph of H belonging to H. Since vertices $u \in U_i$ and $w \in U_j$, for |i-j| > 1 are non-adjacent in G, then both of the sets $V_1 = \bigcup_{i=1}^{\lceil e/2 \rceil} U_{2i-1}$ and $V_2 = \bigcup_{i=0}^{\lfloor e/2 \rfloor} U_{2i}$ induce subgraphs of G belonging to \mathcal{P}_1 , i.e., the partition (V_1, V_2) is the required \mathcal{P}_1 -bipartition of V(G). From the theorem given above, a series of well-known results follows: - (a) $\mathcal{D}_1 \subset \mathcal{O}^2$, - (b) $\mathcal{T}_2 \subset \mathcal{LF}^2$ proved by Mihók [10], Broere and Mynhardt [5], Wang [13], and Goddard [8], - (c) $\mathcal{SP} \subset \mathcal{D}_1^2$ which is the result of Dirac [7], - (d) $\mathcal{T}_3 \subset \mathcal{T}_2^2$ proved by Broere and Mynhardt [5], Wang [13] and Poh [12]. The new conclusions can be drawn, too. For the class S defined by $F_M(S) = \{K_4, K_{1,3} + K_1\}$ we have: (e) $\mathcal{S} \subset \mathcal{LF}^2$. ### 3. Minimal Reducible Bounds An additive hereditary property \mathcal{R} is called *reducible* in \mathbb{L}^a , if there exist additive hereditary properties $\mathcal{P}_1, \mathcal{P}_2$ such that $\mathcal{P} = \mathcal{P}_1 \circ \mathcal{P}_2$, and it is called *irreducible*, otherwise. For a given property \mathcal{P} , a reducible property \mathcal{R} is called *minimal reducible bound* for \mathcal{P} if $\mathcal{P} \subset \mathcal{R}$ and there is no reducible property $\mathcal{R}' \subset \mathcal{R}$ satisfying $\mathcal{P} \subseteq \mathcal{R}'$. The set of all minimal reducible bounds for \mathcal{P} will be denoted by $B(\mathcal{P})$. The notion of minimal reducible bounds have been introduced in [11]. In this paper Mihók proved that the class \mathcal{T}_2 of outerplanar graphs has exactly two minimal reducible bounds, i.e., $B(\mathcal{T}_2) = \{\mathcal{LF}^2, \mathcal{O} \circ \mathcal{D}_1\}$. A similar results for \mathcal{SP} and \mathcal{D}_2 can be found in [1], namely, $B(\mathcal{SP}) = B(\mathcal{D}_2) = \{\mathcal{O} \circ \mathcal{D}_1\}$. By the transitivity and Mihók's proof (see [11]) we have the following minimal reducible bounds for the property $S \supset T_2$. Theorem 2. $B(S) = \{ \mathcal{LF}^2, \mathcal{O} \circ \mathcal{D}_1 \}.$ ## References [1] M. Borowiecki, I. Broere and P. Mihók, *Minimal reducible bounds for planar graphs* (submitted). - [2] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discussiones Mathematicae Graph Theory 17 (1997) 5–50. - [3] M. Borowiecki and P. Mihók, *Hereditary Properties of Graphs*, in: Advances in Graph Theory (Vishwa Intern. Publications, 1991) 41–68. - [4] P. Borowiecki, P-Bipartitions of Graphs, Vishwa Intern. J. Graph Theory 2 (1993) 109–116. - [5] I. Broere and C.M. Mynhardt, Generalized colourings of outerplanar and planar graphs, in: Graph Theory with Applications to Algorithms and Computer Science (Willey, New York, 1985) 151–161. - [6] G. Chartrand and L. Lesniak, Graphs and Digraphs (Second Edition, Wadsworth & Brooks/Cole, Monterey, 1986). - [7] G. Dirac, A property of 4-chromatic graphs and remarks on critical graphs, J. London Math. Soc. 27 (1952) 85–92. - [8] W. Goddard, Acyclic colorings of planar graphs, Discrete Math. **91** (1991) 91–94. - [9] T.R. Jensen and B. Toft, Graph Colouring Problems (Wiley-Interscience Publications, New York, 1995). - [10] P. Mihók, On the vertex partition numbers of graphs, in: M. Fiedler, ed., Graphs and Other Combinatorial Topics, Proc. Third Czech. Symp. Graph Theory, Prague, 1982 (Teubner-Verlag, Leipzig, 1983) 183–188. - [11] P. Mihók, On the minimal reducible bound for outerplanar and planar graphs, Discrete Math. **150** (1996) 431–435. - [12] K.S. Poh, On the Linear Vertex-Arboricity of a Planar Graph, J. Graph Theory 14 (1990) 73–75. - [13] J. Wang, On point-linear arboricity of planar graphs, Discrete Math. **72** (1988) 381–384. Received 25 February 1997