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Abstract

For a simple graph H, → H denotes the class of all graphs that
admit homomorphisms to H (such classes of graphs are called hom-
properties). We investigate hom-properties from the point of view of
the lattice of hereditary properties. In particular, we are interested
in characterization of maximal graphs belonging to → H. We also
provide a description of graphs maximal with respect to reducible hom-
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belonging to → H.
Keywords: hom-property of graphs, hereditary property of graphs,
maximal graphs.
1991 Mathematics Subject Classification: 05C15, 05C35, 05C75.

1Research supported in part by the Czech Research Grants Nos. GAUK 194/1996 and
GAČR 0194/1996.

2Research supported in part by the Slovak VEGA Grant.



78 Graphs Maximal with Respect to Hom-Properties

1. Definitions and Notations

All graphs considered in this paper are finite and simple (without multiple
edges or loops), and we use the standard notation [3]. In particular, Kn

denotes the complete graph on n vertices, Cn is the cycle of length n, G∪H
denotes the disjoint union of graphs G and H, ω(G) is the maximum clique
size of G and χ(G) is the chromatic number of G.

The join G + H of two graphs G and H is the graph consisting of
the disjoint union of G and H and all the edges between V (G) and V (H).
A graph is called a join if it is the join of two nonempty graphs. We also
say that it is decomposable in this case. A graph that is not decomposable
is called indecomposable. It is easy to see that a graph G is decomposable
if and only if its complement G is not connected. Then G is the join of the
complements of the components of G. Thus every decomposable graph G
can be expressed in a unique way as the join of indecomposable graphs.

We denote by I the class of all finite simple graphs. A graph property is
a non-empty isomorphism-closed subclass of I. (We also say that a graph
has the property P if G ∈ P.) A property P of graphs is called hereditary
if it is closed under subgraphs, i.e., if H ⊆ G and G ∈ P imply H ∈ P.
A property P is called additive if it is closed under the disjoint union of
graphs, i.e., if every graph has the property P provided all of its connected
components have this property.

Let P1,P2, . . . ,Pn be any properties of graphs. A vertex (P1,P2, . . . ,Pn)-
partition of a graph G is a partition (V1, V2, . . . , Vn) of V (G) such that
for each i = 1, 2, . . . , n, the induced subgraph G[Vi] has the property Pi.
The composition P1◦P2◦ . . . ◦Pn is defined as the class of all graphs having
a vertex (P1,P2, . . . ,Pn)-partition (for more details see [1], [8]).

A homomorphism of a graph G to a graph H is a mapping f of the
vertex set V (G) into V (H) which preserves the edges, i.e., such that e =
{u, v} ∈ E(G) implies f(e) = {f(u), f(v)} ∈ E(H). By the symbol f(G) we
shall denote the graph with the vertex set

f(V (G)) = {f(v) ∈ V (H)|v ∈ V (G)}

and the edge set

f(E(G)) = {f(e) ∈ E(H)|e ∈ E(G)}.

If a homomorphism of G to H exists, we say that G is homomorphic to H
and write G → H. One can easily see that χ(G) ≤ χ(H) in such a case.
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A core of a graph G is any subgraph G
′

of G for which G → G
′

while G
fails to be homomorphic to any proper subgraph of G

′
. It can be easily seen

that up to isomorphism every finite graph has a unique core which will be
denoted by C(G) (see e.g. [4]). A graph G is a core, if G is a core for itself,
i.e., G ∼= C(G).

A hom-property is any class → H = {G ∈ I|G → H}. We say that
a graph G generates the hom-property → H whenever → H = → G.

For any graph G ∈ I with vertex set V (G) = {v1, v2, . . . vn}, we define
a multiplication G:: of G in the following way:

1. V (G::) = W1 ∪W2 ∪ . . .Wn,
2. for each 1 ≤ i ≤ n : |Wi| ≥ 1,
3. for any pair 1 ≤ i < j ≤ n: Wi ∩Wj = ∅,
4. for any 1 ≤ i ≤ j ≤ n, u ∈ Wi, v ∈ Wj : {u, v} ∈ E(G::) if and only if
{vi, vj} ∈ E(G).

The sets W1,W2, . . . , Wn are called the multivertices corresponding to ver-
tices v1, v2, . . . , vn, respectively. The condition 4 immediately yields that
W1,W2, . . . Wn are independent sets and any two vertices belonging to the
same multivertex have identical neighborhoods. Furthermore, it is not diffi-
cult to see that G:: is homomorphic to G. In order to emphasize the structure
of G::, we also use the notation G::(W1,W2, . . . , Wn).

2. Hom-Properties

Observation 2.1. Let ϕ be a surjective homomorphism of G to H, where
|V (G)| = |V (H)|. Then |E(G)| ≤ |E(H)|.
Proof. As ϕ is a homomorphism, it preserves the edges. The condition
ϕ(V (G)) = V (H) implies that no two edges of G are identified in ϕ(G).
Hence |E(G)| ≤ |E(H)|.
Lemma 2.2. Let G,H be graphs and let ϕ be a homomorphism of G + H
to a third graph. Then

ϕ(G + H) = ϕ(G) + ϕ(H).

Proof. Let u be any vertex of G and v any vertex of H. By the defini-
tion, the edge {u, v} is in E(G + H). As ϕ is a homomorphism, the edge
{ϕ(u), ϕ(v)} is in ϕ(G + H). It immediately follows that the vertex sets
ϕ(V (G)) and ϕ(V (H)) are disjoint and there are all possible edges between
ϕ(V (G)) and ϕ(V (H)). Thus ϕ(G + H) = ϕ(G) + ϕ(H).

The next useful characterization of cores was proved in [7].
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Proposition 2.3. The graph G + H is a core if and only if G and H are
cores.

Hom-properties can be given in various ways, for example the property→ C6

is the same as the property → C38. A standard way is to describe a hom-
property by a core:

Proposition 2.4. For any graph H, its core C(H) generates → H.

Proof. By the definition, there exists a homomorphism ψ : H −→ C(H).
If G ∈ → H, then there exists a homomorphism ϕ : G −→ H. Then
the composition of ϕ and ψ is a homomorphism of G to C(H). Con-
versely, if G ∈ → C(H), then there is a homomorphism ϕ : G −→
C(H). The composition of ϕ and the identity mapping is a homomorphism
of G to H.

According to the previous proposition, we can assume in the sequel that any
hom-property → H is given by a core H.

Proposition 2.5. For any graph H ∈ I, the hom-property → H is heredi-
tary and additive.

Proof. If G ∈ → H, then there exists a homomorphism f : G −→ H. For
any G∗ ⊆ G, the mapping f restricted to V (G∗) is a homomorphism of G∗

to H. Therefore, G∗ ∈ → H and → H is hereditary.
For G1, G2 ∈ → H, let f1, f2 be homomorphisms of G1 and G2 to H,

respectively. Then the mapping f : G1 ∪G2 −→ H defined by

f(v) =

{
f1(v) for v ∈ V (G1),
f2(v) for v ∈ V (G2)

is a homomorphism of G1 ∪G2 to H. Hence, → H is also additive.

For any property P 6= I, the number c(P) = max{k|Kk+1 ∈ P} is finite. It
is called the completeness of P (see [1]).

Proposition 2.6. For any graph H ∈ I, c(→ H) = ω(H)− 1.

Proof. The homomorphic image of the complete graph Kn is again a com-
plete graph of the same order. Thus, c(→ H) = ω(H)− 1.

The following assertions recapitulate some facts related to the position of
selected hom-properties in the lattice of additive hereditary properties of
graphs (see [1]). We use the notation O = {G ∈ I|G is edgeless}, i.e.,
O = → K1.
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Proposition 2.7. For graphs H,H∗ ∈ I, we have:
1. → H ⊆→ H∗ if and only if H → H∗,
2. → Kn = On,
3. → H ⊆ Oχ(H),
4. if H contains at least one edge, then O2 ⊆→ H.

According to the terminology used in extremal graph theory, we say that a
property P is degenerate if it has a bipartite forbidden graph. The following
proposition states that there is just one degenerate hom-property.

Proposition 2.8. A property → H is degenerate if and only if → H = O.

Proof. If → H 6= → K1, then the graph H contains at least one edge and,
by Proposition 2.7, all bipartite graphs belong to → H. Thus, no bipartite
graph is forbidden for → H, and → H is not degenerate.

On the other hand, O =→ K1 by Proposition 2.7, and K2 is a forbidden
graph. Thus → K1 is degenerate.

It turns out that multiplications of graphs play an important role in char-
acterization of graphs maximal with respect to hom-properties. Hence we
present some of their fundamental properties.

Lemma 2.9. Any multiplication H :: of an indecomposable graph H is in-
decomposable as well.

Proof. Let us denote by v1, v2, . . . , vn the vertices of H and let W1,
W2, . . . , Wn be the corresponding multivertices of H ::. Suppose, to the con-
trary, that H :: is decomposable, i.e., there exist graphs H1 and H2 such that
H :: = H1 + H2. As any multivertex Wj is an independent set in H ::, it is
either a subset of V (H1) or a subset of V (H2). Let J1 (J2) be the sets of in-
dices j such that Wj ⊆ V (H1) (Wj ⊆ V (H2), respectively). It is easy to see
that for any choice of vertices u1, u2, . . . , un from W1,W2, . . . , Wn, H is the
join of the graphs H[{uj : j ∈ J1}] and H[{uj : j ∈ J2}]. This contradicts
the assumption that H is indecomposable.

Lemma 2.10. Let G:: be a multiplication of a graph G. If w,w∗ are two
distinct vertices belonging to the same multivertex W of G::, then there exists
a homomorphism ψ : G:: −→ G:: − w∗.

Proof. According to the definition of multiplications of graphs, the neigh-
bourhoods NG::(w) and NG::(w∗) are identical and {w, w∗} /∈ E(G::).
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Therefore, the mapping ψ : G:: −→ G:: − w∗ defined by

ψ(v) =

{
w for v = w∗,
v otherwise.

is a homomorphism of G:: to G:: − w∗.

Corollary 2.11. No multiplication H :: is a core, besides the trivial case
H :: = H = C(H).

The multiplication operation strongly copies the structure of the original
graph H. This can be expressed in the language of uniquely H-colourable
graphs. This concept was introduced in [12]. We say that a graph G is
uniquely H-colourable if there is a surjective homomorphism ϕ from G to
H, such that any other homomorphism from G to H is the composition ϕ◦α
of ϕ and an automorphism α of H.

Theorem 2.12. Let H be a core. Then any multiplication H ::(W1,
W2, . . . ,Wn) of H is uniquely H-colourable.

Proof. Let v1, v2, . . . , vn be the vertices of H and let W1,W2, . . . ,Wn be
the corresponding multivertices of H ::.

For each i = 1, 2, . . . , n, choose a vertex ui of the multivertex Wi. It
follows that the subgraph H ::[{u1, u2, . . . , un}] of H :: is isomorphic to H.
Define homomorphisms π : H −→ H :: and ϕ : H :: −→ H by

π(vi) = ui, i = 1, 2, . . . , n,

ϕ(u) = vi iff u ∈ Wi, i = 1, 2, . . . , n.

For any homomorphism ψ : H :: −→ H, π◦ψ is an endomorphism of H, and
since H is a core, π◦ψ is an automorphism of H. In particular, ψ restricted
to H ::[u1, u2, . . . , un] is surjective. Moreover, for any i, 1 ≤ i ≤ n, and any
w ∈ Wi, ψ restricted to the graph H ::[{u1, u2, . . . , ui−1, w, ui+1, . . . , un}]
is also surjective, and therefore ψ(ui) = ϕ(w). This means that in any
homomorphism ψ, the whole multivertex Wi is mapped on the vertex ψ(ui)
of H.

It follows that ψ = ϕ◦π◦ψ, i.e., every homomorphism ψ : H :: −→ H is
the composition of the homomorphism ϕ : H :: −→ H and automorphism
π◦ψ of H.
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3. Maximal Graphs

Apart from being defined by the set of forbidden graphs, a hereditary prop-
erty P can also be determined by the set of P-maximal graphs. In this
section, we put stress on the latter type of characterization of P. A graph is
P-maximal if G + e 6∈ P for any edge e ∈ E(G). The class of all P-maximal
graphs is denoted by M(P).

Our aim is to describe the structure of (→ H)-maximal graphs. First,
we show that every (→ H)-maximal graph is a multiplication of a core.

Proposition 3.1. Any (→ H)-maximal graph is a multiplication of a sub-
graph H̃ of H, which is a core.

Proof. Let G be a (→ H)-maximal graph. As G ∈ → H, there is a
homomorphism ϕ′ : G → H. Denote H̃ = C(ϕ′(G)). Since ϕ′(G) −→ H̃,
there is a homomorphism ϕ : G −→ H̃. Denote by v1, v2, . . . , vn the vertices
of H̃ and set Wi = ϕ−1(vi). Then G ⊆ H̃ ::(W1,W2, . . . , Wn).

If there were x ∈ Wi, y ∈ Wj such that {vi, vj} ∈ E(H̃) and
{x, y} 6∈ E(G), the same ϕ would induce a homomorphism of G + {x, y}
to H, contradicting the assumption of maximality of G. Hence G =
H̃ ::(W1,W2, . . . , Wn).

It is not true in general that a multiplication of a core H̃, which is a subgraph
of the core H, is a → H-maximal graph. The situation is more complicated,
as illustrated by the following examples:

Example 3.2. The cycle C5 has two cores as a subgraphs: C5 itself and the
complete graph K2. Simultaneously, the cycle C3 contains also two cores:
C3 and K2.

The multiplications of K2 are exactly all complete bipartite graphs.
Addition of any edge to a complete bipartite graph Km,n creates a triangle
and therefore Km,n ∈ M(→ C5) for all positive m,n. On the other hand,
K1,1 ∈ M(→ C3), but K1,2 /∈ M(→ C3) because K1,2 ⊆ C3 ∈ M(→ C3).

Lemma 3.3. If a core H̃ is (→ H)-maximal, then every homomorphism
from H̃ to H is injective.

Proof. Let ϕ : H̃ −→ H be a homomorphism such that ϕ(u) = ϕ(v) for
some u 6= v. Then {u, v} 6∈ E(H̃) and it follows from the (→ H)-maximality
of H̃ that u and v have the same neighborhoods. Hence H̃ is a multiplication
of H̃ − v, contradicting Corollary 2.11.

The following theorem characterizes which multiplications are hom-maximal.



84 Graphs Maximal with Respect to Hom-Properties

Theorem 3.4. A graph G is (→ H)-maximal if and only if G is a multi-
plication of a graph H̃ ⊆ H (say G = H̃ ::(W1, . . . , Wn) with Wi being the
multivertex corresponding to a vertex vi, i = 1, 2, . . . , n) such that

(i) H̃ is a core;
(ii) H̃ is (→ H)-maximal; and
(iii) |Wi| = 1 for every vertex vi ∈ V (H̃) for which there exists a ho-

momorphism ϕ : H̃ −→ H and a vertex y ∈ V (H) − V (ϕ(H̃))
such that the closed ϕ(H̃)-neighborhood of ϕ(vi) is contained in the
H-neighborhood of y.

Proof. Suppose first that G is (→ H)-maximal. It follows from Propo-
sition 3.1 that G = H̃ ::(W1, . . . ,Wn) for a core H̃ ⊆ H. Then H̃ must
itself be (→ H)-maximal, as a multiplication of a nonmaximal graph is
nonmaximal as well. Let ϕ : H̃ −→ H be a homomorphism such that
N

ϕ(H̃)
(ϕ(vi)) ∪ {ϕ(vi)} ⊂ NH(y) for some y ∈ V (H) − V (ϕ(H̃)) and sup-

pose |Wi| > 1, say vi 6= u ∈ Wi. Then the mapping ψ : G −→ H defined
by

ψ(x) =

{
y for x = u
ϕ(vj) for x ∈ Wj , x 6= u

is a homomorphism of G+{u, vi} to H and G would not be (→ H)-maximal.
On the other hand, let G = H̃ ::(W1, . . . , Wn) for a core H̃ ⊆ H, let H̃

be (→ H)-maximal and let the condition (iii) be fulfilled. We will show that
G is (→ H)-maximal. Suppose to the contrary that G + {u, v} ∈ → H for
some vertices u 6= v ∈ V (G), {u, v} 6∈ E(G).

First, let u, v belong to different multivertices of the multiplication H̃ ::,
say u ∈ Wk, v ∈ Wl, k 6= l. We choose vertices ui ∈ Wi for i = 1, 2, . . . , n, so
that uk = u, ul = v. Then G[u1, . . . , un] ∼= H̃, and it follows from (→ H)-
maximality of H̃ that G[u1, . . . , un] + {uk, ul} 6∈ → H. Thus G + {u, v} 6∈
→ H in this case.

Suppose now that u, v belong to the same multivertex, say Wi. Let
ψ : G + {u, v} −→ H be a homomorphism. Choose again vertices uj ∈ Wj ,
j = 1, 2, . . . , n (so that ui = u) and consider G̃ = G[u1, . . . , un] ∼= H̃.
Denote by ϕ the homomorphism from H̃ to H which maps vj onto ψ(uj),
j = 1, 2, . . . , n. We claim that ψ(v) 6∈ ϕ(H̃): Since {u, v} ∈ E(G + {u, v}),
ϕ(vi) = ψ(ui) is adjacent to ψ(v) in H, and consequently ψ(v) 6= ϕ(vi).
If ψ(v) = ϕ(vj) for some j 6= i, then {ϕ(vi), ϕ(vj)} ∈ E(H) and (since
H̃ is (→ H)-maximal) {vi, vj} ∈ E(H̃). Therefore, {v, uj} ∈ E(G) (since
v, ui ∈ Wi and uj ∈ Wj), contradicting ψ(v) = ψ(uj)(=ϕ(vj)).
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The vertices u and v have the same neighborhood in G, and hence
N

ϕ(H̃)
(ϕ(vi)) ⊂ NH(ψ(v)). Thus ψ(v) ∈ V (H)− V (ϕ(H̃)) plays the role of

the bad guy y from the condition (iii) (|Wi| ≥ 2 is assumed and we have
shown above that {ϕ(vi), ψ(v)} ∈ E(H)).

Corollary 3.5. Let → H be a hom-property. Then any multiplication
H ::(W1,W2, . . . , Wn) of the core H is a → H-maximal graph.

Proof. By the assumption, H̃ = H is a core and hence also a (→ H)-
maximal graph. The condition (iii) trivially holds, because V (H) −
V (ϕ(H)) = ∅ for any homomorphism ϕ : H −→ H.

It was proved in [7] that reducible hom-properties are exactly compositions
of hom-properties. Graphs maximal with respect to reducible hereditary
properties were investigated in [2]. There it was proved that every P1◦P2-
maximal graph is the join of some P1-maximal graph and some P2-maximal
one and the opposite implication is not valid in general. It follows from
Theorem 3.4 that neither the join of maximal graphs with respect to hom-
properties has to be maximal with respect to the join of these properties.
The next result provides one type of sufficient conditions.

Corollary 3.6. If G:: is a multiplication of a core G and H :: is a multipli-
cation of a core H, then G:: + H :: belongs to M(→ G◦→ H).

Proof. As G ⊆ G:: and H ⊆ H ::, we have G + H ⊆ G:: + H :: and
G:: + H :: is a multiplication of G + H. It follows from Theorem 2.3
that G + H is also a core, and therefore, by Corollary 3.5, G:: + H :: is
(→ G◦→ H)-maximal.

4. A Note on the Computational Complexity

In this section we remark on the computational complexity of recognizing
graphs having hom-properties. The following nontrivial result is well known:

Theorem 4.1 [5]. For any fixed nonbipartite graph H, it is NP-complete
to decide if a given graph G is homomorphic to H.

It is slightly surprising that though the definition of maximal graphs involves
general quantifiers, hom-maximal graphs are actually easier to recognize:

Theorem 4.2. For every fixed graph H, it is polynomial to decide if a given
graph G is (→ H)-maximal.
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Proof. Given G, we first find H̃ such that G = H̃ ::. This can be done in
O(n3) time (where n = |V (G)|). If H̃ is not a subgraph of H, we conclude
that G is not maximal. Otherwise, the size of H̃ is a constant. Then we
check whether each homomorphism of H̃ to H is injective and whether each
subgraph of H isomorphic to H̃ is induced (that is, we check whether H̃ is
itself (→ H)-maximal). This step takes only constant time. In the case of
affirmative outcome, we check whether the condition (iii) of Theorem 3.4 is
satisfied, what can also be checked in constant time. Theorem 3.4 guarantees
that this algorithm gives the correct answer.

5. A Note on an Extremal Graph Problem

The concept of maximal graphs with respect to hereditary properties is
important also in connection with extremal graph theory. One of the most
celebrated problems can be defined in the following way: Given a hereditary
property P, determine the maximum number of edges of the graphs on n
vertices belonging to P. This number is denoted by ex(n,P).

In order to describe the number ex(n,P), we introduce the concept of
minimal forbidden graphs. As was already mentioned, any graph with the
hereditary property P is a subgraph of some P-maximal graph. The other
possible characterization of P is in terms of graphs not contained in P. More
precisely, we define the set

F(P) = {F ∈ I|F /∈ P but any proper subgraph F ∗ of F belongs to P}.
Then a graph G belongs to P if and only if G contains no graph from F(P)
as a subgraph. We further denote by χ(P) the number

χ(P) = min{χ(F )|F ∈ F(P)}.
The following well-known result (see e.g. [11]) provides a connection between
ex(n,P) and χ(P).

Theorem 5.1. If P is a hereditary property with chromatic number χ(P),
then

ex(n,P) =
(

1− 1
χ(P)− 1

) (
n

2

)
+ o(n2).

We point out that in the case of hom-properties, we are seldom able to
characterize the minimal forbidden graphs. But in spite of this, we are able
to determine the value χ(→ H).
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Proposition 5.2. Let H be an arbitrary graph. Then χ(→ H) = ω(H)+1.

Proof. As the complete graph Kω(H) is a subgraph of H, any graph G
with the chromatic number at most ω(H) is homomorphic to H. It implies
χ(→ H) ≥ ω(H) + 1.

On the other hand, Kω(H)+1 is not homomorphic to H but each
proper subgraph of Kω(H)+1 has the chromatic number at most ω(H) and
hence belongs to → H. Therefore, Kω(H)+1 ∈ F(→ H) and χ(→ H) ≤
ω(H) + 1.

It is worth mentioning that the previous assertion corresponds to the general
result obtained for reducible hereditary properties in [9].

Corollary 5.3. Let → H be any hom-property. Then

ex(n,→ H) =
(

1− 1
ω(H)

) (
n

2

)
+ o(n2).
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[1] M. Borowiecki and P. Mihók, Hereditary Properties of Graphs, in: Advances
in Graph Theory (Vishwa International Publications, 1991) 41–68.
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