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Department of Geometry and Algebra
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Abstract
A property of graphs is a non-empty set of graphs. A property P

is called hereditary if every subgraph of any graph with property P
also has property P. Let P1, . . . ,Pn be properties of graphs. We say
that a graph G has property P1◦ · · · ◦Pn if the vertex set of G can be
partitioned into n sets V1, . . . , Vn such that the subgraph of G induced
by Vi has property Pi; i = 1, . . . , n. A hereditary property R is said
to be reducible if there exist two hereditary properties P1 and P2 such
that R = P1◦P2. If P is a hereditary property, then a graph G is called
P- maximal if G has property P but G+e does not have property P for
every e ∈ E(G). We present some general results on maximal graphs
and also investigate P-maximal graphs for various specific choices of
P, including reducible hereditary properties.
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1. Introduction and Notation

All graphs considered in this paper are finite, undirected, loopless and
without multiple edges. For undefined concepts we refer the reader to [6]
and [4].

Since we have in general no reason to distinguish between isomorphic
copies of a graph, we use the notation I to denote the set of all mutually non-
isomorphic graphs, considered as unlabelled graphs. Therefore, by saying
that H is a subgraph of G, we mean that H is isomorphic to a subgraph
of G.

If P is a non-empty subset of I, then P will also denote the property
that a graph is a member of the set P. We shall use the terms set of graphs
and property of graphs interchangeably. A property P is called additive if for
all graphs G1 ∈ P and G2 ∈ P we have that the disjoint union G1∪G2 ∈ P.
A property P is hereditary if it is closed with respect to the relation ⊆ to
be a subgraph.

In the sequel we shall concentrate on the following concrete hereditary
properties — we use the notation of [4] for most of them:

O = {G ∈ I : G is totally disconnected},
Ok = {G ∈ I : each component of G has at most k + 1 vertices},
Sk = {G ∈ I : ∆(G) ≤ k},
Wk = {G ∈ I : the length of the longest path in G is at most k},
Dk = {G ∈ I : G is k-degenerate},
Ik = {G ∈ I : G does not contain Kk+2},

→ H = {G ∈ I : G is homomorphic to H}.

It is easy to verify that Ok ⊆ Sk ⊆ Dk ⊆ Ik, Ok ⊆ Wk ⊆ Dk and
O1 = S1 = W1.

Let P be a hereditary property, P 6= I. Then there is a nonnegative
integer c(P) such that Kc(P)+1 ∈ P but Kc(P)+2 /∈ P, called the completeness
of P (for more details see [4]). Obviously c(P) = 0 if and only if P = O. It
is also easy to see that c(Ok) = c(Sk) = c(Wk) = c(Dk) = c(Ik) = k.

For a hereditary property P we define the set of minimal forbidden
subgraphs of P by

F (P) = {G ∈ I : G /∈ P but each proper subgraph of G belongs to P}.

A direct consequence of this definition is
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Lemma 1. Let P be a hereditary property. Then G ∈ P if and only if no
subgraph of G is in F (P).

Thus any hereditary property is uniquely determined by its set of minimal
forbidden subgraphs. An alternative way is to characterize P by the set of
graphs containing all the graphs in P as subgraphs. To be more accurate,
let us define the set of P-maximal graphs by

M(P) = {G ∈ P : G + e /∈ P for each e ∈ E(G)}
and the set of P-maximal graphs of order n by

M(n,P) = {G ∈ P : |V (G)| = n and G ∈ M(P)}.
From these definitions it is evident that M(P) =

⋃
n≥1 M(n,P).

Let n be a positive integer and let P1, . . . ,Pn be properties of graphs. A
(P1, . . . ,Pn)-partition of a graph G is a partition {V1, . . . , Vn} of V (G) such
that for each i = 1, . . . , n the induced subgraph G[Vi] has property Pi. If
P1 = · · · = Pn = P, we shall call a (P1, . . . ,Pn)-partition a (Pn)-partition.

The property R = P1◦ · · · ◦Pn is defined as the set of all graphs having a
(P1, . . . ,Pn)-partition and is called the product of the properties P1, . . . ,Pn.
If P1 = · · · = Pn = P we write R = Pn. If R = P1◦ · · · ◦Pn, we call
P1◦ · · · ◦Pn a factorization of R, and we say R is divisible by Pi, i = 1, . . . , n.

The next lemma follows immediately from our definitions.

Lemma 2 [4]. Let P1, . . . ,Pn be additive hereditary properties of graphs
and let R = P1◦ · · · ◦Pn. Then R is additive and hereditary and the com-
pleteness of R is c(R) = c(P1) + · · ·+ c(Pn) + n− 1.

A hereditary property (an additive hereditary property)R is called reducible
(see also [2], [4], [5] and [14]) if there are two hereditary properties (addi-
tive hereditary properties respectively) P1 and P2 such that R = P1◦P2;
otherwise R is called irreducible.

A graph G is said to be uniquely (P1, . . . ,Pn)-partitionable if G has
a unique (P1, . . . ,Pn)-partition (permutations of partitions allowed). Note
that, if G is uniquely (P1, . . . ,Pn)-partitionable and {V1, . . . , Vn} is the
unique (P1, . . . ,Pn)-partition of G, then Vi 6= ∅ for i = 1, . . . , n. It is
shown in [13] that, if P is a reducible property, then there are no uniquely
(Pn)-partitionable graphs.

A vertex of a graph G that has degree equal to |V (G)| − 1 is called
a universal vertex of G.
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We say that a graph G is the join of n graphs G1, . . . , Gn and write
G = G1 + · · · + Gn if V (G) =

⋃n
i=1 V (Gi) and E(G) = {xy : xy ∈

E(Gi) for some i, or x ∈ V (Gi) and y ∈ V (Gj); i 6= j}.
If a graph G is a join of two non-empty graphs, we say that G is decom-

posable; otherwise, G is indecomposable. In [5] we show for various properties
P1, . . . ,Pn that the existence of indecomposable Pi-maximal graphs ensures
the existence of uniquely (P1, . . . ,Pn)-partitionable graphs. The same idea
is used in [1], but with each Pi = Wk.

We shall show in this paper that, if P is any hereditary property such
that there exists an indecomposable P-maximal graph, then P is an irre-
ducible property. We also present some general results on graphs that are
maximal with respect to hereditary properties, and investigate graphs that
are maximal with respect to the specific properties in our list, and some
reducible properties that are products of these properties.

2. General Results

The definition of P-maximal graphs and the completeness of P immediately
yield the following:

Lemma 3. Let P be a hereditary property. Then
1. M(n,P) = {Kn} for each n with 1 ≤ n ≤ c(P) + 1.
2. If G,H ∈ M(n,P) and G 6= H then G is not contained in H.

The next lemma describes the relationship between comparable hereditary
properties of graphs and the corresponding sets of P-maximal graphs.

Lemma 4 [17]. Let P1 and P2 be any hereditary properties. Then P1 ⊆ P2

if and only if for every positive integer n and every graph G ∈ M(n,P1)
there is a graph G′ ∈ M(n,P2) such that G ⊆ G′.

The following result is again an easy consequence of the definitions.

Lemma 5. Let P be a hereditary property such that F(P) contains no
bipartite graph. Then any P-maximal graph with chromatic number two is
a complete bipartite graph.

If G is a graph with property P, such that the graph G + K1 does not
belong to P, then G is called P-strict. The next result states that almost
all P-maximal graphs are P-strict.
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Lemma 6. If P is a hereditary property and G ∈ M(n,P), n ≥ c(P) + 1,
then G is a P-strict graph.
Proof. Let us consider two cases. Firstly, if n = c(P)+1, then G = Kc(P)+1

and evidently G + K1 = Kc(P)+2 does not belong to P. Thus G is P-strict.
Secondly, if n > c(P) + 1, then G is not complete so that there is a vertex
v ∈ V (G) which is not universal. Thus G is a proper subgraph of (G−v)+K1,
which implies that (G − v) + K1 /∈ P. Hence G + K1 /∈ P and again G is
P-strict.

3. Maximal Graphs with respect to Reducible Properties

It is natural to expect that graphs maximal with respect to a reducible
hereditary property R = P1◦P2 can be derived from P1-maximal and P2-
maximal graphs. This fact is exactly expressed in the following lemma.

Lemma 7. Let P1 and P2 be hereditary properties of graphs. A graph G
belongs to M(P1◦P2) if and only if for each (P1,P2)-partition {V1, V2} of G
the following holds: G[V1] ∈ M(P1), G[V2] ∈ M(P2) and G = G[V1]+G[V2].

Proof. Suppose G ∈ M(P1◦P2) and {V1, V2} is any (P1,P2)-partition
of G. If there is a missing edge e with one end in V1 and the other in
V2, then it is evident that {V1, V2} is also a (P1,P2)-partition of G + e, and
therefore G + e belongs to P1◦P2, which contradicts the P1◦P2-maximality
of G. Hence G = G[V1] + G[V2].

If G[V1] is not P1-maximal, then there exists a graph G∗ ∈ M(|V1|,P1)
such that G[V1] ⊂ G∗. But then the graph G∗ + G[V2] belongs to P1◦P2, it
has the same order as G and G is a proper subgraph of G∗ + G[V2]. This is
again a contradiction. Hence G[V1] ∈ M(P1). In a similar manner we can
show that G[V2] ∈ M(P2).

Assume now that for any (P1,P2)-partition {V1, V2} of G we have that
G[V1] ∈ M(P1), G[V2] ∈ M(P2) and G[V1] + G[V2] = G. Then, obvi-
ously, G ∈ P1◦P2. Now suppose that G + e ∈ P1◦P2 for some e ∈ E(G),
and let {W1,W2} be a (P1,P2)-partition of G + e. Then {W1,W2} is also
a (P1,P2)-partition of G and, by our assumption, G = G[W1] + G[W2] and
moreover G[Wi] ∈ M(Pi); i = 1, 2. Without loss of generality, we may as-
sume that e has both ends in W1. But then (G + e)[W1] = G[W1] + e /∈ P1,
since G[W1] ∈ M(P1). This contradicts our assumption that {W1,W2}
is a (P1,P2)-partition of G + e, so that G + e /∈ P1◦P2, and hence
G ∈ M(P1◦P2).

The following is a straightforward generalization of the previous lemma.
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Corollary 1. Let P1, . . . ,Pn be hereditary properties of graphs. A graph
G belongs to M(P1◦ · · · ◦Pn), n ≥ 2, if and only if for each (P1, . . . ,Pn)-
partition {V1, . . . , Vn} of G the following holds: G[Vi] ∈ M(Pi) for i =
1, . . . , n and G = G[V1] + · · ·+ G[Vn].

According to Lemma 7 all the maximal graphs of a reducible, additive,
hereditary property are decomposable. Thus we have

Corollary 2. If P is a hereditary property of graphs such that M(P) con-
tains an indecomposable graph, then P is irreducible.

We do not know whether the converse of Corollary 2 is true.

Using Lemma 7 to verify that a graph G is P1◦P2-maximal can be difficult,
since all possible (P1,P2)-partitions need to be checked. In general, the
join of a P1-maximal graph and a P2-maximal graph need not be P1◦P2-
maximal, not even if the resulting graph is uniquely (P1,P2)-partitionable,
as is shown by the following example.

Example 1. Let H1 be the graph consisting of two disjoint paths, each of
length two, and an edge joining the central vertices of the two paths. Put
G1 = H1 ∪ K2. Let G2 be the 4-cycle, and put P1 = W3 and P2 = I1.
Then G1 ∈ M(P1) and G2 ∈ M(P2). Now suppose that {W1,W2} is any
(P1,P2)-partition of G = G1 +G2. If both W2 ∩V (G1) and W2 ∩V (G2) are
independent sets, then |W2 ∩ V (G1)| ≤ 5 and |W2 ∩ V (G2)| ≤ 2. But then
|W1 ∩V (G1)| ≥ 3 and |W1 ∩V (G2)| ≥ 2, contradicting our assumption that
G[W1] ∈ W3. If W2∩V (G2) is not an independent set, then W2∩V (G1) = ∅
and then, since G1 is W3-strict, it follows that W1 = V (G1). We can prove
in a similar manner that, if W2 ∩ V (G1) is not an independent set, then
W1 = V (G2). (Note that G1 ∈ P2 and G2 ∈ P1.) Thus {V (G1), V (G2)} is
the only {P1,P2}-partition of G1 + G2 (up to permutation of the partition
sets), and hence G1 + G2 is uniquely (P1,P2)- partitionable.

However, since G1 is not P2-maximal, there is an edge e ∈ E(G1) such
that G1 + e ∈ P2, and hence {V (G2), V (G1 + e)} is a (P1,P2)-partition of
G1 + G2 + e. Thus G1 + G2 is not (P1,P2)-maximal.

If P1 and P2 are any properties of graphs, we shall say that a graph G
is strongly uniquely (P1,P2)-partitionable if there exists only one (P1,P2)-
partition of G with a permutation of the partition sets not being allowed
unless P1 = P2. An easy application of Lemma 7 now yields
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Lemma 8. Let P1 and P2 be hereditary properties of graphs. If G1 ∈
M(P1) and G2 ∈ M(P2) and G1 + G2 is strongly uniquely (P1,P2)-
partitionable, then G ∈ M(P1◦P2).

The next theorem presents well-known results of graph colouring theory.

Theorem 1. A graph G belongs to M(On) if and only if G = H1+ · · ·+Hn

with Hi ∈ M(O) = O for i = 1, . . . , n, that is, G is a complete n-partite
graph.

The following results provide other sufficient conditions for a graph to be
maximal with respect to specific reducible hereditary properties.

Theorem 2. Let P be a hereditary property of graphs with c(P) = 1 and
let k ≥ 2 and l be integers. If G1 ∈ M(l,O), G2 ∈ M(k,P) and

1. χ(G2) > 2 or
2. χ(G2) = 2 but G2 is not a complete bipartite graph and l ≥

max{|U1|, |U2| : {U1, U2} is any (O,O)-partition of G2} or
3. G2 is a complete bipartite graph,

then G1 + G2 ∈ M(k + l,O◦P).

Proof. Let {W1,W2} be any (O,P)-partition of G = G1+G2 (the existence
of such a partition follows from the assumption G1 ∈ O and G2 ∈ P).

If W1 ∩ V (G1) 6= ∅, then W1 ∩ V (G2) must be empty. Hence V (G2) ⊆
W2. Since the order of G2 is at least 2 = c(P) + 1, we immediately have
by Lemma 6 that W2 ∩ V (G1) = ∅. It follows that W1 = V (G1) and
W2 = V (G2).

If W1 ∩ V (G1) = ∅, then obviously V (G1) ⊆ W2. Since c(P) = 1, the
complete graph K3 does not belong to P and therefore W2 ∩ V (G2) must
be an independent set in G. Now, we shall proceed with respect to the
structure of G2:

1. In this case we arrive at a contradiction since the partition {W1,W2 ∩
V (G2)} shows that χ(G2) ≤ 2.

2. In this case it is easy to see that the graph G[W2] is a complete bipartite
graph which properly contains G2 + e for a suitable choice of an edge
e ∈ G2. Hence G[W2] /∈ P, a contradiction.

3. In the last case G2 is the join of two independent sets and therefore G
is the join of three independent sets. Hence G ∈ M(k + l,O◦P).

Thus, by Lemma 7, G is O◦P-maximal.
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Corollary 3. Let P be any hereditary property such that O2 ⊆ P ⊆ I1. If
G1 ∈ M(k,O), G2 ∈ M(l,P), l ≥ 2, then G = G1 + G2 is O◦P-maximal.

Proof. Since O2 ⊆ P, no bipartite graph is forbidden for P, but K3 /∈ P.
Hence, either χ(G2) > 2 or, by Lemma 5, G2 is a complete bipartite graph.
Thus, by an application of Theorem 2, we have G ∈ M(k + l,O◦P).

Corollary 4. Let P be any hereditary property such that P ⊆ D1. If G1 ∈
M(k,O) and G2 ∈ M(l,P) with k ≥ l ≥ 2, then G1 + G2 is O◦P-maximal.

Proof. From the assumptions follows that G2 is a forest. Hence G2 is
bipartite and it must be either a star or it is not a complete bipartite graph.
Since both cases are covered by Theorem 2, G1 + G2 is O◦P-maximal.

The next theorem provides a sufficient condition for a graph to be O◦P-
maximal regardless of the completeness of P, but in terms of the vertex-
independence number β.

Theorem 3. Let P be any hereditary property of graphs. If G1 ∈ M(l,O)
and G2 ∈ M(k,P) with l ≥ β(G2) and k ≥ c(P) + 2, then G1 + G2 ∈
M(k + l,O◦P).

Proof. If {W1,W2} is any (O,P)-partition of G = G1 +G2, then two cases
can occur.

Firstly, if W1 ∩ V (G1) 6= ∅, then (similarly as in the previous proofs)
V (G1) = W1 and V (G2) = W2 and one can see that G1 + G2 + e /∈ O◦P for
every e ∈ E(G).

Secondly, if W1∩V (G1) = ∅, then V (G1) ⊆ W2 and W1 ⊆ V (G2). Since
|W1| ≤ β(G2) ≤ |V (G1)|, we have that G2 is isomorphic to a subgraph of
G[W2]. Hence, there is a set W3 ⊆ W2 such that |W3| = |V (G2)| and
G2 ⊆ G[W3]. If G2 is a proper subgraph of G[W3], then G[W2] /∈ P and this
partition is not admissible. If G2 = G[W3], then G2 = G[V (G1) ∩ W3] +
G[V (G2) ∩W2]. Again we see that G1 + G2 + e /∈ O◦P for every e ∈ E(G).

Thus G = G1 + G2 ∈ M(k + l,O◦P) by Lemma 7.

Untill now we treated reducible hereditary properties which are divisible
by O. In the remainder of this section we shall provide sufficient conditions
for some other particular reducible hereditary properties.

Theorem 4. Let G1 ∈ M(k,D1), G2 ∈ M(l,D1) and min{k, l} ≥ 3 or
{k, l} ∈ {{1, 1}, {1, 2}, {2, 2}, {2, 3}}. Then G = G1+G2 ∈ M(k+l,D1◦D1).
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Proof. It is easy to check that each of the graphs K2,K3,K4 and K5 − e
is a D1◦D1-maximal graph.

So, suppose min{k, l} ≥ 3 and let {W1,W2} be any (D1,D1)-partition
of V (G) distinct from {V (G1), V (G2)}. Since G1 and G2 each contains at
least two edges and K3 /∈ D1, the sets W1∩V (G1), W1∩V (G2), W2∩V (G1)
and W2 ∩ V (G2) must be independent in G (if any of these sets is empty,
we obtain the partition {V (G1), V (G2)}). Moreover, since C4 /∈ D1, we
have min{|W1 ∩ V (G1)|, |W1 ∩ V (G2)|} ≤ 1 and simultaneously min{|W2 ∩
V (G1)|, |W2 ∩ V (G2)|} ≤ 1. Without loss of generality we may assume that
|W1 ∩ V (G1)| = 1. Then G[W1] and G[V (G1)] are stars, |W2 ∩ V (G1)| ≥ 2,
|W2 ∩ V (G2)| = 1 and G[W2], G[V (G2)] are also stars. But this means that
G2 = G[W1∩V (G2)]+G[W2∩V (G2)], G1 = G[W1∩V (G1)]+G[W2∩V (G1)]
so that G ∈ M(D1◦D1).

The gaps in the previous theorem are necessary, as is shown by the graphs
in the next example.

Example 2. If k = 1 and l = 3, then G1 + G2 = K4 − e which is not
D1◦D1-maximal. If k = 1 and l > 3, then G2 can be chosen to be bipartite
but not a complete bipartite graph. Thus we can partition G1 +G2 into one
star and one independent set which immediately yields that G1 + G2 is not
D1◦D1-maximal.

If k = 2 and l ≥ 4 then, with G2 as above, G1 + G2 can be partitioned
into two stars and again G1 + G2 is not D1◦D1-maximal.

Theorem 5. Suppose G1 ∈ M(k,D1), G2 ∈ M(l, I1) and both l and k are
at most two, or l ≥ 2, k ≥ 3 and G2 6= K1,l−1. Then G = G1 + G2 is
D1◦I1-maximal.

Proof. The verification that K2, K3 and K4 are D1◦I1-maximal graphs
is trivial. Hence assume that l ≥ 2, k ≥ 3 and G2 6= K1,l−1. Further
let {W1,W2} be an arbitrary (D1, I1)-partition of V (G). We consider four
cases.

(1) |V (G1) ∩ W1| = 0: Then V (G1) ⊆ W2 and, since G[V (G1) ∩ W2]
contains at least one edge, V (G2)∩W2 = ∅. But then G2 = G[W1] is a star,
contradicting our assumption.

(2) |V (G1) ∩ W1| = 1: Then |W1 ∩ V (G2)| is an independent set. If
G[V (G1)∩W2] contains an edge, then W2 ∩V (G2) must be empty, which is
not possible. Hence G[V (G1) ∩W2] is an edgeless graph and therefore G1

is a star. Then G[V (G2) ∩W2] must be independent too. But this means
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that G2 is bipartite and, by Lemma 5, even complete bipartite. But then it
is clear that, in this case, G + e /∈ D1◦I1 for every e ∈ E(G).

(3) |V (G1)∩W1| ≥ 2 and V (G1)∩W1 is an independent set in G: Then
evidently |V (G2) ∩W1| ≤ 1. If G[V (G2) ∩W2] would contain an edge, then
W2∩V (G1) must be empty, which is a contradiction. Hence V (G2)∩W2 also
has to be independent and again it follows that G2 is a star, a contradiction.

(4) |V (G1) ∩ W1| ≥ 2 and V (G1) ∩ W1 is not an independent set in
G: It immediately follows that W1 ∩ V (G2) = ∅. Hence V (G2) ⊆ W2 and
V (G1) ⊆ W1 and in this case we have the partition {V (G1), V (G2)}.

The result now follows by an application of Lemma 7.

The next example shows that most of the gaps in the previous theorem again
cannot be avoided.

Example 3. Let G1 6= K1,m be a tree of order at least 4 and G2 = K1,n.
Then we clearly have that G1 ∈ M(D1) and that G2 ∈ M(D1) ∩ M(I1).
However, if we take any pair of vertices x and y of G1 which are at distance
at least three, then G1 + xy ∈ I1. Hence we have that {V (G2), V (G1)} is a
D1◦I1-partition of G1 + G2 + e, where e = xy, and therefore G1 + G2 is not
D1◦I1-maximal.

4. Maximal Graphs with respect to Irreducible Properties

If P is any hereditary property and G is a P-maximal graph of order less
than c(P) + 2, then G is a complete graph and is thus either trivial or
decomposable. Our next result ensures the existence of an indecomposable
P-maximal graph of order c(P) + 2 for certain properties P.

Proposition 1. If P is any additive, hereditary property such that F (P)
contains some tree of order c(P) + 2, then there exists an indecomposable
P-maximal graph of order c(P) + 2.

Proof. Put G = Kc(P)+1∪K1. By the definition of c(P) and the additivity
of P, the graph G has property P. However, if e ∈ E(G), the graph G + e
does not have property P, since G + e contains every tree of order c(P) + 2.
Consequently, G is P-maximal.

Corollary 5. If P is any additive, hereditary property such that F (P)
contains some tree of order c(P) + 2, then P is irreducible.

Proof. By Proposition 1 and Corollary 2.
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Properties that satisfy Proposition 1 are, for example, Ok, Sk andWk. How-
ever, F (Ik) contains no trees, and we shall see that there are no nontrivial
indecomposable Ik-maximal graphs of order less than 2k + 3.

Clearly, M(n,O) = {Kn} for al n ≥ 1 and M(O) = O. A complete
characterization of the graphs that are maximal with respect to the so-called
hom-properties, that is, the properties of the form → H for some H ∈ I, is
given in [11]. (Some hom-properties are reducible and some are irreducible.)
We now present some results on graphs that are maximal with respect to
the other properties listed in Section 1.

4.1. Ok-maximal graphs

If n ≥ k + 2, then the Ok-maximal graphs of order n are disjoint unions of
complete graphs; more precisely

M(Ok) = {Kr1 ∪ . . . ∪Krs : s ≥ 2, ri ≤ k + 1 and ri + rj ≥ k + 2 if
i 6= j, 1 ≤ i, j ≤ s}.

Hence every Ok-maximal graph of order at least k + 2 is disconnected (and
thus indecomposable).

4.2. Sk-maximal graphs

It is not difficult to see that Sk-maximal graphs are almost k-regular and
their structure can be described as follows

M(Sk) = {G ∈ I : ∆(G) = k and every two vertices of degree less than
k are adjacent}.

The Sk-maximal graphs of order k + 2 are characterized by the following
result.

Proposition 2. A graph G of order k + 2 is an Sk-maximal graph if and
only if every component of G is a star.

Proof. Let G be a graph of order k +2. Then G is Sk-maximal if and only
if ∆(G) = k and ∆(G + e) = k + 1 for every e ∈ E(G), that is, if and only
if δ(G) = 1 and δ(G− e) = 0 for every e ∈ E(G). Clearly, this is the case if
and only if every component of G is a star.

The complement of the star of order k + 2 is the graph Kk+1 ∪K1. Since a
graph is indecomposable if and only if its complement is connected, we have
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Corollary 6. The graph Kk+1∪K1 is the only indecomposable Sk-maximal
graph of order k + 2.

4.3. Wk-maximal graphs

Wk-maximal trees are characterized in [10]. We know the following about
the structure of decomposable Wk-maximal graphs.

Theorem 6. Suppose G is a Wk-maximal graph of order at least k + 2 and
G = G1 + G2, where G1 and G2 are graphs of order n1 and n2 respectively
with 0 < n1 ≤ n2. Then n1 ≤ k

2 , G1 = Kn1 and G2 ∈ Wk+1−2n1.

Proof. Note that n1 < n2, otherwise G has a path of length at least k + 1
which alternates between G1 and G2.

Suppose n1 > k
2 . Then there is a path in G that starts in G2, then

alternates between G1 and G2 until it has passed through all the vertices
of G1, and ends in G2. Such a path has length 2n1 > k, contradicting our
assumption that G ∈ Wk. This proves that n1 ≤ k

2 .
Now suppose that G1 contains two non-adjacent vertices x and y. Then,

since G is Wk-maximal, the graph G + xy contains a path of length k + 1,
say v1 . . . vk+2, with x = vr and y = vr+1 ; 1 ≤ r ≤ k + 1. We may
assume without loss of generality that G2 contains an edge in this path that
precedes vr. Let vs−1vs be the last such edge. Now replace the subpath
vs−1vs . . . vr+1 with the path vs−1vs+1vs+2 . . . vrvsvr+1. Note that all the
edges of the resulting path are indeed edges of G. Thus we have a path of
length k + 1 in G. This contradiction proves that G1 is a complete graph.

Now suppose G2 has a path P of length at least k + 2− 2n1. Then

|V (G2−P )| = |V (G)| − |V (G1| − |V (P )| ≥ k + 2− n1− (k + 2− 2n1) = n1.

Let P ∗ be the path in G whose first segment is P and then alternates between
G1 and G2, until all n1 vertices of G1 and n1 of the vertices of G2−P have
been used. Then P ∗ is a path of length k + 1 in G, a contradiction.

Corollary 7. A Wk-maximal graph is indecomposable if and only if it has
no universal vertices.

A graph G of order k + 2 is a Wk-maximal graph if and only if G has no
hamiltonian path, but G+e has a hamiltonian path for every e ∈ E(G). The
disconnected Wk-maximal graphs of order k + 2 are easy to characterize.
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Proposition 3. Let G be a disconnected graph of order k + 2. Then G is
Wk-maximal if and only if G = Ka ∪Kb for some pair of positive integers
{a, b} such that a + b = k + 2.

Proof. Suppose G is Wk-maximal. Let e ∈ E(G). Then G + e has a
hamiltonian path and is thus a connected graph. It follows that G has
exactly two components, say A and B. If e ∈ E(A) or e ∈ E(B), then G+ e
does not have a hamiltonian path. This proves that A and B are complete
graphs.

The connected Wk-maximal graphs of order k + 2 have not yet been char-
acterized. We conjecture that these graphs are block graphs with at least
three blocks each. (A block graph is a graph whose blocks are all complete
graphs.)

4.4. Dk-maximal graphs

Dk-maximal graphs were studied intensively in [3], [8], [12], [15], [16], [18]
and [19]. We present two results from these papers.

Theorem 7 [12]. Let G be a graph of order n and let v ∈ V be a vertex of
degree k in G. Then G ∈ M(n,Dk) if and only if G− v ∈ M(n− 1,Dk).

The structure of maximal k-degenerate graphs is characterized in the next
result in an algebraic way.

Theorem 8 [3]. Let k and p be positive integers. Then the sequence
(d1, . . . , dp) with d1 ≤ · · · ≤ dp is the degree sequence of some Dk-maximal
graph if and only if it satisfies the following four conditions:

1. d1 = k;
2. dp ≤ p− 1;
3. di ≤ k + i− 1 for i = 1, . . . , k − 1;
4.

∑p
i=1 di = 2kp− k(k + 1).

4.5. Ik-maximal graphs

Ik-maximal graphs are also known as (k+1)-saturated graphs (see for exam-
ple [9]). The following two theorems on the structure of Ik-maximal graphs
are proved in [9].
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Theorem 9 [9]. If G is an Ik-maximal graph of order n, then G contains
at least 2k + 2− n universal vertices.

Theorem 10 [9]. If G is an Ik-maximal graph without universal vertices,
then δ(G) ≥ 2k.

Let
Ak = {G ∈ I : α(G) = k}

where α(G) is the vertex-covering number of G. Note that Ak is not a
hereditary property. We say that a graph G is Ak- vertex-critical (Ak-edge-
critical respectively) if G ∈ Ak but G − x /∈ Ak for every vertex (edge
respectively) in G. A graph that is Ak-vertex-critical as well as Ak-edge-
critical is called Ak-critical. Since ω(G) = |V (G)| − α(G), we have

Lemma 9. Let G be a graph of order n. Then G is Ik-maximal if and only
if G is An−k−1-edge-critical.

Since the Ak-critical graphs are exactly the Ak-edge-critical graphs without
universal vertices, we have

Lemma 10. Let G be a graph of order n without universal vertices. Then
G is Ik-maximal if and only if G is An−k−1-critical.

The following result is proved in [7].

Theorem 11 [7]. If G is an Ak-critical graph, then |V (G)| ≤ 2k, with
equality only if G = kK2.

In the light of Lemma 10, Theorem 11 can be restated as follows:

Theorem 12. If G is an Ik-maximal graph without universal vertices, then
|V (G)| ≥ 2k + 2, with equality only if G = (k + 1)K2.

We now characterize the smallest indecomposable Ik-maximal graph.

Theorem 13. If G is an indecomposable Ik-maximal graph, then |V (G)| ≥
2k + 3, with equality only if G = C2k+3.
Proof. Since an indecomposable graph contains no universal vertices, and
the graph (k + 1)K2 is decomposable (since its complement is disconnected),
it follows that |V (G)| ≥ 2k + 3. Now suppose that |V (G)| = 2k + 3. Then,
by Lemma 10, α(G) = k + 2. But by Theorem 10, δ(G) ≥ 2k, and hence
∆(G) ≤ 2. Since the only connected graph of order 2k + 3 with minimum
degree 2 and vertex connectivity k + 2 is the cycle C2k+3, it follows that
G = C2k+3.
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[14] P. Mihók and G. Semanǐsin, Reducible properties of graphs, Discussiones Math.
Graph Theory 15 (1995) 11–18; MR96c:05149.

[15] J. Mitchem, An extension of Brooks’ theorem to r-degenerate graphs, Discrete
Math. 17 (1977) 291–298; MR55#12561.

[16] J. Mitchem, Maximal k-degenerate graphs, Utilitas Math. 11 (1977) 101–106.



66 I. Broere, M. Frick and G. Semanǐsin

[17] G. Semanǐsin, On some variations of extremal graph problems, Discussiones
Mathematicae Graph Theory 17 (1997) 67–76.

[18] J.M.S. Simões-Pereira, On graphs uniquely partitionable into n-degenerate sub-
graphs, in: Infinite and finite sets — Colloquia Math. Soc. J. Bólyai 10 (North-
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