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Abstract

A subgraph of a plane graph is light if the sum of the degrees of the
vertices of the subgraph in the graph is small. It is well known that
a plane graph of minimum degree five contains light edges and light
triangles. In this paper we show that every plane graph of minimum
degree five contains also light stars K1,3 and K1,4 and a light 4-path
P4. The results obtained for K1,3 and P4 are best possible.
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1. Introduction

This paper deals only with connected plane graphs which have minimum
degree five and which have no face with at most two edges in its boundary.
Denote this family of graphs by G(5).

We use standard terminology and notation of graph theory, see e.g.
Bondy and Murty [1]. We recall, however, more specialized notations. Let
a k-vertex be a vertex of degree k. A path (cycle) on k vertices is defined
to be a k-path (k-cycle, respectively). Let a k-star be a star Sk = K1,k =
[X,A1, A2, . . . , Ak] on k + 1 vertices with X as a central vertex. A kleetope

K(G) of a connected plane graph G is defined to be a triangulation obtained
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from G by placing into each face of G a new vertex and join it to the
boundary vertices.

For a subgraph H of a plane graph G the weight of H,w(H), is defined
to be the sum of degrees of vertices of H in G; namely,

w(H) =
∑

A∈V (H)

degG(A).

It is well known that every plane graph contains a vertex of degree at
most 5. An excellent Kotzig’s Theorem [6,7] states that every 3-connected
plane graph contains an edge e with w(e) ≤ 13; the bound is best possible.
These results were further developed in various directions and have served
as starting points for discovering many structural properties of plane graphs.
Recently, Fabrici and Jendrol’ [4] have proved that each 3-connected plane
graph having a subgraph isomorphic to a k-path, k ≥ 1, contains a k-path
Pk with all vertices of degrees at most 5k; this bound is sharp. Moreover,
they have shown that for subgraphs other than paths, analogical results can-
not be stated, i.e. for any connected plane graph H other than a path and
any integer m ≥ 3 there exists a 3-connected plane graph G in which every
subgraph isomorphic to H contains a vertex B such that degG(B) ≥ m.

On the other hand, Borodin [2] has proved that any G ∈ G(5) contains
a triangular face τ with w(τ) ≤ 17; the bound being precise. (Note that this
result has been strengthened in various directions, for a recent progress see
Borodin and Saunders [3]).

The above leads to the question, whether there are, in plane graphs
of minimum degree five, subgraphs other than paths and triangles with
restricted weight.

In this paper we prove that such property has a 3-star (Section 2) and
a 4-star (Section 3). For r-stars r ≥ 5 no similar result can be proved; if we
take a graph of the k-sided antiprism, k ≫ r, insert a new vertex into each
its k-gonal face α and join it with all vertices of α, we obtain a triangulation

(i.e. the plane graph whose all faces are triangles) having only 5-vertices
and two k-vertices. In the obtained triangulation every r-star Sr contains a
k-vertex.

In Section 4 we prove a tight result for 4-paths with small weight. Sec-
tion 5 is devoted to the study of light subgraphs in plane triangulations of
minimum degree five.

2. Light 3-stars

The main result of this section is as follows.
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Theorem 1. Every planar graph G of minimum degree five contains a star

S3 = [X,A1, A2, A3] such that degG(X) = 5 and

(i) degG(A1) = 5, degG(A2) ≤ 6, degG(A3) ≤ 7, or

(ii) degG(A1) = degG(A2) = degG(A3) = 6.

Moreover, the bounds 6 and 7 are best possible.

Proof. Assume that there exists a counterexample G. Because an insertion
of a diagonal into any k-face, k ≥ 4, of G causes that its endvertices in the
resulting graph have degrees at least 6, we can assume that

(∗) G is a triangulation.

According to a consequence of the Euler theorem,

(∗∗)
∑

A∈V (G)

(degG(A) − 6) = −12.

We continue by using the Discharging method. Assign to each vertex A ∈
V (G) the initial charge ϕ(A) = degG(A) − 6. Using the properties of G
as a counterexample to our Theorem we define a local redistribution of ϕ’s,
preserving their sum such that the new contribution ϕ̃(A) is non-negative for
all A ∈ V . This will contradict the fact that the sum of the new contribution
is, by (∗∗), equal to −12.

For the purposes of this proof, we will call a 5-vertex X to be the strong

(or semi-strong, or weak) neighbour of a vertex A if there are, in G, two adja-
cent triangles [AXY ] and [AXZ] such that degG(Y ) ≥ 6 and degG(Z) ≥ 6
(or degG(Y ) = 5 and degG(Z) ≥ 6, or degG(Y ) = degG(Z) = 5, respec-
tively).

The local redistribution is performed according to the following rules.

Rule 1. Each 7-vertex sends 1
3 to each of its strong neighbours and 1

6 to
each of its semi-strong neighbours.

Rule 2. Each k-vertex, k ≥ 8 (called the big vertex in the sequel) sends
1
2 to each strong neighbour, 3

8 to each semi-strong neighbour and 1
4 to each

weak neighbour.

We are going to show that ϕ̃(A) ≥ 0 for each vertex A ∈ V (G). To this end
several cases have to be considered.

(1) Let A be a 5-vertex. Then it has at most two neighbours of degrees ≤ 6.

(1.1) If A is adjacent with at least three big vertices, then A receives
from them at least the charge 1

4+2× 3
8 , so ϕ̃(A) ≥ −1+ 1

4+2× 3
8 = 0.

(1.2) A is adjacent with exactly two big vertices. Then at least two from
the remaining three neighbours of A are 7-vertices or none of them
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is a 5-vertex. In the former case ϕ̃(A) ≥ −1 + 2 × 3
8 + 2 × 1

6 > 0
and in the latter case ϕ̃(A) ≥ −1 + 2 × 1

2 + 1
3 > 0, respectively.

(1.3) A is adjacent with one big vertex. Then either exactly one of the
other neighbours is a 5-vertex or at least two are 7-vertices. Hence
ϕ̃(A) ≥ −1 + 3

8 + 1
3 + 2 × 1

6 > 0 or ϕ̃(A) ≥ −1 + 1
2 + 2 × 1

3 > 0,
respectively.

(1.4) A is not adjacent with any big vertex. If A is not adjacent with a
5-vertex, we have ϕ̃(A) ≥ −1 + 3 × 1

3 > 0. Otherwise, the other
vertices in its neighbourhood are 7-vertices and ϕ̃(A) = 2 × 1

3 +
2 × 1

6 = 0.

(2) Because any 6-vertex A neither gives nor gets a charge, we have ϕ̃(A) =
ϕ(A) = deg(A) − 6 = 0.

(3) Let A be a 7-vertex. Because A cannot have weak neighbours it is
adjacent to at most four 5-vertices. If A has at most three 5-vertices
in the neighbourhood it transfers to them at most the charge 3 × 1

3 , so
ϕ̃(A) ≥ 1 − 3 × 1

3 = 0. If A is adjacent to exactly four 5-vertices, then
at least two of them are semi-strong neighbours of A, thus the charge
transferred from A to 5-vertices is at most 2 × 1

3 + 2 × 1
6 = 1. Hence in

all cases ϕ̃(A) ≥ 0.

(4) Let A be an 8-vertex. According to the value 1
2 in Rule 2 it is enough

to consider only cases of five or more 5-vertices which are adjacent to
the vertex A.

(4.1) If eight 5-vertices are adjacent to A, then all are its weak neigh-
bours and, due to Rule 2, we have ϕ̃(A) = 2 − 8 × 1

4 = 0.

(4.2) If seven 5-vertices are adjacent to A, then two of them are semi-
strong neighbours and five are weak neighbours, thus ϕ̃(A) = 2 −
2 × 3

8 − 5 × 1
4 = 0.

(4.3) Among six 5-vertices adjacent to A there are two semi- strong and
four weak neighbours or one strong, two semi-strong and three
weak neighbours of four semi-strong and two weak neighbours.
This means that ϕ̃(A) = 2 − 2 × 3

8 − 4 × 1
4 > 0 or ϕ̃(A) = 2 − 1

2 −
2 × 3

8 − 3 × 1
4 = 0 or ϕ̃(A) = 2 − 4 × 3

8 − 2 × 1
4 = 0, respectively.

(4.4) There are five possibilities for a distribution of five 5-vertices in
the neighbourhood of the vertex A. One with two strong neigh-
bours, two with exactly one strong neighbour and two with none
strong neighbour of A. In all these cases one can easily check that
ϕ̃(A) ≥ 0.

(5) Let A be a 9-vertex. Its initial charge is ϕ(A) = 3. If A transfers a
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charge to at most 6 neighbours then, by Rule 2, the new charge ϕ̃(A) ≥
3 − 6 × 1

2 = 0. If A gives a part of its charge to at least seven 5-valent
vertices we can verify analogously as in the case (4) that ϕ̃(A) ≥ 0.We
take into consideration the fact that among 5-vertices adjacent to A

there are at most one strong neighbour and two or four semi-strong
neighbours (in the latter case there is no strong neighbour).

(6) The case when A is an a-vertex, a ∈ {10, 11} is a simple analogue of (4).
If A gives a part of its initial charge, according to Rule 2, to at most
2(a− 6) neighbours, then ϕ̃(A) ≥ a− 6 − 1

2 × 2(a− 6) = 0. The rest is
left to the reader.

(7) Let A be an a-vertex, a ≥ 12. Then A transfers to each of its neighbours
at most 1

2 , hence ϕ̃(A) = ϕ(A) − 1
2 × a = a− 6 − a

2 = a−12
a

≥ 0.

Thus ϕ̃ is a non-negative.

Consider the graph obtained by joining two copies of a configuration
in Figure 1 via their four half-edges. In this graph, every 5-vertex, except
of four ones with four 7-vertices in their neighbourhood, is adjacent to one
5-vertex, one 6-vertex and three 7-vertices.

In the kleetope of the dodecahedron, every 5-vertex is adjacent only to
6-vertices.

3. Light 4-stars

Theorem 2. Each planar graph G of minimum degree 5 contains as

a subgraph a star S4 = [X,A1, A2, A3, A4] such that degG(X) = 5 and

degG(Ai) ≤ 10 for all i = 1, 2, 3, 4. Moreover, the bound 10 is best

possible.

Proof. By contradiction. Suppose there is a counterexample, say G, to
this theorem. Without loss of generality we can assume that (see the proof
of Theorem 1) G is triangulation.

We again use the Discharging method in the sequel. Assign to each
vertex A of G the initial charge ψ(A) = deg(A)− 6. Thus, by (∗∗), we have

∑

A∈V (G)

ψ(A) = −12.

Now ψ will be discharged locally according to the following rules preserving
the sum of charges equal to −12
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Figure 1

Rule 1. Each k-vertex, k ≥ 12, sends the charge 1
2 to each adjacent 5-vertex.

Rule 2. Each 11-vertex A sends the charge 1
2 to each adjacent 5-vertex X

except for the case whenX is adjacent to exactly two non-adjacent 5-vertices
which are also neighbours of A and the rest two neighbours of X are vertices
of degrees ≥ 11. In the exceptional case A sends no charge to X.

We are going to show that after discharging of the charges ψ the new
charge function ψ̃ is non-negative, which provides a contradiction with the
negative sum of charges ψ̃′s. To prove this, several cases have to be consid-
ered.

(1) Let A be a 5-vertex. Because G is a counterexample A has at least two
neighbours of degree at least 11, which transfer to A the amount of charge
1
2 each (Note that in the exceptional case, by Rule 2, the mentioned
5-vertex X has three neighbours of degrees ≥ 11 and at least two of them
send a charge to X). Hence ψ̃(A) ≥ −1 + 2 × 1

2 = 0.

(2) An a-vertex A, 6 ≤ a ≤ 10, neither sends nor receives any charge, there-
fore ψ̃(A) = ψ(A) = deg(A) = a− 6 ≥ 0.

(3) Let A be an 11-vertex. If A is adjacent to at most ten 5-vertices, then
ψ̃(A) ≥ ψ(A) − 10 × 1

2 = 11 − 6 − 5 = 0. Otherwise, there exists a 5-vertex
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X in the neighbourhood of A which cannot get, due to Rule 2, any charge
from A. Thus A transfers the charge to at most 10 5-vertices and we again
have ψ̃(A) ≥ 5 − 10 × 1

2 = 0.

(4) Each a-vertex A, a ≥ 12, can cover requirements of all 5-vertices in its
neighbourhood. Thus ψ̃(A) = ψ(A) − a× 1

2 = a− 6 − a
2 = a−12

2 ≥ 0.

Thus ψ̃ is a non-negative function.

Consider the graph of an Archimedian polytope (3, 10, 10) (it can be ob-
tained from the dodecahedron by cutting its vertices). Into each its 10-face
insert a new vertex and join it to the boundary vertices. In the graph thus
obtained, each star S4 with central 5-vertex contains a vertex of degree 10.
So the bound 10 is best possible.

4. Light Paths

Already Wernicke [8], trying to prove the Four Colour Theorem, observed
that each plane graph G ∈ G(5), of minimum degree 5, contains an edge e
(i.e. a 2-path P2) such that w(P2) ≤ 11. Franklin [5] extended this result
to 3-paths, he proved that every graph G ∈ G(5) contains a 3-path P3 with
w(P3) ≤ 17, the bound being best possible.

In [4] it is proved that each plane 3-connected graph containing a k-path,
k ≥ 1, has a subgraph isomorphic with a k-path Pk such that w(Pk) ≤ 5k2.

Problem 1. What is the best upper bound on w(Pk) if we restrict ourselves
to the graphs from the family G(5) ?

Here we provide the answer for the case k = 4, namely we have

Theorem 3. Each connected planar graph of minimum degree 5 contains a

path P4 such that

w(P4) ≤ 23.

Moreover, the bound 23 is best possible.

Proof. By contradiction. Suppose G is a counterexample to our theorem
having n vertices and a maximum number of edges among all counterexam-
ples on n vertices.

Proposition 1. G is a triangulation.

Proof. Assume G contains a k-face α, k ≥ 4. Then α is incident with two
nonadjacent vertices X and Y such that degG(X)+degG(Y ) ≥ 12, otherwise
there is a 4-path Q on the boundary of α with w(Q) ≤ 23. If we insert a
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diagonal XY into α, in the obtained graph G̃ there is deg
G̃
(X)+deg

G̃
(Y ) ≥

14. Because any other vertex of G̃ is of degree at least 5, the edgeXY cannot
appear in any 4-path R with w(R) ≤ 23.

Proposition 2. Every a-vertex, a ∈ {7, 8}, is adjacent to at most ⌊a
2⌋

5-vertices.

Proof. In the oposite case, due to Proposition 1, we can find a 4-path P4

with w(P4) ≤ 23, a contradiction.

In the rest of the proof we again use the Discharging method. Assign to
each vertex A ∈ V (G) the initial charge g(A) = degG(A) − 6. Therefore
(∗∗) is equivalent to ∑

A∈V (G)

g(A) = −12.

We use the following rule in order to transform g into a new charge function
h : V → Q by redistributing charges locally so that the sum of new charges
remains the same.

Rule. Each k-vertex A, k ≥ 6, transfers the charge deg(A)−6
m(A) to each ad-

jacent 5-vertex; m(A) denotes the number of 5-vertices adjacent to A. If
m(A) = 0, no charge is transferred.

We are going to show that h is a non-negative function, which will
trivially be a contradiction because

∑

A∈V (G)

g(A) =
∑

A∈V (G)

h(A) = −12.

Case 1. A is a k-vertex, k ≥ 6. The A vertex transfers, by the Rule,
the charge deg(A)−6

m(A) to m(A) 5-vertices in its neighbourhood, so h(A) =

g(A) −m(A) × deg(A)−6
m(A) = 0 if m(A) 6= 0, or h(A) = g(A) ≥ 0 if m(A) = 0.

Case 2. A is a 5-vertex. Then A is adjacent to at least three vertices of
degrees at least 7, otherwise it is adjacent to at least three vertices of degrees
at most 6 and one can easily find a 4-path P4 with w(P4) ≤ 5 + 3× 6 = 23.
By the rule each neighbour of A having degree at least 7 transfers to A the
charge at least 1

3 . We have h(A) ≥ −1 + 3 × 1
3 = 0.

Thus h is a non-negative function.

In the kleetope of the graph of Figure 2 every path P4 has weight w(P4) ≥ 23.
Thus the bound 23 is best possible.
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Figure 2

5. Triangulations of Minimum Degree Five

Theorems 1 and 2 immediately provide the following

Corollary 4. Each plane triangulation of minimum degree 5 contains

(i) a 3-cycle C3 with w(C3) ≤ 18,

(ii) a 4-cycle C4 with w(C4) ≤ 35 and

(iii) a 5-cycle C5 with w(C5) ≤ 45.
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We believe that the bounds in (ii) and (iii) can be sufficiently improved.
As we mentioned above, by Borodin [2], the best possible bound for w(C3)
is 17.

Problem 2. Is there a constant σ(k) such that every plane triangulation
of minimum degree 5, which contains a k-cycle, contains a k-cycle Ck with
w(Ck) ≤ σ(k) ?

The following is an analogue of Theorems 1 and 2.

Theorem 5. Every plane triangulation of minimum degree 5 contains

(i) a 3-star S3 in which the central vertex has degree at most 8 and other

vertices are of degree at most 6

(ii) a 4-star S4 in which the central vertex has degree at most 11 and other

vertices are of degrees at most 7.

Proof is left to the reader. It is enough to use the Discharging method with
the following rule for redistributing charges

Rule. Each k-vertex A, k ≥ 7, transfers to each adjacent 5-vertex the
charge deg(A)−6

m(A) , where m(A) is the number of 5-vertices adjacent to A. If

m(A) = 0, A transfers no charge.
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