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Abstract

Using a ∆-matroid associated with a map, Anderson et al (J. Com-

bin. Theory (B) 66 (1996) 232–246) showed that one can decide in
polynomial time if a medial graph (a 4-regular, 2-face colourable em-
bedded graph) in the sphere, projective plane or torus has two Euler
tours that each never cross themselves and never use the same tran-
sition at any vertex. With some simple observations, we extend this
to the Klein bottle and the sphere with 3 crosscaps and show that the
argument does not work in any other surface. We also show there are
other ∆-matroids that one can associate with an embedded graph.
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1. Introduction

In [2], Bouchet introduced a ∆-matroid associated with a graph G embedded
in a surface Σ. (Precise definitions will be given in Section 2.) This ∆-matro-
id captures precisely the noncrossing Euler tours in the medial graph of G.
In [1], the authors observed that this ∆-matroid could be used to determine
in polynomial time whether the medial graph of G has two noncrossing Euler
tours which never use the same two consecutive edges, assuming Σ is either
the sphere, the real projective plane or the torus. This is because, in these
cases, each of the layers of the ∆-matroid is a matroid.

With a few simple observations, we show that if Σ is the sphere with two
or three crosscaps, then the layers of the ∆-matroid are again matroids and
so in these cases there is again a polynomial time algorithm for determining
whether there are two noncrossing Euler tours which never use the same two
consecutive edges. For no other surface is it true that all the layers of the
∆-matroid are necessarily matroids.
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Part of the interest in these noncrossing Euler tours arises from the fact that
such tours correspond to a partition of the ground set of the ∆-matroid into
disjoint feasible sets of the ∆-matroid. This is an instance of the 2-covering

problem: Given two ∆-matroids ∆1 and ∆2 on the same ground set V , do
there exist complementary subsets D1 and D2 of V such that, for i = 1, 2,
Di is a feasible set in ∆i?

As observed in [3] the 2-covering problem in general cannot be solved
in polynomial time, as the parity problem for matroids is a special case.

In Section 3, we exhibit many other ∆-matroids that can be associated
with an embedded graph. In these cases, the ∆-matroid has the very special
structure of a g-matroid and so every layer is necessarily a matroid. Finally,
in Section 4, we discuss whether a partition into noncrossing Euler tours
of certain types implies the existence of a second partition into noncrossing
Euler tours of other types.

2. A-Trails

Every graph G embedded in a surface Σ has an associated medial graph.
This is a 4-regular 2-face colourable embedded graph m(G) in Σ obtained
by placing a vertex in the middle of each edge of G and joining two such
vertices e and e′ by an edge whenever the edges e and e′ make a corner in
the embedding (cf [1,5]). The faces of m(G) correspond naturally to the
vertices and faces of G and every edge of m(G) separates a “vertex-face”
from a “face-face,” so the dual of m(G) is bipartite. We colour the faces of
m(G) black and white.

It is classical that the converse holds: every 4-regular 2-face colourable
embedded graph is the medial of some embedded graph and, moreover, if
G∗ is the dual of G, then m(G∗) is isomorphic to m(G).

An A-trail in the medial graph is an Euler tour in which consecutive
edges always are a corner of the embedding. Kotzig [4] has proved that if,
for each vertex v of a 4-regular graph we select a set Bv of two edges incident
with v, then there is an Euler tour of G that never has consecutive edges
from any Bv. In particular, every medial graph has an A-trail.

The main question answered in [1] is: which planar graphs have orthog-
onal A-trails? Orthogonal here means that no two consecutive edges of one
Euler tour are consecutive in the other.

In [1] the authors ask: is there a polynomial time algorithm for deter-
mining if a medial graph has orthogonal A-trails? An affirmative answer
was given when Σ is the sphere, real projective plane and torus. This is
extended here to include the sphere with 2 or 3 crosscaps.
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The main result of [2] is the following. If G is a graph embedded in
a surface Σ and H is a subgraph of G, then H̄ denotes the subgraph of G

induced by the edges of E(G) \ E(H) and H∗ denotes the subgraph of the
dual G∗ of G induced by the edges dual to the edges of H.

Theorem 1 [2]. Let G be a graph embedded in a surface Σ. Then the set

∆(G) = {E(H) | H is a subgraph of G and Σ \ (H ∪ H̄∗) is connected } is

a ∆-matroid.

A ∆-matroid is a pair (V,F) consisting of a finite set V and a collection F
of subsets of V satisfying the symmetric exchange property: if F, F ′ ∈ F
and e ∈ F △ F ′, then there is an e′ ∈ F △ F ′ such that F △ {e, e′} ∈ F .

In this definition, possibly e′ = e, in which case {e, e′} = {e}. It is
an easy exercise to show that the minimal elements of F are the bases of
a matroid. A duality theory exists (cf. [3]), so that the maximal elements
are also bases of a matroid. The feasible sets, therefore, partition nicely by
cardinality into layers; the layer of the smallest cardinality sets is a matroid,
as is the layer of the largest cardinality sets.

The relevance of Theorem 1 to the current discussion is that by picking
transitions of m(G) so as not to cross the edges of H and not to cross the
edges of H̄∗, an A-trail of m(G) is created if and only if H ∈ ∆(G) [2].
Thus the A-trails of m(G) are in 1-1 correspondence with certain spanning
subgraphs of G. Another description of ∆(G) was given in [5].

Theorem 2 [5]. Let G be a graph embedded in a surface Σ. Then H ∈ ∆(G)
if and only if H is a spanning connected subgraph of G having only one face

which has only one boundary component.

The smallest feasible sets of ∆(G) are the spanning trees of G and the largest
feasible sets are the complements of spanning trees of the dual G∗. If Σ is
the sphere, then these are the same and there is only one layer. If Σ is the
real projective plane or the torus, these are the only two non-empty layers.

Let ε(Σ) denote either 2g if Σ is the sphere with g handles or k if Σ is the
sphere with k crosscaps. The sets in ∆(G) are each of the form “spanning
tree with t edges” and 0 ≤ t ≤ ε(Σ). For orientable surfaces, as discussed
in [2], t must be even. This explains the preceding observations in general
terms.

If Σ is the Klein bottle, however, there can be three non-empty layers,
corresponding to t = 0, 1, 2. A subgraph H in the layer t = 1 consists of a
tree plus one edge and so has a unique cycle C. If C is orientation-preserving
(i.e., 2-sided), then each side of C yields a boundary walk of H. Therefore,
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either H has 2 faces or the one face of H has two boundary components. By
Theorem 2, such an H is not in ∆(G). On the other hand, if C is orientation-
reversing (i.e., one-sided), then H has only one face and this face has only
one boundary component. Thus, H is in ∆(G). Summarizing, we have the
following.

Proposition 3. The level t = 1 of ∆(G) is precisely the set of spanning

connected subgraphs of G with a unique cycle and that cycle is orientation-

reversing.

In [7] Zaslavsky has shown that the set of spanning connected subgraphs of
G with a unique cycle which is orientation-reversing is the set of bases of
a matroid. Therefore, the t = 1 layer of ∆(G) is always a matroid (in the
case of orientable surfaces, it is empty). By duality, the layer corresponding
to t = ε(Σ) − 1 is also a matroid. In the case of the Klein bottle, these two
layers, t = 1 and t = ε(Σ)− 1, are the same. In the sphere with 3 crosscaps,
the four layers are t = 0, 1, 2 and 3. Thus, these are all matroids.

However, for no other surface is it true that all the layers are necessarily
matroids. To show this, we present examples in each such surface. If Σ is
the orientable surface with g > 1 handles, then we consider the standard
embedding of the graph with one vertex and 2g loops e1, e2, . . . , e2g given
by the rotation scheme

e1, e2, e1, e2, e3, e4, e3, e4, . . . , e2g−1, e2g, e2g−1, e2g.

For each i = 1, 2, . . . , g, any member E(H) of ∆(G) contains either both or
neither of e2i−1 and e2i, for if it contained only e2i, say, then e2i by itself is
one boundary walk of H and the other side of e2i is in another boundary
walk. Therefore, for g > 1 and fixed layer t 6= 0, ε(Σ), t even, these are not
the bases of a matroid.

On the other hand, the same graph embeds in the same surface with
rotation e1, e2, . . . , e2g, e1, e2, . . . , e2g. In this case, every even set of edges is
a member of ∆(G) and, therefore, every layer is a matroid.

For the nonorientable surface with k crosscaps, we have the graph with
one vertex and k loops e1, e2, . . . , ek, with rotation

e1, e2, e1, e2, e3, e3, e4, e4, . . . , ek, ek,

with e1 and e2 being orientation preserving (signed with +) and e3, . . . , ek

being orientation reversing (signed with −). Again, any feasible set contains
either both or neither of e1 and e2 so that, for k > 3 and any fixed layer
t 6= 0, 1, ε(Σ) − 1, ε(Σ), these are not the bases of a matroid.
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The same graph embeds in the same surface in such a way that each
loop is orientation-reversing and the rotation is e1, e1, e2, e2, . . . , ek, ek. In
this case, every even set of edges is a member of ∆(G) and so again every
layer is a matroid.

As mentioned in [1], for the cases where ∆(G) has matroids in each layer,
Edmonds’ Matroid Intersection Theorem (and associated polynomial time
algorithm) can be used to determine if there are disjoint feasible sets that
partition V . Thus, for any surface Σ with ε(Σ) ≤ 3, and any medial graph
m(G) in Σ, there is a polynomial time algorithm to determine if m(G) has
orthogonal A-trails. For other surfaces, the existence of such an algorithm
is still open.

We conclude this section by remarking that not every matroid with
three consecutive layers has the middle layer a matroid. We can take the
simple example, with ground set {a, b, c, d} and feasible sets all singletons
and 3-tuples as well as the two sets {a, b} and {c, d}.

3. More ∆-Matroids From Maps

In this section, we describe another family of ∆-matroids obtained from
maps. In fact, these are g-matroids, which were introduced by Tardos [6]. If
V is a finite set and F is a family of subsets of V , then F is a g-matroid if:

(1) there are two matroids M1 and M2 on V such that F = {F | ∃B1 ∈
M1, B2 ∈ M2 such that B1 ⊆ F ⊆ B2} and

(2) if ri is the rank function of Mi, i = 1, 2, then r2−r1 is a nondecreasing
set function, i.e., if F ⊆ F ′, then (r2 − r1)(F ) ≤ (r2 − r1)(F

′).
It can be shown that every g-matroid is a ∆-matroid and that every

level of a g-matroid is a matroid. Let G be an embedded graph and let p

and q be positive integers. Define the set

H(G, p, q) = {H ⊂ G | H has at most p components

and H̄∗ has at most q components}.

We assume that V (H) = V (G) and that V (H̄∗) = V (G∗).

Proposition. For any embedded graph G and any positive integers p and q,

H(G, p, q) is a g-matroid.

Proof. Set p∗ = min{p, |V (G)|} and q∗ = min{q, |V (G∗)|}. Clearly we
have H(G, p∗, q∗) = H(G, p, q). The minimal elements of H(G, p, q) are those
subgraphs H which are spanning forests having exactly p∗ components. The
maximal elements are those subgraphs H for which H̄∗ is a spanning forest
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of G∗ with exactly q∗ components. Thus, the minimal and maximal sets in
H(G, p, q) are the bases of matroids on E(G) and anything in between is in
H(G, p, q).

Let M1 be the matroid on E(G) whose bases are the spanning forests of
G having p∗ components and let M2 be the matroid dual to the matroid M∗

2

whose bases are the spanning forests of the dual G∗ having q∗ components.
For i = 1, 2, let ri denote the rank function of Mi and let r∗2 denote the rank
function of M∗

2 . For a subset X of E(G), let ω(X) denote the number of
components of the spanning subgraph (V (G), X) of G. Similarly, ω∗(X) is
the number of components of (V (G∗), X). (We identify the labels of edges
of G and G∗ that are dual to each other. Thus, E(G) = E(G∗).)

It is easy to check that

r1(X) = |V (G)| − max{ω(X), p∗}

r∗2(X) = |V (G∗)| − max{ω∗(X), q∗} and

r2(X) = |X| + q∗ − max{ω∗(X), q∗)},

where X = E(G) \ X.

In order to show r2 − r1 is nondecreasing, it suffices to show for any
X ⊂ E(G) and any e ∈ E(G)\X, r2(X +e)−r1(X +e)−r2(X)+r1(X) ≥ 0.
Using the formulae of the previous paragraph, this is equivalent to

1 − max{ω∗(X + e), q∗} + max{ω∗(X), q∗}

+ max{ω(X + e), p∗} − max{ω(X), p∗} ≥ 0.

Thus, it is enough to show that if ω(X + e) < ω(X), then ω∗(X + e) =
ω∗(X). This is actually very straightforward.

Suppose ω(X+e) < ω(X). Then the ends of e lie in different components
H1 and H2 of the subgraph (V (G), X) of G. In particular, e is an edge
of the edge-cut δ(V (H1)), consisting of the edges with exactly one end in
V (H1). The set of edges of G∗ dual to the edges of δ(V (H1)) is an element
of the cycle space of G∗ and so is the edge-disjoint union of circuits of G∗.
These edges are all in X, so e is in a circuit of the subgraph (V (G∗), X)
of G∗. Thus, deleting e does not increase the number of components, so
ω∗(X + e) = ω∗(X), as required.
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We note that H(G, 1, 1) contains ∆(G). My original misunderstanding of
∆(G) led me to consider H(G, 1, 1) and ask whether it is a ∆-matroid. The
answer is a strong yes.

4. Another Example

One might ask if there are any restrictions as to how ∆(G) might partition
into two feasible sets. Given t, t′ ∈ {0, 1, . . . , ε(Σ)}, there is the obvious
restriction that if Σ is orientable, then t and t′ must both be even. Other
than this, there are no restrictions, as can be seen in the examples shown
in Figure 1 (the orientable case) and Figure 2 (the nonorientable case). We
may suppose that 0 ≤ t ≤ t′ ≤ ε(Σ) and, by duality, that t + t′ ≤ ε(Σ).
(In Figure 1, each of the handles is represented by two circles with the
same label whose interiors are deleted and whose boundaries are indentified.
In Figure 2, each of the crosscaps is represented by a shaded circle whose
interior is deleted and whose boundary points are indentified antipodally.)

Figure 1

There do seem to be some possibilities for inferring the existence of one kind
of partition from the existence of another kind of partition. For example,
the proof of Theorem 7 in [1] seems to imply that if G is a graph embedded
in the Klein bottle and there is a partition of the edges of G as T1 + e1 and
T2 + e2, where each Ti is a spanning tree and the unique cycle in Ti + ei
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Figure 2
is orientation-reversing, then there is also a partition of the edges of G as
T ′

1 and T ′

2 + {e′1, e
′

2}, where each T ′

i is a spanning tree and the subgraph
T ′

2 + {e′1, e
′

2} has just one face. That is, if there is a partition of the edges of
G into two bases at level t = 1, then there is another partition into bases,
one at level t = 0 and the other at level t = 2.

One can ask, if there is a partition into levels t1 and t2, when is there
necessarily a partition into levels t′1 and t′2? One obvious necessary condition
is that t′1 + t′2 = t1 + t2. However, in the nonorientable surface Σ with ε(Σ)
even, there is an example in which every partition into levels t and t′ has
t and t′ both even. This is shown in Figure 3. In the example, the loops
e2k−1 are orientation-preserving and so any feasible set that contains e2k−1

must also contain e2k.

Figure 3
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For example, in the Klein bottle the example has a partition into a feasible
set at level t = 0 and a feasible set at level t = 2, but no partition into two
feasible sets at level t = 1.
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