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Abstract

A special relational structure, called genealogical tree, is introduced;
its social interpretation and geometrical realizations are discussed. The
numbers Cn,k of all abstract genealogical trees with exactly n+1 nodes
and k leaves is found by means of enumeration of code words. For each
n, the Cn,k form a partition of the n-th Catalan numer Cn, that means
Cn,1 + Cn,2 + · · · + Cn,n = Cn.
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1. Introduction

A tree is, by definition, a connected graph which contains no circuits.
A rooted tree has a specially designated node, called the root. All nodes
with the same graph-theoretical distance from the root form a level set or,
shortly, a level.

We introduce a genealogical tree as a rooted tree with linearly ordered
levels such that the following hereditariness condition holds. Let nodes x, y,
called parents, be in a level l, and let nodes x′, y′, called children, be in the
next higher level l′ and adjacent to x′, y′ respectively. Then x < y, if and
only if x′ < y′.

Some social model is at hand: the progeny of one distinguished person
forms a rooted tree by the following interpretation :

node ∼= person,
root ∼= progenitor,
adjacency ∼= parent-child relation,
internal node ∼= person with offspring,
leaf ∼= person without offspring,
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level ∼= generation.

We further assume that there is a social order in each generation. It might
be given by the temporal order of births or by a system of privileges. It
shall be hereditary, that means pass over from the parents to their children:
if x is socially higher then y, then every child x′ of x is socially higher than
every child y′ of y.

For a geometrical realization in the Euclidean plane it is convenient to
represent the parent-child relation nearly vertically, pointing downward, and
the social order in a generation horizontally, pointing from left to right. The
root or the progenitor is at the top of the graph. We will also present an
alternative geometrical realization of the same relational structure by means
of non-intersecting circles the centres of which lie on a fixed straight line.

The main aim of the present paper is to enumerate the aforesaid rela-
tional structures. We find the number of all abstract genealogical trees, that
means isomorphism classes of concrete genealogical trees, with exactly n+1
nodes and k leaves to be equal to

Cn,k =
1

n

(

n

k

) (

n

k − 1

)

≡
1

k

(

n − 1

k − 1

)(

n

k − 1

)

.

Our method of proof is to encode every abstract genealogical tree by a word
built from the alphabet x, f, (, ), where x is interpreted as a variable, f
as a function, and the parentheses are technical symbols. The words under
consideration show a natural recursive structure with respect to the concate-
nation and this induces a functional equation for the generating function of
the double sequence Cn,k which is not difficult to solve.

Here are the numbers Cn,k for 1 ≤ k ≤ n ≤ 8 :

k=1 2 3 4 5 6 7 8

n=1 1
2 1 1
3 1 3 1
4 1 6 6 1
5 1 10 20 10 1
6 1 15 50 50 15 1
7 1 21 105 175 105 21 1
8 1 28 196 490 490 196 28 1

The n-th row of the scheme of the Cn,k is a partition of the n-th Catalan
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number Cn :
n

∑

k=1

Cn,k = Cn :≡
1

n + 1

(

2n

n

)

.

The ”Catalan triangle” built from the numbers Cn,k shares some properties
with the Pascal triangle of the binomial coefficients : numbers 1 form the
boundary, it is naturally extended by values 0 beyond the boundary, and it
is symmetric in an obvious sense.

The enumeration method applied here also works for coloured trees,
where the nodes are partitioned into classes, called colours in the graph-
theoretical setting or social groups in the above social model. If we distin-
guish N colours of the leaves and M colours of the internal nodes (different
from the root), then the number of abstract genealogical trees becomes

Cn,k · Nk · Mn−k.

We can also enumerate the trees where each number of the nodes which
carry a specific colour is prescribed. Let us present here the formula for
N = M = 2, i.e. two ”colours”, called female and male for simplicity. The
number of abstract genealogical trees with k1 female leaves, k2 male leaves,
l1 female internal nodes (6= root), and l2 male internal nodes (6= root) equals

Cn,k

(

k

k1

)(

l

l1

)

where k = k1 + k2 , l = l1 + l2 , n = k + l.

The enumeration of abstract genealogical trees by the above numbers
Cn,k can be found in two sketchy papers [11,12]. More precisely, Wang
Zhenyu [11] considers the number Cn,k of structurally different ”ordered
trees” with k leaves and l internal nodes. He finds that the generating
function

C = C(x, y) =
∞

∑

k,l=1

Cklx
k−1yl

is given by

xyC2 + (x + y − 1)C + 1 = 0 , C(0, 0) = 1.

Eight years later in [12] the numbers Ckl were explicitely determined from
the generating function. The present paper extends the sketchy arguments of
[11,12] to full proofs and connects the graph-theoretical problem with some



184 R. Schimming

geometrical and social interpretations. Moreover, the algebraic enumeration
method employed here could be applied to other problems too.

A special aspect of the enumeration problem, namely the symmetry
C(x, y) = C(y, x) or the symmetry of the ”Catalan triangle”, posed as a
problem on code-words, appeared in [9,1,8,10]. The method in [1,8] is more
elementary, less general, than the method applied here. The solution [10]
explains why C(x, y) = C(y, x), while in [1,8] the symmetry is a mere conclu-
sion from the recursion formula for the Cn,k or from the functional equation
for C(x, y).

2. Genealogical Trees

Generally speaking, a relational structure (X, R1, R2, . . .) consists of a non-
empty set X and relations R1, R2, . . . in X which satisfy given axioms. An
isomorphism between relational structures (X, R1, R2, . . .), (X ′, R′

1, R
′

2, . . .)
of the same type and with the same axioms is a bijection f : X → X ′ which
respects the relations, that means xRiy implies x′R′

iy
′, where x′ = f(x), y′ =

f(y) (i = 1, 2, . . .). Let us introduce here a genealogical tree as a special
relational structure.

Definition 1. A genealogical tree is a triple G = (X,∧, <) consisting of a
non-empty finite set X and two binary relations ∧, < in X such that

1. both, the vertical relation ∧ and the horizontal relation, < are irreflexive
partial orders.
2. G with the neighbouring relation N to ∧ is a rooted tree. Here xNy
means : x ∧ y and there is no z such that x ∧ z and z ∧ y.
3. The restriction of < to a level set of (G, N) is an irreflexive linear order.
4. < is hereditary with respect to ∧, that means x < y and x ∧ x′, y ∧ y′

imply x′ < y′.

Note that the root of (G, N) is the (unique) minimum with respect to ∧,
while the leaves are the maximal elements with respect to ∧.

An isomorphism class of genealogical trees is called an abstract genealog-

ical tree. The canonical map which replaces a genealogical tree by its iso-
morphism class just forgets about names, labels, etc. An abstract tree has
nodes, leaves, levels, . . . like a concrete tree, but these are merely markers
for relations.

Example 1. The abstract genealogical trees with 4 nodes and 2 leaves are
given by the pictures :
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Note that just the horizontal relation causes the difference between the last
two trees. Let |G| denote the number of nodes of G different from the
root and ‖G‖ the number of leaves of G, where G is a concrete or abstract
genealogical tree. We want to find the number Cn,k of abstract G’s with
prescribed values n = |G| and k = ‖G‖. For k = 1, 2, n, n − 1 elementary
combinatorics suffices to solve the problem.

Example 2. There holds

Cn,1 = Cn,n = 1, Cn,2 = Cn,n−1 =

(

n

2

)

.

Proof. A rooted tree with only one leaf looks like Figure 1, hence Cn,1 = 1.
Analogously, Figure 2 exhibits Cn,n = 1. A rooted tree with exactly two
leaves bifurcates after n0 ≥ 0 nodes into two branches with n1 ≥ 1 and
n2 ≥ 1 nodes; cf. Figure 3. These numbers form a partition n = n0 +

n1 +n2 of n and there are exactly

(

n

2

)

= Cn,2 such partitions. Analogous

arguments apply to the case k = n − 1; cf. Figure 4.
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Figure 4

A genealogical tree, taken as a relational structure, can be geometrically
realized as a plane graph, like above. There is an alternative realization
by circles in the plane, following an idea in the book of Rouse-Ball and
Coxeter [7].

Definition 2. A linear circle configuration, abbreviated LCC, is a set of
circles which have their centres on a fixed straight line and do not intersect
each other. Write x∧ y for circles x, y if y lies in the interior of x, and write
x < y if neither x ∧ y nor y ∧ x and if the centre of x is, on the fixed line,
left from the centre of y. Further, let |L| denote the number of circles in an
LCC L and ‖L‖ the number of maximal elements with respect to ∧, that
means of the most inner circles.

Proposition 1. Let a given linear circle configuration L be completed by

a circle r such that r ∧ x for every x ∈ L. The completed configuration

(L ∪ {r},∧, <) is a genealogical tree and r is its root. Conversely, every

genealogical tree (G,∧, <) is, as a relational structure, isomorphic to some

completed LCC (L ∪ {r},∧, <).

Proof. Given L, it is easy to verify the axioms 1. – 4. of a genealogical
tree for (L ∪ {r},∧, <). Given G, the isomorphy condition leads to some
obvious geometrical sketch of L∪{r}, beginning with the root r as the most
outer circle and ending at the leaves as the most inner circles.

Proposition 1 says that abstract LCC’s, that means isomorphism classes
of LCC’s, and abstract genealogical trees are essentially the same objects.
Figure 5 shows the abstract LCC’s such that k = 1, 2, n−1, n, where n = |L|,
k = ‖L‖.



A Partition of the Catalan Numbers... 187
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Figure 5

3. Enumeration Through Code-Words

A semigroup is, by definition, a non-empty set W together with an associa-
tive binary operation W × W → W , (v, w) → v · w. An operator on W
is, by definition, an additional unary operation f : W → W , w → f(w).
Let from now on the quadruple (W, ·, x, f) denote the free semigroup with
exactly one generator x and one operator f . That means, W is the smallest
set such that
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0. x ∈ W ,
1. w ∈ W → f(w) ∈ W ,
2. w1, w2 ∈ W → w1 · w2 ∈ W .

From a formal point of view, the elements of W are words built from the
alphabet x, f, (, ) subject to the above rules. The semigroup operation is
represented by the concatenation of words. The length |w| of a word w ∈ W
is, by definition, the total number of letters x and f in it, while the degree

‖w‖ of w is the number of letters x only. It is convenient to complete W by
the empty word 1 which has the properties

1w = w1 = w, |1| = 0, ‖1‖ = 0.

Thus (W, .) becomes a monoid, that means a semigroup with a unit
element 1. Let us abbreviate :

xn := xx . . . x, fn(w) := f(f(. . . f(w) . . .)).

That means, a word consisting of n copies of one letter is formally written
like a power (n = 1, 2, . . .). Moreover, set x0 := 1, f0(w) := w.

Example 1. The words of degree 1, 2, n, n − 1 have the form

fn−1(x),

fk0(fk1(x)fk2(x)), where k0 + k1 + k2 = n − 2, k0, k1, k2 ≥ 0,

xn,

xk0f(xk1)xk2 , where k0 + k1 + k2 = n − 1, k0 ≥ 0, k1 ≥ 1, k2 ≥ 0,

respectively.
It is an essential fact that every word w ∈ W can be visualized by a

genealogical tree and, conversely, every genealogical tree admits a code-word
w ∈ W .

Theorem 1. There is a natural one-to-one map G → w between abstract

genealogical trees G and words w from the monoid (W, ., x, f, ) such that

|G| = |w|, ‖G‖ = ‖w‖.

Proof. We establish some natural one-to-one map L → w between abstract
LCC’s L and words w such that |L| = |w|, ‖L‖ = ‖w‖. Given L, we
distinguish three kinds of ”traces” of the circles of L on the fixed straight
line: left or convex traces of internal circles, right or concave traces of internal
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circles, and leaves shrunk to a point, for simplicity. (A leaf is maximal with
respect to ∧, while an internal circle is non-maximal.) That means a trace

is a point on the fixed straight line together with the additional information
left, right, or leaf. Now we construct a code-word w to G successively from
left to right along the straight line as follows. A convex trace is encoded
by f(, a concave trace by ), and a leaf by x. The construction represents
the wanted map. Since LCC’s and genealogical trees represent the same
relational structures, the theorem is proved.

Example 2. Here are all words of length ≤ 3 together with sketches of
their abstract genealogical trees (Figure 6).
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Figure 6

Theorem 1 reduces the enumeration of trees to the enumeration of words:
the number Cn,k is also equal to the number of words w ∈ W of length
n = |w|, and degree k = ‖w‖. We take into consideration the empty word
by setting

C0,0 = 1, C0,k = 0 for k ≥ 1.

Let us introduce a ”forgetful” map π, applied to words w ∈ W as follows.
Parentheses are omitted, a symbol x remains unchanged, and a symbol f is
mapped to y, where the images x, y denote commutative variables. That
means, π forgets the parentheses and the non-commutativity. Any word w
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of length n and degree k is mapped by π to the same commutative word
xkyn−k. As a consequence, we have

Cn,k = |π−1(xkyn−k)|

where the symbol | | now means the cardinality (i.e. number of elements)
of a set. In the following more precise setting, π emerges as a homomor-
phism between rings. We use the standard notations N = set of nonnegative
integers, Z = set of integers. Let NW denote the set of all formal sums

w1 + w2 + . . . + wN

of words w1, . . . , wN ∈ W . The positive integers N ∈ N naturally act on
NW by

Nw := w + w + . . . + w (N times).

Standard algebraic constructions — namely the bilinear extension of the
semigroup product and the introduction of negative elements — extend the
semiring NW to a ring and Z-module ZW . Let further Z[x, y] denote the
ring of polynomials in the commutative indeterminates x, y with integer
coefficients.

Proposition 2. There is a unique ring homomorphism π : ZW → Z[x, y]
such that

π(x) = x, π(f(w)) = yπ(w), π(1) = 1.

Proof. For every w ∈ W the above rules for π together with π(w1w2) =
π(w1)π(w2) admit a stepwise calculation of π(w) ∈ Z[x, y]. Obviously, π is
the forgetful map introduced earlier.

To our special purpose, we need certain closures of the rings ZW and Z[x, y].
Let ZW denote the ring of formal series

N1w1 + N2w2 + . . .

of words w1, w2, . . . ∈ W with integer coefficients N1, N2, . . ., and Z[[x, y]]
the ring of formal power series in x, y with integer coefficients. Clearly, π
can be naturally extended to a homomorphism ZW → Z[[x, y]]. Note that
formal series which differ only by a rearrangement of the summands are
identified with each other. There is then a natural identification of a subset
M ⊆ W with the sum or series

∑

w∈M w. In particular, the denumerable
whole set W is identified with

∑

w∈W w.
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Proposition 3. The generating function

C ≡ C(x, y) =
∞

∑

n=1

n
∑

k=1

Cn,kx
k−1yn−k(1)

of the double sequence Cn,k := |π−1(xkyn−k)| satisfies the quadratic equation

xyC2 + (x + y − 1)C + 1 = 0(2)

and the initial condition

C(0, 0) = 1.(3)

Proof. A word w ∈ W is either empty, or begins with the letter x, or
begins with a factor f(w′′) :

w = 1, or w = xw′, or w = f(w′′)w′,

where w′ can be empty, while w′′ is meant to be non-empty. This classifica-
tion of words is complete. It defines a partition of W which can be expressed
by some equation in the ring ZW :

W = 1 + xW + f(W − 1)W.

Let us apply the forgetful homomorphism π; the image π(W ) := F satisfies

F = 1 + xF + y(F − 1)F(4)

By construction, F is composed of monomials xkyn−k. More precisely, each
xkyn−k appears multiplied with the numerical factor Cn,k = |π−1(xkyn−k)|,
that means

F = F (x, y) =
∞

∑

n=0

∞
∑

k=0

Cn,kx
kyn−k = 1 + xC(x, y),(5)

where C = C(x, y) is our generating function. Insertion of F = 1 + xC into
(4) gives (2). Note that equation (2) is symmetric in x, y, while (4) is not.

Corollary. There hold

Cn,k = Cn,n+1−k,(6)

n
∑

k=1

Cn,k = Cn ≡
1

n + 1

(

2n

n

)

.(7)
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A proof can be given without explicitly solving (2). Namely, the prob-
lem (2), (3) is symmetric in x, y, hence C(x, y) = C(y, x) which gives (6).
Further, by restriction of (4) to the diagonal x = y we obtain

xF (x, x)2 − F (x, x) + 1 = 0, F (0, 0) = 1.

By this

F (x, x) =
∞

∑

n=0

(
n

∑

k=1

Cn,k)x
n

is recognized to be the generating function of the Catalan numbers Cn.

We now arrive at the main result of the paper.

Theorem 2. There holds

Cn,k =
1

n

(

n

k

)(

n

k − 1

)

.(8)

Proof. Let us remind that the Catalan numbers have the generating func-
tion in one variable z

∞
∑

n=0

Cnzn+1 =
1 − (1 − 4z)

1

2

2
.

Our generating function C = C(x, y) in the two variables x, y follows from
(2), (3); it is given by

2xyC = (1 − x − y)[1 − (1 − 4z)
1

2 ],

where now

z = xy(1 − x − y)−2.

We find the expansion

C =
∞

∑

m=0

Cmxmym(1 − x − y)−2m−1.

Here we insert the well-known binomial series

(1 − x − y)−2m−1 =
∞

∑

p=0

(

2m + p

2m

)

(x + y)p
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and then the binomial formula

(x + y)p =

p
∑

q=0

(

p

q

)

xqyp−q.

New summation indices n, k are introduced through

p = n − 1 − 2m, q = k − m − 1,

m + q = k − 1, m + p − q = n − k.

After all this, the numerical coefficient of xk−1yn−k in C(x, y) becomes

Cn,k =
k−1
∑

m=0

Cm

(

n − 1

2m

) (

n − 1 − 2m

k − m − 1

)

=
1

n

(

n

k

) k−1
∑

m=0

(

n − k

m

)(

k

m + 1

)

=
1

n

(

n

k

)(

n

k − 1

)

.

Equation (6) expresses a symmetry of the triangular scheme of the numbers
Cn,k. One feels that there ought to be some duality property of the monoid
W behind it. We need some new notations in order to actually present
this duality. Let the map π on W , introduced above, for the moment only
forget the parentheses, but preserve non-commutativity. Let further the
map m → m−1 on non-commutative monomials in x, y be defined by

x−1 = y, y−1 = x, (m1m2)
−1 = m−1

2
m−1

1
.

Let finally, the duality map m → m∗ on monomials which end on x be
defined by

m∗ := (m/x)−1x.

where m/x originates from m by omission of the letter x at the end.

Proposition 4. For every non-commutative monomial m in x, y which

ends on x the preimages π−1(m) ⊂ W and π−1(m∗) ⊂ W have the same

cardinality :

|π−1(m)| = |π−1(m∗)|.

A proof has been given by P. Schreiber [10].
Now Cn,k = Cn,n+1−k becomes a conclusion from Proposition 4.
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4. Discussion

Enumeration of trees has been one of the historical origins of graph theory,
cf. [3,2,6,4,5]. Just in this context Arthur Cayley coined the name ”tree”
for a circuit-free connected graph [3]. At those times, chemical structure
formulas were an essential motive for the enumeration of graphs. Later,
more motives and more theory evolved. To make a long story short, let us
mention Polya’s great paper [6] of 1937.

The enumeration problem attacked here belongs to the class of problems
which go back to Cayley et al. But it turns out that it is remarkably easy to
solve, because of the ”horizontal relation” additional to the graph-theoretical
adjacency or ”vertical relation”. The result leads to some partition of the
Catalan numbers into positive integers. One may wonder whether others of
the many appearances of the Catalan numbers Cn admit a natural partition
Cn =

∑n
k=1

Cn,k where the index k has a meaning intrinsically defined
by some refinement of the original combinatorial problem. Cf. [4,5] and
the literature cited there for enumeration problems leading to the Catalan
numbers.

The author gratefully acknowledges stimulating discussions on the topic of
the paper with H.-D. Gronau, P. Schreiber and B. Fiedler.
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