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Abstract

The paper gives an account of previous and recent attempts to
determine the order of a smallest graph not containing K5 and such
that every 2-coloring of its edges results in a monochromatic triangle.
A new 14-vertex K4-free graph with the same Ramsey property in the
vertex coloring case is found. This yields a new construction of one of
the only two known 15-vertex (3,3)-Ramsey graphs not containing K5.
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1. Introduction

Let G be a graph, and let k and l be positive integers. We write G → (k, l)v

(G → (k, l)e) if every red-blue coloring of the vertices (edges) of G forces
a red complete subgraph Kk or a blue complete subgraph Kl in G. For
n > max{k, l}, let

Gv(k, l; n) = {G : G → (k, l)v and Kn 6⊂ G}

and
Ge(k, l; n) = {G : G → (k, l)e and Kn 6⊂ G}.

The graphs in Gv(k, l; n) are called vertex-Folkman graphs and the graphs in
Ge(k, l; n) are called edge-Folkman graphs.

It is well known that K6 → (3, 3)e and so K6 ∈ Ge(3, 3; n) for all n > 6.
In 1967 Erdős and Hajnal [2] asked if Ge(3, 3; 6) 6= ∅ and the following year
Graham [6] answered this question showing that K8−C5 ∈ Ge(3, 3; 6), where,
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for q ≤ p, Kp − Cq is the graph obtained by deleting the edges of a cycle
Cq from Kp. In 1970 Folkman [4] showed that for all k, l and n > max(k, l)
the families Gv(k, l; n) and Ge(k, l; n) are nonempty. One can ask what the
minimum number of vertices of a vertex- or edge-Folkman graph is. This
problem leads to the notion of Folkman numbers. Let us denote

F v(k, l; n) = min{|V (G)| : G ∈ Gv(k, l; n)}

and
F e(k, l; n) = min{|V (G)| : G ∈ Ge(k, l; n)},

where V (G) is the vertex set of a graph G. These numbers are called vertex-

Folkman numbers and edge-Folkman numbers, respectively. Observe that
for n > k + l − 1 we have F v(k, l; n) = k + l − 1 as a trivial consequence of
the pigeon-hole principle. Since the clique on R(k, l) vertices is the smallest
graph G with the property G → (k, l)e (here R(k, l) is the Ramsey number),
obviously we have F e(k, l; n) = R(k, l) for every n > R(k, l). Very little is
known about the edge-Folkman numbers in the case n ≤ R(k, l).

An edge-Folkman number that is still unknown but has been bounded
reasonably is F e(3, 3; 5). The first proof of existence of this number is due
to Pósa (unpublished). Schauble [15] in 1969 showed that F e(3, 3; 5) ≤ 42.
The next upper bound was obtained in 1971 by Graham and Spencer [7].
They proved that F e(3, 3; 5) ≤ 23 and conjectured that F e(3, 3; 5) = 23,
but as they admitted, without much evidence. Their bound was pushed
down to 18 by Irving [11] in 1973. In 1979 Hadziivanov and Nenov [8]
showed a 16-vertex graph from Ge(3, 3; 5) and in 1981 Nenov [14] presented
the first 15-vertex graph with that property proving that F e(3, 3; 5) ≤ 15.
The second one was found in 1984 by Hadziivanov and Nenov [9]. The last
three papers (written in Russian) were not generally noticed at that time.
In 1993 Erickson [3] found a 17-vertex graph in Ge(3, 3; 5) and conjectured
that F e(3, 3; 5) = 17. This was recently disproved by Bukor [1], who came
up with the same 16-vertex graph as in [8]. The author found independently
the 15-vertex graph discovered in [9], but the construction is different. This
will be shown below.

As far as the lower bound is concerned, in 1972 Lin [12] showed
that F e(3, 3; 5) ≥ 10 and his result was later improved by Nenov [13] to
F e(3, 3; 5) ≥ 11 and by Hadziivanov and Nenov [10] to F e(3, 3; 5) ≥ 12.

Much less is known about the number F e(3, 3; 4). Frankl and Rödl [5]
proved that F e(3, 3; 4) ≤ 1012 and later Spencer [16] squeezed out from their
proof the inequality F e(3, 3; 4) ≤ 1010. No reasonable lower bound for this
Folkman number is known.
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2. Constructions

There were two general lines of the search for small (3, 3)-Ramsey graphs not
containing K5. The first one, originated in the construction of Graham, was
based on the following fact proved explicitly in [9]. The join H + G of two
vertex disjoint graphs H and G is the graph with the vertex set V (H)∪V (G)
and the edge set E(H) ∪ E(G) ∪ {{u, v} : v ∈ V (H), u ∈ V (G)}.

Proposition 1 (Hadziivanov, Nenov, 1984). Let P be a path of order 3.
If χ(G) > 2 and the edges of P + G are 2-colored without monochromatic

triangle, then P is monochromatic.

This fact was used by Hadziivanov and Nenov [9] to build the following 15-
vertex graph G1 ∈ Ge(3, 3; 5). Let C be a 5-cycle contained in K5. Let G0

be the graph obtained by elementary subdividing each edge of C as shown
in Figure 1.
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Figure 1 Figure 2

Observe that G0 is a union of 3 edge-disjoint 5-cycles: C1 = {a, b, c, d, e},
C2 = {e, f, g, c, i}, C3 = {g, h, i, j, a}. Consider the graph shown in Figure 2.
It contains 3 paths of length 2: P1 = {x, v, w}, P2 = {y, v, w}, P3 =
{z, v, w}. Let G1 be the union of the joins C1 + P1, C2 + P2 and C3 + P3.
One can easily check that there is no K5 in G1. We shall now prove that
G1 → (3, 3)e. Suppose, on the contrary, that there exists a red-blue coloring
of the edges of G1 such that there is no monochromatic triangle. It follows
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from Proposition 1 that each path P1, P2 and P3 is monochromatic. Thus,
the edges {x, v}, {z, v}, {y, v} have the same color, say red. Then the triangle
{x, y, z} cannot have a red edge, so it becomes blue. This contradiction
proves that G1 → (3, 3)e and, consequently, we have G1 ∈ Ge(3, 3; 5).

The other method, going back to Pósa, constructs edge-Folkman graphs
from vertex-Folkman graphs. Let H + v denote the graph obtained from
a graph H by adding a vertex v and all edges between v and H. The
following result in case k = l was proved in [11]. The idea of the proof below
is basically taken from there.

Proposition 2. Setting m1 = R(k − 1, l) and m2 = R(k, l − 1), if H ∈
Gv(m1, m2; n − 1), then H + K1 ∈ Ge(k, l; n).
In particular,

F e(k, l; n) ≤ F v(m1, m2; n − 1) + 1.

Proof . Let H ∈ Gv(m1, m2; n − 1) and G = H + v. Of course, Kn 6⊂ G.
Let us consider any red-blue coloring of the edges of G. For every vertex
x ∈ V (H) we say that x is red if the edge {x, v} is red, and it is blue if
{x, v} is blue. Since H ∈ Gv(m1, m2; n − 1), there are two possibilities:

either there exists a Km1
on red vertices of H

or there exists a Km2
on blue vertices of H.

Assume that the first case is true. Then the red Km1
contains a Kk−1 with

all edges red (so that this Kk−1 + v creates a Kk with all edges red), or it
contains Kl with all edges blue. If there is a Km2

on the blue vertices of H,
then this Km2

either contains a Kk with all edges red or it contains a Kl−1

with all edges blue (so that this Kl−1 + v creates a Kl with all edges blue).
Hence, one way or another, every red-blue coloring of the edges of G forces
a red Kk or a blue Kl.

We now present the other known 15-vertex graph G2 belonging to Ge(3, 3; 5),
constructed by this method. Figure 3 shows the graph F1 from [14] which
was the first 14-vertex graph discovered in the family Gv(3, 3; 4).

Claim 1. F1 ∈ Gv(3, 3; 4).

Proof. One can very easily check that K4 6⊂ F1. Hence it is enough to
prove that F1 → (3, 3)v. Suppose that there exists a red-blue coloring of
the vertices of F1 such that F1 has no monochromatic triangle. Let F0 denote



Remarks on 15-Vertex (3,3)-Ramsey Graphs... 177

a′

a

g

g′

b

b′

ff ′ c c′

e d

e′ d′

Figure 3. Graph F1

the subgraph of F1 induced by the vertices a, b, c, d, e, f, g. Since every 5
vertices of F0 span a triangle, F0 has at most 4 red vertices and at most 4
blue vertices. Without loss of generality, we may assume that it has precisely
3 red vertices and 4 blue vertices and that a and b are red. Now we consider
four cases with respect to where the third red vertex might be.

(i) If c is the third red vertex, then a, c are red and d, g are blue, so we
cannot color the vertex b′.

(ii) If d is red, then a, d are red and e, g are blue, and thus we cannot
color the vertex f ′.

(iii) If e is red, then a, e are red and d, g are blue so we have no color for
the vertex f ′.

(iv) Finally, if the vertex f (or g) is red, then we get the same situation as
in case (ii) ((i) respectively) because of the symmetry of the graph F1.

Thus no other vertex of F0 can be red, a contradiction. Thus, such a coloring
is impossible and F1 ∈ Gv(3, 3; 4).

By Proposition 2, the join G2 = F1 + K1 belongs to Ge(3, 3; 5), and this is
the graph found by Nenov [14].

We shall now construct a 14-vertex graph F2 ∈ Gv(3, 3; 4) different than
Nenov’s graph F1 from Fig. 3. Let G0 be the graph shown in Figure 1. We
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construct the required graph F2 by adding four more vertices w, x, y, z and
joining w to all vertices of G0, x to all vertices of C1, y to all vertices of C2

and z to all vertices of C3. Also we add the edges {x, y}, {y, z} and {x, z}.
Note that F2 has 14 vertices.

Claim 2. F2 ∈ Gv(3, 3; 4).

Proof . Let us first show that K4 6⊂ F2. Observe that K3 6⊂ G0 and
hence K4 6⊂ G0 + x, K4 6⊂ G0 + y, K4 6⊂ G0 + z and K4 6⊂ G0 + w.
Moreover, w 6∈ K4. Thus, if K4 ⊂ F2, then this K4 must contain two or
three vertices of the set {x, y, z}. The cycles C1, C2 and C3 are edge-disjoint,
so no two vertices of {x, y, z} are in K4. Thus, all x, y, z must be in K4,
but it is impossible because the cycles C1, C2, C3 have no common vertex.
Consequently, K4 6⊂ F2.

Assume that the vertices of F2 are red-blue colored and there is no
monochromatic triangle in F2. Without loss of generality, we may assume
that the vertex w is red. Each cycle C1, C2 and C3 has at least two adjacent
vertices of the same color. It must be blue since w is red. But then all
x, y, z must be red and the triangle x, y, z becomes red. It is a contradiction
proving that every red-blue coloring of vertices of F2 forces a monochro-
matic triangle. Hence, the graph F2 is the second known 14-vertex graph in
Gv(3, 3; 4).

Note that the join F2 + K1 is isomorphic to graph G1 described earlier.
Thus, it turned out that both known 15-vertex (3, 3)-Ramsey graphs not
containing K5 can be viewed as a join of K1 and a graph from Gv(3, 3; 4).

Open problem. Determine the precise value of the Folkman numbers
F e(3, 3; 5) and F v(3, 3; 4), or tighten up the present estimates

11 ≤ F v(3, 3; 4) ≤ 14,

12 ≤ F e(3, 3; 5) ≤ 15.

(It follows from Proposition 2 that F e(3, 3; 5) ≥ 12 ⇒ F v(3, 3; 4) ≥ 11).
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