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Abstract

Strongly perfect graphs were introduced by C. Berge and P. Duchet
in [1]. In [4], [3] the following was studied: the problem of strong per-
fectness for the Cartesian product, the tensor product, the symmetrical
difference of n, n > 2, graphs and for the generalized Cartesian product
of graphs. Co-strong perfectness was first studied by G. Ravindra and
D. Basavayya [5]. In this paper we discuss strong perfectness and co-
strong perfectness for the generalized composition (the lexicographic
product) of graphs named as the X-join of graphs.
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1. INTRODUCTION

Let G be a finite undirected connected simple graph. By V(G) and E(G)
we denote its vertex set and edge set, respectively. The notation H =
< Vo >ag, Vo € V(G) means that H is the subgraph of G induced by V.
A subset S C V(G) is said to be stable in G if no two distinct vertices
of S are adjacent in G. A subset Q@ C V(G) is a clique of G if < Q >¢
is a complete subgraph of G. If the stable set S meets every maximal
(with respect to the set inclusion) clique @, then we will call it a stable
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transversal of G. A graph G is called strongly perfect ([1]) if its every in-
duced subgraph (including G itself) has a stable transversal. We call G
co-strongly perfect ([5]) if G and the complementary graph G to G are
strongly perfect. Let G1,...,G,, n > 2, be graphs of the same order m > 2
with the vertex sets V(G;) =V ={y1,...,ym} fori =1,...,n and X be
a graph such that V(X) = {z1,...,2,}. The X-join ([2]) of the sequence
of graphs Gi,...,G, and the graph X is the graph X[Gy,...,G),] with
the vertex set V(X) x V and the edge set {[(x},vp), (zk,yq)] : j = k and
(s 0] € B(Gy) or [5,04] € E(X)}.

Observe that if G; = Gy = ... = G,, =Y, then we obtain the composi-
tion (the lexicographic product) of graphs Y and X denoted by X[Y].

Let Vo C V(X) x V. By the projection PrxVy of the subset V) on the
graph X we mean the set PrxVy = {z € V(X) : there exists y € V(G;),
1 <i<n, that (z,y) € W}.

2. RESULTS

Put G = X|[G1,...,Gy), for convenience. Let H be a connected induced
subgraph of G such that it is not isomorphic to any induced subgraph H' of
the graph X or G;, fori =1,...n.

Let PrxV(H) = {z,...,zip}, 2<p<n.

We partition the set V(H) on p-disjoint sets V;;(H) such that
PrxViij(H) = {x;;} for j =1,...,p. For an arbitrary subset R C V(H), in
a natural way we can write R = U§:1 RNV;(H), where 1 <t < p.

For G and H given above it follows immediately.

Lemma 1. If Q is a maximal clique of H, then Prx(Q is a mazimal clique
of < PrxV(H) >.

Lemma 2. A subset Q C V(H) is a mazimal clique of H if and only if
(1) Q@NViy(H) is a mazimal clique of < Vij(H) > for j =1,...,p or
QNVi;j(H)=0 and
(2) PrxQ is a mazimal clique of < PrxV (H) >.

Proof. 1. Assume that @ is a maximal clique of H. We can write () =

;leﬂVij(H) where 1 <t < p with QN V;(H) # 0 for each j =1,...,¢.
Moreover, each of the sets @ N V;;j(H) must be a clique of < Vj;(H) >.
Suppose there exists j, 1 < j <t such that Q@ NV;;(H), is not maximal. In
consequence, there exists a vertex (x;;,y,) € Vi;(H)\QNV;;(H),1 <j <t



NOTE STRONG AND CO-STRONG PERFECTNESS... 153

(of course (xi5,yr) ¢ Q) which is adjacent to each vertex from Q N V;(H).
Moreover, by the definition of G and from the fact that Q@ N V;;(H) C Q it
follows that (z;;,1,) must be adjacent to each vertex from Q\Q N Vj;(H).
In consequence, (z;j,y,) is adjacent to all vertices from @ and (z;;,y,) ¢ @,
a contradiction with the assumption that () is a maximal clique of H. This
shows that the condition in (1) holds.

Condition (2) follows from Lemma 1.

II. Suppose that conditions (1) and (2) hold. We can write @ = U§:1 QN
Vij(H), 1 <t < p. Note that | Q |> 1, by the asumption about H. Firstly,
we shall show that @ is a clique of H. Let (x;j,yr), (ik, ys) be two distinct
vertices from Q. If j =k, then they belong to Q N'Vj;(H) and are adjacent
by (1). If j # k, then z;;,z;; € PrxQ and by (2) they are adjacent in X.
Thus, by the definition of G the vertices (x;, y,), (ik, ys) are adjacent in G.
This proves that @ is a clique of H.

Assume that @ is not maximal. This means that there exists (z;;, y,) ¢ @
but it is adjacent to each vertex from ). Moreover, by the definition of G,
the vertex x;; is adjacent to all vertices from Prx(@. This implies that z;; €
Prx@ by (2). In consequence, it must be that (z,y,) € Vi (H)\Q NV (H)
(evidently (z;,y,) ¢ QNVy(H)). Since QNVy(H) C Q and (x;, y,) is adja-
cent to each vertex from @, then it is adjacent to each vertex from QNV;(H).
Hence by (1) it must be that (z;,y,) € Q@ NV (H), a contradiction. Hence,
(@ is a maximal clique of H and this complets the proof of the lemma. m

Using the same method as in the proof of Lemma 2 we prove.

Lemma 3. A subset S C V(H) is a mazimal stable set of H if and only if
(1) SNVii(H) is a mazimal stable set of < Vi;(H) > forj=1,...,s or
SNVij(H) =0 and
(2) PrxS is a mazimal stable set of < PrxV (H) >.
Lemma 4 follows directly from the definition of the graph X|[G1,...,G,).

Lemma 4. X[Gy,...,G,] = X[Gy,...,G,).
Theorem 1. X|[Gi,...,G,] is strongly perfect if and only if the graphs
X,G1,...,Gy are strongly perfect.

Proof. 1. Let X[G1,...,G,] be strongly perfect. Then X,G,...,G, are
strongly perfect since they are isomorphic to some induced subgraphs of G.
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II. Suppose that the graphs X, Gq,..., G, are strongly perfect. We shall
show that G is strongly perfect. Let H be a connected induced subgraph
of G. We shall prove that H has a stable transversal.

If H is an induced subgraph of X or GG;,1 < i < n, then H has a stable
transversal, by the asumption that X, Gy, ..., G, are strongly perfect.

Let H be not induced subgraph of X,G;,i = 1,...,n. Assume that H
does not have a stable transversal, i.e., for every maximal stable set
S C V(H) there exists a maximal clique @ C V(H) such that SN Q = 0.
Moreover, by the definition of G and Lemmas 2, 3 we have that for every
maximal stable set PrxS of < PrxV(H) > there exists a maximal clique
PrxQ of < PrxV(H) > such that PrxSN Prx@ = (. This is a contradic-
tion, since < PrxV(H) > has a stable transversal.

This proves that X |G, ..., G,] is strongly perfect and the proof is com-
plete. [

For Gi =Gy =...=G,, =Y we obtain

Corollary 1. The composition X[Y] of graphs X and Y is strongly perfect
if and only if both X and Y are strongly perfect.

Using Lemma 4 and Theorem 1 we obtain

Corollary 2. X|[Gy,...,Gy] is strongly perfect if and only if the graphs
X,G4,...,G, are strongly perfect.

In consequence, it follows immediately

Theorem 2. X[Gy,...,Gy] is co-strongly perfect if and only if the graphs
X,G1,...,Gy are co-strongly perfect.
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