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Abstract

In this paper we consider partitions (resp. packings) of graphs
without odd chordless cycles into cliques of order at least 2. We give a
structure theorem, min-max results and characterization theorems for
this kind of partitions and packings.
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The problems of packing and partitioning of graphs into cliques are among
most commonly studied problems in graph theory.

Hell and Kirkpatrick [2] considered the problems of packing and parti-
tioning of a graph (or more precisely its vertex set) into cliques with pre-
scribed orders. Let K be any family of cliques, i.e. K ⊆ {K1,K2,K3, ...},
where Ki stands for the complete i-vertex graph. By a K-packing of a graph
we mean a subgraph H of G whose every component is isomorphic to some
member of K. A K-packing of G is called a K-partition if it is a spanning
subgraph of G.

Hell and Kirkpatrick [2] proved that for any fixed family K ⊆
{K3,K4, ...} the decision problem if the instance graph G admits a
K-partition is NP-complete. When K1 ∈ K or K2 ∈ K it is polynomial.
In [3] the authors examined the case K = {K2,K3, ...} and obtained struc-
ture and min-max theorems for K-packings in this case. They also gave a
good characterization of graphs admitting a {K2, K3, ...}-partition. Similar
results were obtained independently by Cornuéjols, Hartvigsen and Pulley-
blank [1]. Obviously the problem of existence of a K-partition of a graph
is a natural generalization of the problem of existence of a perfect match-
ing. Similarly, the problem of finding a K-packing of maximum order is
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a generalization of the problem of finding a maximum-sized matching in a
graph.

Lonc strengthened in [4] the results of Hell and Kirkpatrick [3] by show-
ing that for K ⊆ {K3,K4, ...} the decision problem if the instance graph G
admits a K-partition is NP-complete even for comparability graphs.

This paper is devoted to the case of K = {K2,K3, ...}. The results we
obtain concern the class W of graphs without odd chordless cycles. The
class of perfect graphs is obviously a proper subclass of this class. We give a
structure theorem, min-max results and characterization theorems for these
packings and partitions of graphs belonging to W. They are analogous to
the results obtained by Hell and Kirkpatrick [3]. It turned out that if we
restrict ourselves to the class W, then we can simplify the theorems greatly
using a strong machinery of the matching theory (c.f. Lovász and Plummer
[5]). We also show that the problems we consider in this section are, from
the algorithmic point of view, essentially as hard as the maximum matching
problem for bipartite graphs.

Let us call a {K2,K3, ...}-packing (respectively {K2,K3, ...}-partition)
of a graph G a 2-packing (respectively a 2-partition), for simplicity.

The following lemma sheds much light on the problems we deal with in
this paper.

Lemma 1. Every Hamiltonian graph G ∈ W admits a 2-partition.

Proof. If the order of G is even then G obviously has a perfect matching
(being a 2-partition). Thus assume that the order of G is odd. In this
case we proceed by induction on |V (G)|. For |V (G)| = 3 our lemma holds.
Let |V (G)| > 3. Since G ∈ W, the Hamiltonian cycle in G has a chord
dividing the cycle into odd and even cycles. Thus the set of vertices of G
can be partitioned into a part inducing an odd cycle and a part inducing a
path with an even number of vertices. Our assertion follows now from the
induction hypothesis.

The above lemma implies that for graphs G ∈ W the existence of a
2-partition is equivalent to existence of a 2-matching. By a 2-matching we
mean a subgraph of G whose every component is either a single edge or an
odd cycle. Moreover, it is not hard to show that for G ∈ W the maximum
order of a 2-partition is equal to the maximum order of a 2-matching. Thus
we can apply the strong matching theory methods (c.f. [5]) to our partitions
and packings.

A 2-packing in G is called maximum if its order is maximal.



Clique Packings and Clique Partitions... 145

For a graph G define a bipartite graph H in the following way. Replace each
vertex v in G by two vertices v′ and v′′ in H and each edge uv by two edges
u′v′′ and u′′v′.

Lemma 2. Let G ∈ W. The number of edges in a maximum matching in
H is equal to the number of vertices covered by a maximum 2-packing in G.

Proof. Let F be a maximum 2-packing in G and denote by C1, C2, ..., Ct

its connected components. If u1, ..., up are the vertices of some Ci then the
edges u′1u′′2, u′2u′′3, ..., u′p−1u

′′
p, u

′
pu
′′
1 form a matching of size |V (Ci)| in H. The

union of such edges for every Ci is a matching of size |F | in H.
On the other hand, let M be a collection of edges in H forming a

maximum matching. Denote N = {uv ∈ E(G) : u′v′′ ∈ M or u′′v′ ∈ M}.
Clearly the edges of N induce a subgraph I of G whose every component is
either a path or a cycle. Let C be a component of I which is a path with at
least 2 edges. Notice that the set of edges in M corresponding to C is either
of the form u′1u′′2, u′2u′′3, ..., u′qu′′q+1 or of the form u′′1u′2, u′′2u′3, ...u′′qu′q+1. Since
both cases are analogous, consider the former only. Replace the above edges
by the edges u′1u′′2, u′2u′′1, u′3u′′4, u′4u′′3, ... . The resulting set of edges forms a
matching in H of size |M | when q is even and |M |+1 when q is odd. By the
definition of M the latter case is not possible, so q must be even. Repeat
this procedure for every path in I. The resulting set of edges M ′ forms a
maximum matching in H and the corresponding set of edges N ′ induces a
subgraph in G whose every component is either a 2-vertex clique or a cycle.
This subgraph covers |M ′| = |M | vertices of G and by Lemma 1 it admits a
2-partition.

The following structure theorem for maximum 2-packings is true. Let D(G)
be the set of all vertices in a graph G which are not covered by at least one
maximum 2-packing. Denote by A(G) the set of vertices in V (G) − D(G)
adjacent to at least one vertex in D(G). Finally, let C(G) = V (G)−A(G)−
D(G).

Theorem 1. Let G ∈ W. Then
(1) D(G) is an independent set,
(2) C(G) has a 2-partition,
(3) the bipartite graph obtained from G by deletion of the vertices in C(G)

and the edges spanned by A(G) has a matching covering A(G),
(4) every maximum 2-packing contains a matching described in (3),
(5) maximum 2-packings have orders |V (G)| − |D(G)|+ |A(G)|.
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Proof of Theorem 1. In the proof we shall use the structure theorem
on maximum matching in bipartite graphs (c.f. [5, pp. 99–100]). Notice that
in the case of bipartite graphs 2-packing are just matchings.

Theorem A. Let H be a bipartite graph with vertex classes X1 and X2,
Di = D(H) ∩Xi, Ai = A(H) ∩Xi and Ci = C(H) ∩Xi, i = 1, 2. Then

(i) D(H) is an independent set of vertices,
(ii) the subgraph of H induced by the vertices in C(H) has a perfect match-

ing,
(iii) there are matchings in H that match A1 into D2 and A2 into D1,
(iv) every maximum matching on H consists of a perfect matching cover-

ing C(H), a matching of A1 into D2 and a matching of A2 into D1.

Let H be the bipartite graph defined before Lemma 2. Let D = {v′, v′′ ∈
V (H) : v ∈ D(G)} and A = {v′, v′′ ∈ V (H) : v ∈ A(G)}. We shall show
that D = D(H).

Let, for some v ∈ V (G), v′ ∈ D(H) (the case v′′ ∈ D(H) is anal-
ogous). It means that there is a maximum matching M in H not cov-
ering v′. Suppose M covers v′′. Then there is a sequence of edges
v′′u′1, u′′1u′2, u′′2u′3, ..., u′′p−1u

′
p in M which does not cover u′′p. If p were

odd, then M would not be maximum for we could replace the above p
edges by p + 1 edges v′′u′1, u′′1v′′, u′′2u′3, u′′3u′2, ..., u′′p−1u

′
p, u

′′
pu
′
p−1. The re-

sulting set of edges is a matching in H contradicting the maximality
of M . Thus p is even. Replacing the above mentioned edges by the edges
u′′1u′2, u′′2u′1, u′′3u′4, u′′4u′3, ..., u′′p−1u

′
p, u

′′
pu
′
p−1 we get a maximum matching in H

not covering v′′. Proceeding like in the proof of Lemma 2 we construct a
maximum 2-packing in G corresponding to M which does not cover v. Thus
v ∈ D(G) so v′ ∈ D.

Conversely, let v′ ∈ D (again the case v′′ ∈ D is analogous). Then
v ∈ D(G). Let P be a maximum 2-packing in G which does not cover v.
Denote connected components of P by C1, C2, ..., Ct. Let u1, u2, ..., up be
the vertices of some Ci. Then the edges u′1u′′2, u′2u′′3, ..., u′p−1u

′′
p, u

′
pu
′′
1 form

a matching Mi in H. The set M =
⋃t

i=1 Mi is matching of size |P | in H.
By Lemma 2 M is a maximum matching. Clearly M does not cover v′ so
v′ ∈ D(H).

Suppose now that for some u, v ∈ D(G), uv is an edge in G. Then
u′v′′, v′u′′ ∈ D = D(H) so u′v′′, v′u′′ are the edges in H contradicting
Theorem A (i). Thus (1) holds.

By the definition of the graph H and the equality D = D(H), A =
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A(H). Consequently, C = C(H), where C = V (H) − A − D = {v′, v′′ ∈
V (H) : v ∈ C(G)}. By Theorem A (ii), C can be covered by a perfect match-
ing. This matching corresponds in G to a family of cycles. By Lemma 1,
C(G) admits a 2-partition, which proves (2).

To show (3) note that, by Theorem A (iii), there is a matching in H
covering A and such that its edges have one vertex in D and the other one
in A. This matching corresponds in G to a subgraph F whose vertices are
contained in A(G) ∪ D(G). The components of F are either even cycles,
paths of even size or 2-vertex cliques. Vertices of A(G) have degrees 2 or
they belong to 2-vertex cliques in F . Clearly, F contains a matching covering
A(G). This completes the proof of (3).

Consider a maximum 2-packing P in G and let M be any matching of
size |P | corresponding to P in H. Clearly, M has a maximum size so by
Theorem A (iv), M contains a submatching M ′ covering A such that one
endvertex of each its edge is in A and the other one in D. This submatching
M ′ coresponds in G to a subgraph F ′ covering A(G) whose vertices are
contained in A(G) ∪ D(G). The components of F ′ are either even cycles
whose vertices belong alternatively to A and D or 2-vertex cliques with
one endvertex in A and the other one in D. Vertex sets of each of the
components are vertex sets of components in P . Since D is an independent
set, the only possibility is that each component of P is a 2-vertex clique
with one endvertex in A(G) and the other one in D(G). Thus (4) holds.

The statement (5) follows easily from (4).

Theorem 1 has many important consequences. We shall state some of them
as corollaries.

For A ⊆ V (G), denote by Γ(A) the set of neighbors of A and by c2(G)
the maximum number of vertices in a graph G that can be covered by a
2-packing.

Corollary 1. Let G ∈ W. Then

c2(G) = min{|V (G)| − |A|+ |Γ(A)|},

where the minimum is taken over all independent sets A ⊆ V (G).

Proof. Let A0 = D(G). Then Γ(A0) = A(G) so

c2(G) = |V (G)| − |D(G)|+ |A(G)| = |V (G)| − |A0|+ |Γ(A0)|
≥ min{|V (G)| − |A|+ |Γ(A)|}.
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Conversely, consider any maximum 2-packing F in G. Let A ⊆ V (G) be
independent. Clearly, F covers at most |Γ(A)| vertices in A leaving at least
|A|−|Γ(A)| uncovered. Thus, F covers at most |V (G)|−|A|+|Γ(A)| vertices
of G. Consequently

c2(G) = |F | ≤ |V (G)| − |A|+ |Γ(A)|

so c2(G) = min{|V (G)| − |A|+ |Γ(A)|}.
The proofs of the remaining three corollaries are analogous to the above one
or trivial so we omit them. Let, for a subset S ⊆ V (G), t(S) denote the
number of singletons (i.e. one-vertex components) in the graph G− S.

Corollary 2. Let G ∈ W. Then

c2(G) = min{|V (G)|+ |S| − |t(S)|},

where the minimum is taken over all subsets S ⊆ V (G).

Corollary 3. Let G ∈ W. Then G admits a 2-partition if and only if
|Γ(A)| ≥ |A|, for every independent set A ⊆ V (G).

Corollary 4. Let G ∈ W. Then G admits a 2-partition if and only if
t(S) ≤ |S|, for every subset S ⊆ V (G).

It was mentioned earlier that c2(G) is, for G ∈ W, equal to the maximum
order of a 2-matching in G. From the algorithmic point of view, the latter
problem is known to be essentially as hard as the maximum matching prob-
lem for bipartite graphs. Similarly, constructing a 2-partition of order c2(G)
is also as hard as constructing a maximum matching in a bipartite graph.
It follows from the following proposition.

Proposition 2. Let G ∈ W be an odd order graph with a Hamiltonian
cycle C. Then there is a 2-partition of G whose one component is a triangle
and the other ones are edges contained in C.

The proof of the above proposition is similar to the proof of Lemma 1 and
we leave it to the reader.

To construct a 2-partition of order c2(G), we first construct a 2-matching
of order c2(G) (this is essentially a construction of a maximum matching
in a bipartite graph). Denote the odd components of this 2-matching by
C1, C2, ..., Cp. What remains, is to find 2-partitions of the Hamiltonian
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graphs Ci. In view of Proposition 2 it suffices to find, for each i, a triangle
Ti in Ci such that after the deletion of Ti the Hamiltonian cycle of Ci splits
into even order parts. This can be easily done by a linear breadth first
algorithm.
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