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Abstract

The type of a face f of a planar map is a sequence of degrees of
vertices of f as they are encountered when traversing the boundary
of f . A set T of face types is found such that in any normal planar
map there is a face with type from T . The set T has four infinite
series of types as, in a certain sense, the minimum possible number.
An analogous result is applied to obtain new upper bounds for the
cyclic chromatic number of 3-connected planar maps.
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1. Introduction

It is an old classical consequence of the famous Euler’s polyhedral formula
that a normal planar map contains a vertex of degree ≤ 5, a face of degree
≤ 5 and also a 3-valent vertex or a triangle.

A face of a map can be characterized by its type, a sequence of degrees of
its vertices. Lebesgue [19] specified a set of small face types which intersects
the face type set of any normal planar map. (For this Lebesgue’s result and
its application see Plummer and Toft [21].)

Kotzig [16] proved that each 3-connected normal planar map contains an
edge of weight (the degree sum of its endvertices) at most 13; the condition
of 3-connectedness can be abandonned, due to Borodin [1] (the same result
was announced by Barnette, see Grünbaum [11]).

At present many results concerning the structure of planar maps are
known. For example, Kotzig’s result was generalized and strengthened in
several directions, see Borodin [2,5], Grünbaum and Shephard [12], Ivančo
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[13], Zaks [23]. Recently, unifying and strengthening Kotzig’s results [18],
Borodin [8] has proved that any planar triangulation without vertices of
degree 4 contains either a triangle of weight (the degree sum of its incident
vertices) at most 29 incident with a 3-valent vertex or a triangle whose
weight does not exceed 17.

A sharp inequality for the number of triangles of weight at most 17 in
planar maps with minimum degree 5 was found by Borodin [4]. Edges of
small weights in planar maps of minimum degree 5 are investigated in a
very recent paper by Borodin and Sanders [9]. Both the above mentioned
papers complete the work contributed to by many authors, among others
Grünbaum [10], Kotzig [17], Fisk (see [12]), Wernicke [22].

Many structural results on planar maps have been obtained by solv-
ing some colouring problems, see e.g. Borodin [1,3,6,7], Jendrol’ and
Skupień [14].

The main aim of this paper is to prove an analogue of Lebesgue’s theo-
rem, which is optimal in a certain sense.

2. Fundamentals

For integers p, q we denote by [p, q] the set of all integers i, p ≤ i ≤ q, and
by [p,∞) the set of all integers ≥ p.

A finite sequence Q is said to be equivalent to a finite sequence P if
Q can be obtained from P using rotation and/or mirror image. Thus, if
P = (p1, . . . , pn), then Q = (p1+i, . . . , pn+i) or Q = (pn−i, . . . , p1−i) for some
i ∈ [0, n − 1], where indices are taken modulo n. (We use this “modulo
convention” throughout the whole paper.) Let P, P1, P2 be finite sequences
and let m ∈ [1,∞). We denote by P1P2 the concatenation of P1 and P2

(in that order), by Pm the m-fold concatenation of P ’s and by len(P ) the
length of P .

Let M be a map on a 2-manifold, i.e. a 2-cell embedding of a graph,
in which loops and multiple edges are allowed. V (M), E(M) and F (M)
are the vertex set, the edge set and the face set of M , respectively, deg c is
the degree of c ∈ V (M) ∪ F (M). M is called normal if deg c ≥ 3 for any
c ∈ V (M) ∪ F (M). An angle of a face f ∈ F (M) with centre v ∈ V (M)
is an alternating quintuple (u, d, v, e, w) of consecutive vertices and edges of
f which are encountered when moving along the boundary of f , i.e., the
curve consisting of all edges incident with f . The centre of an angle a will
be denoted by ȧ. Let A(f) be the set of all angles of f and A(v) the set of
all angles with centre v. Evidently, |A(v)| = 2 deg v and |A(f)| = 2 deg f
for any v ∈ V (M) and f ∈ F (M). Due to the normality of M we know that
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A(v1) 6= A(v2) for any v1, v2 ∈ V (M), v1 6= v2 and A(f1) 6= A(f2) for any
f1, f2 ∈ F (M), f1 6= f2. Putting

A(M) := {A(v) : v ∈ V (M)} = {A(f) : f ∈ F (M)}

we see that there exists a natural bijection βM between the sets {(a, v) ∈
A(M) × V (M) : a ∈ A(v)} and {(a, f) ∈ A(M) × F (M) : a ∈ A(f)}. Let
f be a face of degree n and let (v1, . . . , vn) be a sequence of vertices of f
as they are encountered when traversing the boundary of f . Any sequence
from the set τ(f) of all sequences equivalent to (deg v1, . . . ,deg vn) is said
to be a type of f .

Let S be the set consisting of all lexicographic minima of the set
⋃∞

i=3[3,∞)i (provided sequences of the same length are comparable only).
We represent the set τ(f) by its representative in S.

Let M be a class of normal maps on a 2-manifold. A set T ⊆ S is said
to be an unavoidable set of face types for M if for any M ∈ M there exists
T ∈ T and f ∈ F (M) such that T ∈ τ(f).

In 1940 Lebesgue [19] proved (in a dual form)

Theorem 1. For the class of normal planar maps the following sequences
form an unavoidable set of face types:
(3, i, j), i ∈ [3, 6], j ∈ [i,∞), (4, 4, i), i ∈ [4,∞), (3, 3, 3, i), i ∈ [3,∞),
(3, 7, i), i ∈ [7, 41], (3, 8, i), i ∈ [8, 23], (3, 9, i), i ∈ [9, 17], (3, 10, i), i ∈ [10, 14],
(3, 11, i), i ∈ [11, 13], (4, 5, i), i ∈ [5, 19], (4, 6, i), i ∈ [6, 11], (4, 7, i), i ∈ [7, 9],
(5, 5, i), i ∈ [5, 9], (5, 6, i), i = 6, 7,
(3, 3, 4, i), i ∈ [4, 11], (3, 3, 5, i), i ∈ [5, 7], (3, 4, 3, i), i ∈ [4, 11],
(3, 4, 4, i), i = 4, 5, (3, 4, 5, 4), (3, 5, 3, i), i ∈ [5, 7],
(3, 3, 3, 3, i), i ∈ [3, 5].

Note that in [19] an error occurred by omitting the types (4, 4, i), i ∈ [4,∞).
Let T be an unavoidable set of face types for M. A sequence S =

(s1, ..., sn) ∈
⋃∞

i=2[3,∞)i such that either (sn, ..., s1) = S or sj < sn+1−j for
j = min{i ∈ [1, n] : si 6= sn+1−i} is a T -basic sequence if the set T ∩ {S(i) :
i ∈ [3,∞)} is infinite. Let B(T ) be the set of all T -basic sequences. For
i ∈ [3,∞) set

bi(T ) := card{S ∈ B(T ) : len(S) = i − 1},

b−i (T ) = card{T ∈ T − {S(j) : S ∈ B(T ), j ∈ [3,∞)} : len(T ) = i}.

The sequences {bi(T )}∞i=3 and {b−i (T )}∞i=3 are called the infinite and the
finite characteristic of T , respectively. If bi(T ) = 0 for all i ∈ [p + 1,∞) or
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b−i (T ) = 0 for all i ∈ [q + 1,∞), we present a corresponding characteristic
simply as (b3(T ), . . . , bp(T )) or (b−3 (T ), . . . , b−q (T )). For the Lebesgue’s un-
avoidable set L, we see that B(L) = {(3, i) : i ∈ [3, 6]} ∪ {(4, 4), (3, 3, 3)}
and that L has the infinite characteristic (5,1), and the finite characteristic
(99,25,3).

An unavoidable set T is good if
∑∞

i=3 b−i (T ) is finite. Two good unavoid-
able sets T and T ′ can be compared as follows: T is more economical than
T ′ if

∑∞
i=3 bi(T ) <

∑∞
i=3 bi(T

′); this means that T contains a smaller num-
ber of (naturally structured) infinite subsets than T ′ (and a finite “rest”).
Thus, we can pose

Problem 1. Find the minimum of
∑∞

i=3 bi(T ) for a good unavoidable set
T of face types for normal planar maps.

We are going to show that the minimum of Problem 1 is equal to 4.

3. Main result

Theorem 2. Let T be a good unavoidable set of face types for normal planar
maps.

(i) {(3, 4, 4)} ∪ {(4, 4, i) : i ∈ [4,∞)} ∪ {(3, 3, 3, i) : i ∈ [3,∞)} ⊆ T .

(ii) If (3, 3) /∈ B(T ), then {(3)i : i ∈ [4,∞)} ⊆ B(T ).

(iii) If (3, 4) /∈ B(T ), then {(3, 3, 4), (4, 3, 4)} ⊆ B(T ).

Proof. Let m ∈ [3,∞), n ∈ [1,∞), l ∈ [1, n] and let P = (p1, . . . , p2l) ∈
[1, n]2l be such a sequence that pi 6= pj for any (i, j) ∈ [1, l]2 ∪ [l + 1, 2l]2,
i 6= j. Let Gn

m(P ) be a planar graph with

V (Gn
m(P )) = {xi : i ∈ [1, mn]} ∪ {y0, y1},

E(Gn
m(P )) =

mn
⋃

i=1

{xixi+1} ∪
m−1
⋃

i=0

1
⋃

j=0

{xin+kyj : k = pjl+1, . . . , pjl+l}.

A plane embedding of G1
m(1, 1) (an m-sided bipyramid) has only faces of type

(4, 4m) and a plane embedding of G2
m(1, 2) (a dual of an m-sided antiprism)

has only faces of type (3, 3, 3, m); hence (i) follows from the finiteness of
∑∞

i=3 b−i (T ).

A plane embedding of G2n
m (1, . . . , 2n), n ≥ 2, has only faces of types

(3, 3, mn) and (3)n+2(mn), so that (3, 3) /∈ B(T ) implies (3)n+2(mn) ∈ T
for all sufficiently large m and (3)n+2 ∈ B(T ).
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Finally, a plane embedding of G4
m(1, 2, 3, 1, 3, 4) has only faces of types

(3, 4, 3m) and (4, 3, 4, 3m), while a plane embedding of G6
m(1, 2, 4, 5, 1, 3, 4, 6)

has only faces of types (3, 4, 4m) and (3, 3, 4, 4m). It means that if (3, 4) /∈
B(T ), then for every m large enough (4, 3, 4, 3m) as well as (3, 3, 4, 4m)
belong to T , so that {(3, 3, 4), (4, 3, 4)} ⊆ B(T ).

Corollary 3.
∑∞

i=3 bi(T ) ≥ 4 for any good unavoidable set T of face types
for normal planar maps and, if the equality holds, then b3(T ) = 3, b4(T ) = 1
and B(T ) = {(3, 3), (3, 4), (4, 4), (3, 3, 3)}.

Thus our goal will be reached by finding an unavoidable set T of face
types for normal planar maps with the infinite characteristic (3, 1) and with
∑∞

i=3 b−i (T ) being finite.
One of well known corollaries of Euler’s formula for a planar map M

can be expressed as
∑

v∈V (M)

(6 − deg v) + 2
∑

f∈F (M)

(3 − deg f) = 12.

Thus, if we define the basic charge of a vertex v ∈ V (M), of a face f ∈ F (M)
and of an angle a ∈ A(M) by

bv := deg v − 6, bf := 2 deg f − 6, ba :=
deg ȧ − 6

2 deg ȧ
,

then
bv =

∑

a∈A(v)

ba,

∑

v∈V (M)

bv +
∑

f∈F (M)

bf =
∑

v∈V (M)

∑

a∈A(v)

ba +
∑

f∈F (M)

bf = −12,

which, using the mentioned bijection βM , can be rewritten as
∑

f∈F (M)

∑

a∈A(f)

ba +
∑

f∈F (M)

bf =
∑

f∈F (M)

(bf +
∑

a∈A(f)

ba) = −12.

If the basic charges of vertices and faces are transformed to

b′v := 0, b′f := bf +
∑

a∈A(f)

ba,

we see that
∑

v∈V (M)

b′v +
∑

f∈F (M)

b′f =
∑

f∈F (M)

b′f = −12,
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hence there exists a face f whose transformed charge b′f is negative. For
T = (d1, . . . , dn) ∈ [3,∞)n, n ∈ [3,∞), put

B′(T ) := 2n − 6 +
n

∑

i=1

di − 6

di
.

Then, clearly, b′f = B′(T ) for each T ∈ τ(f), and we can call B′(T ) the
transformed charge of the face type T . The Lebesgue’s set L consists just of
face types with a negative transformed charge.

We modify the process of passing from basic charges to transformed
charges in the following way: We define a rational alternative charge cv of
an angle a ∈ A(M). Then we determine alternative charges of vertices and
faces by

cv :=
∑

a∈A(v)

ca, cf := bf +
∑

a∈A(f)

(ba − ca).

Due to the definition we have

cf +
∑

a∈A(f)

ca = bf +
∑

a∈A(f)

ba,

∑

v∈V (M)

cv +
∑

f∈F (M)

cf =
∑

v∈V (M)

bv +
∑

f∈F (M)

bf = −12.

If all alternative vertex charges are non-negative, there exists a face f ∈
F (M) with cf < 0.

In the definition of the basic charge of an angle a the degree of ȧ is in-
volved only. To involve degrees of all the vertices of an angle in the definition
of an alternative angle charge, we shall define, for a = (vi−1, ei−1, vi, ei, vi+1),

ca := c(deg vi−1, deg vi, deg vi+1),

where the mapping c : [3,∞)3 → Q fulfills the condition

c(i, j, k) = c(k, j, i) for any (i, j, k) ∈ [3,∞)3.

If T = (d1, . . . , dn) ∈ [3,∞)n, n ∈ [3,∞), we define the alternative charge of
the face type T by

C(T ) := B′(T ) − 2
n

∑

i=1

c(di−1, di, di+1).

Then, analogously as before, the alternative charge is an invariant rational
on the set of all types of a fixed face.
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Let v be a vertex of M with degree n and let (e1, . . . , en) be the sequence
of edges incident with v as they are encountered when rotating around v.
Let vi be the vertex of M joined to v along ei, i = 1, . . . , n. Then the
alternative charge of v is cv = 2

∑n
i=1 c(deg vi, n, deg vi+1). Set

s(d1, . . . , dn) :=
n

∑

i=1

c(di, n, di+1).

Thus, if the condition

(∗) s(d1, . . . , dn) ≥ 0 for any (d1, . . . , dn) ∈ [3,∞)n, n ∈ [3,∞),

is fulfilled, then the set T of all face types T with C(T ) < 0 is unavoidable
for normal planar maps.

A degree j ∈ [3,∞) is called absorbing if there exists a pair (i, k) ∈
[3,∞)2 such that c(i, j, k) < 0, otherwise it is non-absorbing. Thus, to
control (∗) it suffices to deal with absorbing n’s and it is desirable to have
only a small number of absorbing degrees. On the other hand, we need
some absorbing degrees, since otherwise we would obtain as unavoidable a
superset of the Lebesgue’s set L. For non-absorbing j’s it is appropriate to
define c(i, j, k) := 0, since the positivity of c(i, j, k) could only enrich the
unavoidable set.

First of all, it is clear that even degrees must be non-absorbing. To see
this suppose c(i, j, k) < 0 for some j ≡ 0 (mod 2); then, for (d1, . . . , dj) =
(i, k)j/2 we have

j
∑

l=1

c(dl, j, dl+1) = jc(i, j, k) < 0.

We need also
c(i, j, i) ≥ 0 for any i, j ∈ [3,∞);

otherwise, with c(i, j, i) < 0 and (d1, . . . , dj) = (i)j , we would have

j
∑

l=1

c(dl, j, dl+1) = jc(i, j, i) < 0.

It could be a good idea to have non-absorbing all degrees large enough. Put

c3(i) :=
1

4
−

3

i
.

If (3, i, i) /∈ T for some i ∈ [3,∞) (remember that we tend to have b−3 (T )
finite), then 0 ≤ C(3, i, i) = 4c3(i) − 2c(i, 3, i) ≤ 4c3(i). As c3(i) < 0 for
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i < 12, the best we can do is to require that all degrees ≥ 12 be non-
absorbing.

Now we have the following degrees as candidates to be absorbing:
3, 5, 7, 9, 11. Since we want to obtain T with the infinite characteristic (3, 1),
by Corollary 3 (3, 6) /∈ B(T ), which means that (3, 6, i) /∈ T for a sufficiently
large i ≥ 12. As C(3, 6, i) = −6

i − 2c(6, 3, i) ≥ 0, we see that c(6, 3, i) must
be negative and 3 is an absorbing degree.

It would be fine to be able to exclude from T all types which do not
assure the existence of an edge of weight ≤ 13 (in order to cover Kotzig’s re-
sult). One of these types is (3, 11, 11). As C(3, 11, 11) = − 1

11−2c(11, 3, 11)−
4c(3, 11, 11) ≥ 0, we obtain c(3, 11, 11) ≤ −1

4( 1
11 + 2c(11, 3, 11)) ≤ − 1

44 and
11 is an absorbing degree, too.

As we shall see, it is possible to reach our goal by letting 5,7,9 be non-
absorbing degrees.

Let i, j be non-absorbing degrees, i ∈ [5, 10] and j ∈ [12,∞). We require
(3, j, j) /∈ T for j large enough. If, in the same time, (3, i, j) /∈ T , then we
have 0 ≤ 2C(3, i, j) + C(3, j, j) = 4c3(i) + 8c3(j)− (4c(i, 3, j) + 2c(j, 3, j)) ≤
4c3(i) + 8c3(j); the non-negativity of the sum in the brackets follows from
(∗) for (d1, d2, d3) = (i, j, j). Putting

ti :=

⌈

8i

i − 4

⌉

for i ∈ [5, 10]

we see that

c3(i) + 2c3(j) ≥ 0 ⇔ j ≥ ti for any i ∈ [5, 10].

Thus we cannot expect nothing better than (3, i, j) /∈ T for i ∈ [5, 10] and
j ∈ [ti,∞).

For i = 11 and j ∈ [12,∞) the above procedure cannot be applied, since
11 is an absorbing degree. However, as we want to cover Kotzig’s theorem,
we put formally t11 := 12.

We define c(i, 3, j) as follows:

c(i, 3, j) := 0 for i, j = 3, 4,

c(3, 3, j):= 0 for j ∈ [5, 11],

c(3, 3, j):= c3(j) for j ∈ [12,∞),
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c(4, 3, j):= 1
2c3(tj) for j ∈ [5, 11],

c(4, 3, j):= 1
2c3(j) for j ∈ [12,∞),

c(i, 3, j) := c3(ti) + c3(tj) for i, j ∈ [5, 11],

c(i, 3, j) := −c3(j) for i ∈ [5, 11], j ∈ [12, ti − 1],

c(i, 3, j) := −c3(ti) for i ∈ [5, 11], j ∈ [ti,∞),

c(i, 3, j) := c3(i) + c3(j) for i, j ∈ [12,∞).

Let us check that (∗) is fulfilled for n = 3, i.e., that

s(i, j, k) = c(i, 3, j) + c(j, 3, k) + c(k, 3, i) ≥ 0 for any i, j, k ∈ [3,∞).

For this purpose we put

S1 := [3, 4], S2 := [5, 11], S3 := [12,∞), S4 := [5,∞),

sl := |Sl ∩ ({i} ∪ {j} ∪ {k})| for l = 1, 2, 3;

for simplicity we shall write s instead of s(i, j, k).

(1) If s1 ≥ 2, without loss of generality i, j ∈ S1 and

s = c(i, 3, k)+c(j, 3, k) = 0 for k ∈ S1,

≥ min{0, 1
2c3(tk), c3(tk)} = 0 for k ∈ S2,

≥ min{c3(k), 3
2c3(k), 2c3(k)} = c3(k) ≥ 0 for k ∈ S3.

(2) If s2 ≥ 2 and i, j ∈ S2, then s = c3(ti)+ c(i, 3, k)+ c3(tj)+ c(j, 3, k) ≥ 0,
since for any p ∈ S2 we have

c3(tp) + c(p, 3, k)

≥ c3(tp) + min
q=1,2,3

min
r∈Sq

c(p, 3, r) = c3(tp) + min{0, 1
2c3(tp),−c3(tp)} = 0.

(3) If s3 ≥ 2 and i, j ∈ S3, then s = c3(i) + c(i, 3, k) + c3(j) + c(j, 3, k) ≥ 0,
as for p ∈ S3 it holds

c3(p) + c(p, 3, k)

≥ c3(p) + min{min{c3(p), 1
2c3(p)}, min{−c3(p), min

q∈S2:tq≤p
(−c3(tq))},

min
q∈S3

c(p, 3, q)} = c3(p) + min{c3(p),−c3(p), c3(p)} = 0.

(4) Let s1 = s2 = s3 and i ∈ S1, j ∈ S2, k ∈ S3. For k ∈ [12, tj − 1] we
have s ≥ −2c3(k) + min{2c3(k), c3(tj) + c3(k)} = 0, while the assumption
k ∈ [tj ,∞) leads to s ≥ −2c3(tj) + min{2c3(k), c3(tj) + c3(k)} = c3(k) −
c3(tj) ≥ 0.
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To define c(i, 11, j), we set

c11(i):=
5
44 for i ∈ {3} ∪ [6,∞),

c11(4):= 3
44 ,

c11(5):= 1
4B′(5, 5, 11) = 3

220 ,

c(i, 11, j):= c11(i) + c11(j) for (i, j) ∈ S2
1 ∪ S2

4 ,

c(3, 11, 5):= 17
220 ,

c(3, 11, 11):= 1
4B′(3, 11, 11) = − 1

44 ,

c(3, 11, j):= 1
2B′(3, 11, j) = 5

22 − 3
j for j = 12, 13,

c(3, 11, j):= −c3(11) = 1
44 for j ∈ [14,∞),

c(4, 11, 5):= 7
220 ,

c(4, 11, j):= 1
44 , for j = 11, 12, 13,

c(i, 11, j):= 0 for other pairs (i, j) ∈ S1 × S4.

From these definitions we obtain

m := min
i,j∈[3,∞)

c(i, 11, j) = c(3, 11, 11) = c(3, 11, 12) = − 1
44 ,

(i ≤ j ∧ c(i, 11, j) < 0) ⇒ (i, j) ∈ {(3, 11), (3, 12), (3, 13)}.

To see that (∗) is true for n = 11 note that there exists i ∈ [1, 11] such that
(di, di+1) ∈ S2

1 ∪ S2
4 , without loss of generality i = 11. Since then

s(d1, . . . , d11) =
10

∑

i=1

c(di, 11, di+1) + c11(d11) + c11(d1)

= c11(d1) +

5
∑

i=1

c(di, 11, di+1) + c11(d11)

+
5

∑

i=1

c(d12−i, 11, d11−i)

= s̆(d1, d2, d3, d4, d5, d6) + s̆(d11, d10, d9, d8, d7, d6),

where

s̆(d1, d2, d3, d4, d5, d6) := c11(d1) +

5
∑

j=1

c(dj , 11, dj+1),

it suffices to show that s̆(d1, d2, d3, d4, d5, d6) ≥ 0 for any (d1, d2, d3, d4, d5, d6)
∈ [3,∞)6; we shall write s̆ instead of s̆(d1, d2, d3, d4, d5, d6).

If d1 = 3 or d1 ≥ 6, then s̆ ≥ 5
44 + 5m = 0.

If d1 = 4 and d2 ∈ {3, 11, 12, 13}, then s̆ ≥ 3
44 + min{ 2

11 , 1
44} + 4m = 0.



Unavoidable Set of Face Types... 133

If d1 = 4 and d2 ∈ [4, 10] ∪ [14,∞), then s̆ ≥ 3
44 + 2 · 0 + 3m = 0.

Finally, suppose d1 = 5. If there exists j ∈ [1, 5] such that (dj , dj+1) ∈
[3, 4]2 ∪ [6,∞)2, then s̆ ≥ 3

220 + 2 · 3
44 + 4m = 13

220 . If there exists j ∈ [1, 5]
such that (dj , dj+1) = (5, 3), then s̆ ≥ 3

220 + 17
220 + 4m = 0. If there exists

j ∈ [1, 5] such that dk = 5 for any k ∈ [1, j] and dj+1 = 4, then, since

min
p∈[3,∞)

c(4, 11, p) = 0 = min
p,q∈[3,∞)

(c(p, 11, 4) + c(4, 11, q)),

we have s̆ ≥ (2j−1) · 3
220 + 7

220 +max{0, 3− j} ·m ≥ 1
22 +2m = 0. Of course,

(d1, . . . , d6) = (5)6 gives s̆ = 3
20 .

Thus, since (∗) is fulfilled, the set T of types T with C(T ) < 0 is an
unavoidable set for normal planar maps. Which is its structure?

As for any i ∈ [3,∞) C(3, 3, i) = B′(3, 3, i) − 4c(3, 3, i) − 2c(3, i, 3) ≤
B′(3, 3, i) = −1− 6

i < 0 and C(3, 4, i) = B′(3, 4, i)− 2c(4, 3, i)− 2c(3, i, 4) ≤
B′(3, 4, i) = −1

2−
6
i < 0, the types (3, 3, i), i ∈ [3,∞), and (3, 4, i), i ∈ [4,∞),

are in T .
Let i ∈ [5, 10]. If j ∈ [i, 11], then C(3, i, j) = 2c3(i) − 2c3(ti) + 2c3(j) −

2c3(tj) < 0, since c3(k) is an increasing function of k and i < ti, j ≤ tj . If
j ∈ [12, ti − 1], then C(3, i, j) = 2c3(i) + 4c3(j) ≤ 2c3(i) + 4c3(ti − 1) < 0.
Finally, for j ∈ [ti,∞) we have C(3, i, j) = 2c3(i) + 2c3(j) + 2c3(ti) ≥
2c3(i) + 4c3(ti) ≥ 0. Thus we see that

(3, i, j) ∈ T ⇔ j ∈ [i, ti − 1] for i ∈ [5, 10].

As C(3, 11, i) = 0 for i = 11, 12, 13, and C(3, 11, i) = 2c3(i) > 0 for i ∈
[14,∞), there are no types (3, 11, i), i ≥ 11, in T .

For i, j ∈ [12,∞), i ≤ j, we have C(3, i, j) = 0 and (3, i, j) /∈ T .
If 4 ≤ i ≤ j ≤ k, then c(i, j, k) = c(j, k, i) = c(k, i, j) = 0, hence

C(i, j, k) = B′(i, j, k) = 3(1 − 2
i −

2
j − 2

k ) and we obtain the same types as
are in L, i.e., (4, 4, k), k ∈ [4,∞), and those determined by 9 ≤ i + j ≤ 11
and k < 2ij

ij−2i−2j .
We now pass to types of faces of degree ≥ 4. If T = (d1, . . . , dn), then

C(T ) = 2n − 6 +
n

∑

i=1

di − 6

di
− 2

n
∑

i=1

c(di−1, di, di+1)

=
n

∑

i=1

(3 −
6

di
− 2c(di−1, di, di+1)) − 6.

Putting

a(i, j, k) := 3 −
6

j
− 2c(i, j, k),
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σ(d1, . . . , dn) :=
n

∑

i=1

a(di−1, di, di+1),

we obtain the following equivalence:

(d1, . . . , dn) ∈ T ⇔ σ(d1, . . . , dn) ≥ 6;

we shall use σ instead of σ(d1, . . . , dn). Note that

a(i, j, k) ≥ 3−
6

j
−2 sup

p,q∈[3,∞)
c(p, j, q) ≥ 3−

6

3
−2·

1

2
= 0 for any (i, j, k)∈ [3,∞)3.

Moreover, as

a(i, 11, k) ≥ 3 −
6

11
− 2 max

p,q∈[3,∞)
c(p, 11, q) =

27

11
− 2 ·

5

22
= 2,

and a(i, j, k) = 3 − 6
j for any j ∈ [4, 10] ∪ [12,∞), we have

a(i, j, k) ≥
5

2
for j ∈ [12,∞),

≥
3

2
for j ∈ [4, 11],

≥
9

5
for j ∈ [5, 11].

Define

m(p, q) := |{i ∈ [1, n] : p ≤ di < q}|, m(p) := |{i ∈ [1, n] : di = p}|.

(1) If m(12,∞) ≥ 3, then σ ≥ 3 · 5
2 = 15

2 > 6 and T /∈ T .
(2) m(12,∞) = 2
(21) m(4, 12) ≥ 1 yields σ ≥ 2 · 5

2 + 3
2 = 13

2 > 6.
(22) m(4, 12) = 0
(221) If m(3) ≥ 3, there exists i ∈ [1, n] such that di = di+1 = 3.
However, as

a(p, 3, 3) = a(3, 3, p) > 1 − sup
q∈[3,∞)

c(3, 3, q) =
1

2
for p ∈ [3,∞),

we obtain a(di−1, di, di+1) + a(di, di+1, di+2) > 2 · 1
2 and σ > 1 + 2 · 5

2 = 6.
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(222) m(3) = 2
(2221) For T = (3, 3, d3, d4), 12 ≤ d3 ≤ d4, we have σ > 6, as in (221).
(2222) If T = (3, d2, 3, d4), 12 ≤ d2 ≤ d4, then σ = 6.
(3) m(12,∞) = 1
(31) From m(5, 12) ≥ 2 it follows σ ≥ 5

2 + 2 · 9
5 = 61

10 > 6.
(32) m(5, 12) = 1
(321) m(4)≥1 gives, due to sup

min{p,q}≤11
c(p, 3, q) = 1

2 , σ ≥ 5
2 + 9

5 + 3
2 + 1

2 =

63
10 > 6.

(322) Provided m(4) = 0 there exists i ∈ [1, n] such that {di, di+1} =
{3, p} with p ∈ [5, 11]. As c(p, 3, q) ≤ 0 for any q ∈ {3} ∪ [12,∞),
we have a(dj−1, dj , dj+1) ≥ 1 for at least one j ∈ [1, n] with dj = 3
(more precisely, j ∈ {i, i + 1}).

(3221) m(3) ≥ 3 means that σ ≥ 5
2 + 9

5 + 1 + 2 · 1
2 = 63

10 .
(3222) m(3) = 2
(32221) For T = (3, d2, 3, d4), d2 ∈ [5, 11], d4 ∈ [12,∞), we have the same

lower bound for σ as in (3221), since 1 + 2 · 1
2 can be replaced with

2 · 1.
(32222) If T = (3, 3, d3, d4), d3 ∈ [5, 11], d4 ∈ [12,∞), then σ = 15

2 − 6
d3

≥ 63
10 .

(33) The assumption m(5, 12) = 0 leads to a(di−1, di, di+1) > 1
2 for any

i ∈ [1, n].
(331) m(4) ≥ 2 gives σ > 5

2 + 2 · 3
2 + 1

2 = 6.
(332) m(4) = 1
(3321) If m(3) ≥ 3, there exists i ∈ [1, n] such that di = 3 and

{di−1, di+1} = {3, 4}. As a(3, 3, 4) = a(4, 3, 3) = 1, we obtain
σ > 5

2 + 3
2 + 1 + 2 · 1

2 = 6.
(3322) m(3) = 2
(33221) For T = (3, 3, 4, d4), d4 ∈ [12,∞), we have σ = 6.
(33222) For T = (3, 4, 3, d4), d4 ∈ [12,∞), it holds σ = 6.
(333) m(4) = 0
(3331) m(3) ≥ 4 and T = (3)n−1(dn), dn ∈ [12,∞), imply σ = n+1+ 6

dn

≥
13
2 > 6.

(3332) For m(3) = 3 and T = (3, 3, 3, d4), d4 ∈ [12,∞), it follows, from
σ = 5 + 6

d4
≤ 11

2 < 6, that T ∈ T .

(4) In the case m(12,∞) = 0 we denote by m+(3) or m−(3) the number
of those triples (di−1, di, di+1) for which di = 3 and the set {di−1}∪

{di+1} does or does not contain 3, respectively. As c(3, 3, p) = 0
for p ∈ [3, 11] and c(q, 3, r) ≤ 2c3(t5) = 7

20 for q, r ∈ [4, 11], we have
a(3, 3, p) = 1, a(q, 3, r) ≥ 3

10 and

σ≥
3

10
m−(3) + m+(3) +

3

2
(n−m−(3)−m+(3)) =

3

2
n−

6

5
m−(3)−

1

2
m+(3).
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(41) If 6
5m−(3) + 1

2m+(3) ≤ 3
2n − 6, then σ ≥ 6 and T /∈ T .

(42) 6
5m−(3) + 1

2m+(3) > 3
2n − 6

(421) For n ≥ 7 we have

6

5
m−(3) +

6

5
m+(3) >

3

2
n − 6,

m(3) = m−(3) + m+(3) >
5

6

(

3

2
n − 6

)

=
n

2
+

3n − 20

4
>

n

2
.

As m(3) > n
2 , m−(3) is upper bounded by n − m(3) − 1, which yields

2m−(3) + m+(3) ≤ n − 1, hence

3

5

(

n − 1
)

≥
6

5
m−(3) +

3

5
m+(3) ≥

6

5
m−(3) +

1

2
m+(3) >

3

2
n − 6,

and, as a consequence, n < 6, a contradiction.

(422) n = 6
(4221) For m(5, 12) ≥ 3 it holds σ ≥ 3 · 9

5 + 3 · 3
10 = 63

10 .
(4222) m(5, 12) = 2
(42221) For m(4) ≥ 1 we obtain σ ≥ 2 · 9

5 + 3
2 + 3 · 3

10 = 6.
(42222) m(4) = 0 implies m+(3) ≥ 3 and σ ≥ 2 · 9

5 + 3 · 1 = 33
5 > 6.

(4223) For the case m(5, 12) = 1 note that max
p∈[3,4],q∈[5,11]

c(p, 3, q) =

1
2c3(t5) = 7

80 .
(42231) m(4) ≥ 1 means that σ ≥ 9

5 + 3
2 + 4(1 − 2 · 7

80) = 33
5 .

(42232) If m(4) = 0 and T = (3)5(d6), d6 ∈ [5, 11], then σ = 8 − 6
d6

≥ 34
5 .

(4224) From m(5, 12) = 0 it follows σ = m(3)+ 3
2m(4) ≥ m(3)+m(4) = 6.

(423) The remaining case, n = 4, 5, was analysed, thanks to its finiteness,
following from m(12,∞) = 0, by a computer.

The described analysis led to

Theorem 4. For the class of normal planar maps the following sequences
form an unavoidable set of face types:
(3, i, j), i ∈ [3, 4], j ∈ [i,∞), (4, 4, i), i ∈ [4,∞), (3, 3, 3, i), i ∈ [3,∞),
(3, 5, i), i ∈ [5, 39], (3, 6, i), i ∈ [6, 23], (3, 7, i), i ∈ [7, 18], (3, 8, i), i ∈ [8, 15],
(3, 9, i), i ∈ [9, 14], (3, 10, i), i ∈ [10, 13], (4, 5, i), i ∈ [5, 19], (4, 6, i), i ∈ [6, 11],
(4, 7, i), i ∈ [7, 9], (5, 5, i), i ∈ [5, 9], (5, 6, i), i = 6, 7,
(3, 3, 4, i), i ∈ [4, 11], (3, 3, 5, i), i ∈ [5, 7], (3, 4, 3, i), i ∈ [4, 11],
(3, 4, 4, i), i ∈ [4, 6], (3, 4, 5, i), i = 4, 5, (3, 5, 3, i), i ∈ [5, 11],
(3, 5, 4, i), i ∈ [5, 7], (3, 5, i, 5), i = 5, 6, (3, 6, 3, i), i ∈ [6, 11],
(3, 7, 3, i), i = 7, 8, 9, 11,
(3, 3, 3, 3, i), i ∈ [3, 5], (3, 3, 5, 3, 5).
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Corollary 5 (Borodin [1]). In any normal planar map there exists an edge
of weight at most 13.

Using Corollary 3 and Theorem 4 we see that the minimum of Problem 1 is
in fact equal to 4. Having this in mind, the following could be of interest.

Problem 2. Determine the minimum
∑∞

i=3 b−i (T ) for an unavoidable set T
of face types for normal planar maps with the infinite characteristic (3, 1).

The set T from Theorem 4 has the finite characteristic (114, 46, 4) so that
the minimum of Problem 2 is at most 164.

4. Cyclic chromatic number of planar maps

If we do not insist on minimizing
∑∞

i=3 b−i (T ) in a good unavoidable set
T , we can obtain unavoidable sets, which may be useful for a solution of
other than structural type problems. E.g., by allowing 5 to be an absorbing
degree it is possible to obtain an unavoidable set T̄ for normal planar graphs
whose types do not contain large degrees except for types in “inexcludable”
four infinite series. On the other hand, hexagonal types appear in T̄ , while
b−6 (T ) = 0.

Theorem 6. For the class of normal planar maps the following sequences
form an unavoidable set of face types:
(3, i, j), i ∈ [3, 4], j ∈ [i,∞), (4, 4, i), i ∈ [4,∞), (3, 3, 3, i), i ∈ [3,∞),
(3, 5, i), i ∈ [5, 23], (3, 6, i), i ∈ [6, 23], (3, 7, i), i ∈ [7, 18], (3, 8, i), i ∈ [8, 15],
(3, 9, i), i ∈ [9, 14], (3, 10, i), i ∈ [10, 13], (4, 5, i), i ∈ [5, 11], (4, 6, i), i ∈ [6, 11],
(4, 7, i), i ∈ [7, 9], (5, 5, i), i ∈ [5, 7], (5, 6, i), i = 6, 7,
(3, 3, 4, i), i ∈ [4, 11], (3, 3, 5, i), i ∈ [5, 7], (3, 4, 3, i), i ∈ [4, 11], (3, 4, 4, i), i ∈
[4, 6], (3, 4, 5, i), i ∈ [4, 6], (3, 4, 6, 5), (3, 5, 3, i), i ∈ [5, 17], (3, 5, 4, i), i ∈
[5, 12], (3, 5, 5, i), i ∈ [5, 7], (3, 5, 6, i), i = 5, 6, (3, 5, 7, 5), (3, 6, 3, i), i ∈ [6, 11],
(3, 7, 3, i), i = 7, 8, 9, 11, (4, 4, i, 5), i = 4, 5, (4, 5, i, 5), i = 4, 5,
(3, 3, 3, 3, i), i ∈ [3, 5], (3, 3, 3, i, 5), i = 4, 5, (3, 3, 4, 3, 5), (3, 3, 5, 3, i),
i = 5, 6, 7, 8, 9, 11, (3, 3, 5, 4, 5), (3, 4, 3, i, 5), i = 4, 5, (3, 4, 4, 3, 5),
(3, 4, 5, 3, i), i = 5, 6, (3, 4, 5, 4, 5), (3, 4, 6, 3, 5), (3, 5, 3, 5, i), i ∈ [5, 7],
(3, 5, 4, i, 5), i = 4, 5, (3, 5, 5, 3, i), i = 6, 7,
(3, i, 3, 5, 3, 5), i ∈ [3, 5], (3, 5, 3, 5, 3, i), i = 6, 7, (3, 5, 3, 5, 4, 5).

Proof. Put

c̄5(i) := 1
5 for i ∈ [3, 4] ∪ [12,∞),

c̄5(i) := 3
40 for i = 5, 8, 9,

c̄5(i) := 3
80 for i = 6, 10, 11,

c̄5(7) := 0.
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We define a new mapping c̄ : [3,∞)3 → Q by c̄(i, j, k) := c(i, j, k) for j 6= 5
and

c̄(i, 5, j)= c̄5(i) + c̄5(j) for (i, j) ∈ [3, 6]2 ∪ [7,∞)2,

c̄(i, 5, 7):= 1
10 , for i = 3, 4,

c̄(i, 5, j):= 1
40 for i = 3, 4, j ∈ [8, 11],

c̄(i, 5, j):= − 1
10 for i = 3, 4, j ∈ [12,∞),

c̄(5, 5, 7):= 3
80 ,

c̄(5, 5, j):= − 3
80 for j = 8, 9,

c̄(5, 5, j):= 0 for j ∈ [10,∞),

c̄(6, 5, j):= 0 for j ∈ [7, 11],

c̄(6, 5, j):= 1
16 for j ∈ [12,∞).

If the alternative charge of an angle a = (vi−1, ei, vi, ei, vi+1) is determined
by c̄a := c̄(deg vi−1, deg vi, deg vi+1), an analysis analogous to that applied
for Theorem 4 leads to the unavoidable set described in the statement of
Theorem 6.

Let M be a map. The weight of a face f ∈ F (M) with T = (d1, . . . , dn) ∈
τ(f) is defined by wt(f) :=

∑n
i=1 di and the weight of M by min

f∈F (M)
wt(f).

Corollary 7. If a normal planar map M does not contain faces of types
(3, 3, i), (3, 4, i), (4, 4, i), (3, 3, 3, i), i ≥ 3, then the weight of M is at
most 32.

One can wonder why hexagonal types appear in the statement of Theo-
rem 6 in spite of the fact that by Euler’s formula only faces of sizes ≤ 5
are necessarily present in a normal planar map. If we insert a configura-
tion of Figure 1 into each face of an icosahedron map (dashed lines stand
for edges of the original map), we obtain a map with faces only of types
(3, 5, 3, 5, 3, 5), (3, 5, 30) and (3, 30, 30), from which the hexagonal type only
occurs in the list of Theorem 6. Evidently, the above construction can be
applied to any plane triangulation with minimum degree 5 (and even with
minimum degree 4) to create a map with analogous face types property.
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Let M be a 2-connected planar map. A cyclic coloration of M (introduced
in Ore and Plummer [20]) is an assignment of colours to the vertices of M
such that for any face all its vertices receive different colours. The cyclic
chromatic number of M is the minimum number of colours in any cyclic
coloration of M .

Plummer and Toft [21] obtained some upper bounds for the cyclic chro-
matic number of 3-connected planar maps. If we use in the proofs of The-
orems 3.1, 3.2 and 3.3 of [21] our Theorem 6 (for our statements (i) – (vi),
see below) or Theorem 4 (for (vii) – (viii)) instead of Lebesgue’s result,
by the same method we obtain the following theorem which improves the
corresponding Theorems 3.1 and 3.3 of [21].

Theorem 8. Let M be a 3-connected planar map with maximum face degree
d and cyclic chromatic number n. Then
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(i) if d ≥ 24, then n ≤ d + 3;
(ii) if d ≥ 19, then n ≤ d + 4;
(iii) if d ≥ 16, then n ≤ d + 5;
(iv) if d ≥ 15, then n ≤ d + 6;
(v) if d ≥ 14, then n ≤ d + 7;
(vi) if d ≥ 10, then n ≤ d + 8;
(vii) if d ≤ 9, then n ≤ d + 7;
(viii) if d ≤ 8, then n ≤ d + 6.

Note that Theorem 8(i) was announced (but probably not published yet) by
Borodin, cf. Jensen and Toft [15, Chapter 1].
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[10] B. Grünbaum, Acyclic coloring of planar graphs, Israel J. Math. 14 (1973)
390–408.
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