Discussiones Mathematicae Graph Theory 16(1996) 119–122

A NOTE ON (k, l)-KERNELS IN *B*-PRODUCTS OF GRAPHS

Iwona Włoch

Department of Mathematics, Technical University of Rzeszów W. Pola 2, 35–959 Rzeszów, Poland e-mail: iwloch@ewa.prz.rzeszow.pl

Abstract

B-products of graphs and their generalizations were introduced in [4]. We determined the parameters k, l of (k, l)-kernels in generalized *B*-products of graphs. These results are generalizations of theorems from [2].

Keywords: kernels, distance in graphs, products of graphs.

1991 Mathematics Subject Classification: 05C12, 05C75.

1. Definitions and Notation

By G we mean a finite connected graph without loops and multiple edges with the vertex set V(G) and the edge set E(G). The number $d_G(x, y)$ denotes the length of the shortest path connecting x and y in G. Note that $d_G(x, y)$ is finite and $d_G(x, y) \ge 1$ if $x \ne y$.

Let k, l be integers, $k \ge 2$ and $l \ge 1$. $J \subset V(G)$ is called a (k, l)-kernel of G if and only if

(1) for distinct $x, y \in J, d_G(x, y) \ge k$ and

(2) for each $x \notin J$ there exists $y \in J$ such that $d_G(x, y) \leq l$.

For k = 2, l = 1 we obtain a kernel in Berge's sense.

The Cartesian product of two graphs G_1, G_2 is the graph $G_1 \times G_2$ with the vertex set $V(G_1) \times V(G_2)$ and the edge set $E(G_1 \times G_2)$, such that $[(x', y'), (x, y)] \in E(G_1 \times G_2)$ if and only if $[x', x] \in E(G_1)$ and y = y' or $[y, y'] \in E(G_2)$ and x = x'.

The normal product of two graphs G_1, G_2 is the graph $G_1 \cdot G_2$, such that $V(G_1 \cdot G_2) = V(G_1) \times V(G_2)$ and $[(x', y'), (x, y)] \in E(G_1 \cdot G_2)$ if and only if $[x', x] \in E(G_1)$ and y = y' or $[y', y] \in E(G_2)$ and x = x' or $[x', x] \in E(G_1)$ and $[y', y] \in E(G_2)$.

So-called B-products of graphs were defined in [4] as follows.

Let $B \subset N \times N - \{(0,0)\}$, where N is the set of non-negative integers. Then the *B*-product of the graphs G_1, G_2 is the graph $B(G_1, G_2)$ with $V(B(G_1, G_2)) = V(G_1) \times V(G_2)$ and $E(B(G_1, G_2)) = \{[(i, j), (i', j')] : (d_{G_1}(i, i'), d_{G_2}(j, j')) \in B\}$. The set B is called the *basic set* of the *B*-product.

The generalized Cartesian product $B_m^n(G_1, G_2)$ and the generalized normal product $B_{mn}(G_1, G_2)$ are defined by the basic sets $B_m^n = \{(i, 0) : 1 \le i \le m\} \cup \{(0, j) : 1 \le j \le n\}, B_{mn} = \{(i, j) : 0 \le i \le m \text{ and } 1 \le j \le n \text{ or } 1 \le i \le m \text{ and } 0 \le j \le m\}$, respectively.

If m = 1 and n = 1, then $B_1^1(G_1, G_2) = G_1 \times G_2$ and $B_{11}(G_1, G_2) = G_1 \cdot G_2$. For $r \ge 1$ the *r*-th power G^r of a graph G is defined as follows: $V(G^r) = V(G)$ and $E(G^r) = \{[x, y] : x, y \in V(G) \text{ and } 1 \le d_G(x, y) \le r\}.$

In [4] the following dependences between the well-known products and their generalizations were proved.

Theorem 1 [4]. $B_m^n(G_1, G_2) = G_1^m \times G_2^n$, $B_{mn}(G_1, G_2) = G_1^m \cdot G_2^n$, $B_{nn}(G_1, G_2) = (G_1 \cdot G_2)^n$, for $n, m \ge 1$.

For undefined terms, see [1].

2. Main Results

Theorem 2. If J is a (k, l)-kernel of G, then J is a (k_0, l_0) -kernel of G^r , for $k, k_0 \ge 2$, and $l, l_0 \ge 1$, $r \le k - 1$ where

$$k_{0} = \begin{cases} \frac{k}{r}, & \text{if } \frac{k}{r} \text{ is an integer,} \\ \left[\frac{k}{r}\right] + 1, & \text{otherwise,} \end{cases}$$
$$l_{0} = \begin{cases} \frac{l}{r}, & \text{if } \frac{l}{r} \text{ is an integer,} \\ \left[\frac{l}{r}\right] + 1, & \text{otherwise,} \end{cases}$$

where [p] denotes the largest integer less than or equal to p.

Proof. Suppose, that J is a (k, l)-kernel of G. We shall show that J is a (k_0, l_0) -kernel of G^r , for k_0 , l_0 as described above. By the definition of G^r it follows that if there exists a path of length $\leq r$ connecting x_i to x_j in G, then $[x_i, x_j] \in E(G^r)$. It is clear, that for distinct vertices $x_i, x_j \in J$

holds $d_G(x_i, x_j) \geq k$. This means that there is the shortest path of length $\geq k$, say $(x_i, x_{i+1}, x_{i+2}, ..., x_j)$, connecting vertices x_i, x_j in G. Moreover, using the definition of G^r , we obtain that the shortest path between x_i, x_j in G^r is of the form: $(x_i, x_{i+r}, x_{i+2r}, ..., x_{i+k}, ..., x_j)$, if $\frac{k}{r}$ is an integer, and $(x_i, x_{i+r}, x_{i+2r}, ..., x_{i+[\frac{k}{r}]r}, ..., x_j)$, otherwise. Note, that if $d_G(x_i, x_j) = k$, then i + k = j, if $\frac{k}{r}$ is an integer, and $i + [\frac{k}{r}]r + 1 \le j$, if $\frac{k}{r}$ is not an integer. Finally,

$$d_{G^{r}}(x_{i}, x_{j}) \geq \begin{cases} \frac{k}{r}, & \text{if } \frac{k}{r} \text{ is an integer,} \\ \left[\frac{k}{r}\right] + 1, & \text{otherwise.} \end{cases}$$

Let $x_i \notin J$. So it is clear that there exists $x_j \in J$ in G, such that $d_G(x_i, x_j) \leq l$. Moreover, using the definition of G^r we have analogously that

$$d_{G^{r}}(x_{i}, x_{j}) \leq \begin{cases} \frac{l}{r}, & \text{if } \frac{l}{r} \text{ is an integer,} \\ \left[\frac{l}{r}\right] + 1, & \text{otherwise.} \end{cases}$$

Thus, the theorem is proved.

For r = k - 1 we obtain the result from [3]. Using Theorems 1, 2 and Theorems 3 and 4 given below we obtain immediately Theorems 5, 6.

Theorem 3 [2]. If the subset J_i is a (k_i, l_i) -kernel of G_i , where $k_i \geq 2$, $l_i \geq 1$, for i = 1, 2, then the set $J = J_1 \times J_2$ is a (k, l)-kernel of the graph $G_1 \times G_2$, where $k = \min\{k_1, k_2\}, l = l_1 + l_2$.

Theorem 4 [2]. If the subset J_i is a (k_i, l_i) -kernel of $G_i, k_i \ge 2, l_i \ge 1$, for i = 1, 2, then the set $J = J_1 \times J_2$ is a (k, l)-kernel of the graph $G_1 \cdot G_2$, where $k = \min\{k_1, k_2\}, l = \max\{l_1, l_2\}.$

Theorem 5. If J_i is a (k_i, l_i) -kernel of G_i , for $k_i \ge 2$, $l_i \ge 1$, i = 1, 2, then the set $J = J_1 \times J_2$ is a (k,l)-kernel of $B_m^n(G_1,G_2)$, for $m \leq k_1 - 1, n \leq k_1 - 1$ $k_2 - 1$, where $k = \min\{\alpha_1, \alpha_2\}, l = \beta_1 + \beta_2$ and

$$\alpha_1 = \begin{cases} \frac{k_1}{m}, & \text{if } \frac{k_1}{m} \text{ is an integer} \\ \left[\frac{k_1}{m}\right] + 1, & \text{otherwise,} \end{cases}$$

$$\alpha_{2} = \begin{cases} \frac{k_{2}}{n}, & \text{if } \frac{k_{2}}{n} \text{ is an integer,} \\ \left[\frac{k_{2}}{n}\right] + 1, & \text{otherwise,} \end{cases}$$
$$\beta_{1} = \begin{cases} \frac{l_{1}}{m}, & \text{if } \frac{l_{1}}{m} \text{ is an integer,} \\ \left[\frac{l_{1}}{m}\right] + 1, & \text{otherwise,} \end{cases}$$
$$\beta_{2} = \begin{cases} \frac{l_{2}}{n}, & \text{if } \frac{l_{2}}{n} \text{ is an integer,} \\ \left[\frac{l_{2}}{n}\right] + 1, & \text{otherwise.} \end{cases}$$

Theorem 6. If J_i is a (k_i, l_i) -kernel of G_i , for $k_i \ge 2$, $l_i \ge 1, i = 1, 2$, then the set $J = J_1 \times J_2$ is a (k, l)-kernel of $B_{mn}(G_1, G_2)$, for $m \le k_1 - 1, n \le k_2 - 1$, where $k = \min\{\alpha_1, \alpha_2\}$, $l = \max\{\beta_1, \beta_2\}$ and numbers α_i, β_i are defined as in Theorem 5.

If m = 1, n = 1, then from Theorem 5 we obtain Theorem 3 and from Theorem 6 it follows Theorem 4.

References

- [1] F. Harary, Graph Theory (Addison-Wesley, Reading, Mass., 1969).
- [2] M. Kwaśnik, (k, l)-kernels in graphs and in their products (Ph.D.Dissertation, Wrocław, 1980).
- [3] M. Kwaśnik, A. Włoch and I. Włoch, Some remarks about (k, l)-kernels in directed and undirected graphs, Discuss. Math. 13 (1993) 29–37.
- [4] G. Schaar, M. Sonntag and H.M. Teichert, Hamiltonian properties of products of graphs and digraphs (Teubner-Texte zur Mathematik, Leipzig, 1988).

Received 19 May 1995 Revised 27 March 1996