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Abstract

A set D of vertices in a graph G = (V, E) is a dominating set of G if
every vertex in V −D is adjacent to some vertex in D. The domination
number γ(G) of G is the minimum cardinality of a dominating set. We
define the cobondage number bc(G) of G to be the minimum cardinality
among the sets of edges X ⊆ P2(V ) −E, where P2(V ) = {X ⊆ V :
|X| = 2} such that γ(G + X) < γ(G). In this paper, the exact values
of bc(G) for some standard graphs are found and some bounds are
obtained. Also, a Nordhaus-Gaddum type result is established.
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1. Introduction

The graphs considered here are finite, undirected without loops and multiple
edges having p vertices and q edges. Any undefined term in this paper may
be found in Harary [3]. dXe is a least integer not less than X. Graphs
considered in this paper have maximum degree at most p− 2.

A set D of vertices in a graph G = (V,E) is a dominating set of G if
every vertex in V − D is adjacent to some vertex in D. The domination
number γ(G) of G is the minimum cardinality of a dominating set. For a
survey of results on domination (see [1]).

The communication network is an arrangement establishing a link be-
tween two or more locations come under some region. The problem is to
set up the transmitting stations at some selected locations so that other lo-
cations should receive communication from at least one location, where the
transmitter is to be established. The question is to find out the minimum
number of transmitting stations required so that all the locations without
transmitter will receive the message. The problem in the communication
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network can be reduced to the problem of finding a minimum dominating
set in graph G, where the locations correspond to the vertices of a graph G
and the communication links between the locations correspond to the edges
in the graph G.

Suppose one wants to reduce the number of transmitting stations. Then
additional communication links should be added. What is the fewest number
of such links should be added to accomplish this task? It is the cobondage
number of a graph.

The cobondage number bc(G) of a graph G is the minimum cardinality
among the sets of edges X ⊆ P2(V )−E, where P2(V ) = {X ⊆ V : |X| = 2}
such that γ(G + X) < γ(G).

A γ-set is a minimum dominating set. Similarly, a bc-set of edges can
be defined.

2. Results

The following result is easy to prove, hence we omit its proof.

Theorem 1. For any graph G,

bc(G) ≤ δ(G)(1)

where G and δ(G) are the complement and minimum degree of G, respec-
tively.

Corollary 1.1. For any graph G,

bc(G) ≤ p− 1−∆(G)(2)

where ∆(G) is the maximum degree of G.

Now we obtain the exact values of bc(G) for some standard graphs.

Proposition 2. If G = Kn1,n2,...,nt, where n1 ≤ n2 ≤ ... ≤ nt, then,

bc(G) = n1 − 1.(3)

Proof. Let V = Vn1 ∪ Vn2 ∪ ... ∪ Vnt . Then for any two vertices v ∈ Vn1

and w ∈ Vnj for 2 ≤ nj ≤ nt, {v, w} is a γ-set for G. Since each Vni

for 1 ≤ ni ≤ nt, is independent with |Vni | ≥ 2, by joining each vertex in
Vni − {v} to v we obtain a graph which has {v} as a γ-set. This proves (3).
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Proposition 3. For any cycle Cp with p ≥ 4 vertices,

bc(Cp) = 1, if p = 1 (mod 3);(4)
= 2, if p = 2 (mod 3);(5)
= 3, otherwise.(6)

Proof. Let Cp : v1v2...vpv1 denote a cycle on p ≥ 4 vertices. We consider
the following cases.

Case 1. If p ≡ 1 (mod 3), then by joining the vertex vp−1 to v1, we
obtain a graph G which is a cycle Cp−1 : v1v2...vp−1v1 together with a path
vp−1vpv1. This implies that,

γ(G) = γ(Cp−1)
= d(p− 1)/3e < dp/3e = γ(Cp).

This proves (4).

Case 2. If p ≡ 2 (mod 3), then by joining the vertices v1 and vp to vp−2

the resulting graph G is a cycle Cp−2 : v1v2...vp−2v1 together with a path
vp−2 vp−1vpv1 such that vp−2 is adjacent to vp. Thus

γ(G) = γ(Cp−2)
= d(p− 2)/3e < dp/3e = γ(Cp).

Hence (5) holds.

Case 3. If p ≡ 3 (mod 3), then by adding the edges v1vp−3, vpvp−3,
vp−1vp−3, the resulting graph G is a cycle Cp−3 : v1v2...vp−3v1 together with
a path vp−3vp−2vp−1vpv1 such that vp−3 is adjacent to both vp−1 and vp.
Hence,

γ(G) = γ(Cp−3)
= d(p− 3)/3e < dp/3e = γ(Cp).

Thus (6) holds.

Proposition 4. For any path Pp with p ≥ 4 vertices,

bc(Pp) = 1, if p ≡ 1 (mod 3);(7)
= 2, if p ≡ 2 (mod 3);(8)
= 3, if p ≡ 3 (mod 3).(9)
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Proof. Proofs (7), (8) and (9) are similar to that of proofs of (4), (5) and
(6), respectively.

Theorem 5. Let T be a tree with at least two cutvertices such that each
cutvertex is adjacent to an endvertex. Then,

bc(T ) = r(10)

where r is the minimum number of endvertices adjacent to a cutvertex.

Proof. Let S be the set of all cutvertices of T . Then S is a γ-set for T . Let
u ∈ S be a cutvertex which is adjacent to minimum number of endvertices
u1, u2, ..., ur. Since there exists a cutvertex v ∈ S such that v is adjacent to
u, by joining u1, u2, ..., ur to v the graph obtained has S − {u} as a γ-set.
This proves (10).

Now we obtain some more upper bounds on bc(G).

Theorem 6. For any graph G,

bc(G) ≤ ∆(G) + 1.(11)

Furthermore, the bound is attained if and only if every γ-set D of G satis-
fying the following conditions:

(i) D is independent;
(ii) every vertex in D is of maximum degree;
(iii) every vertex in V −D is adjacent to exactly one vertex in D.

Proof. Let D be a γ-set of G. We consider the following cases.

Case 1. Suppose D is not independent. Then there exist two adjacent
vertices u, v ∈ D. Let S ⊂ V −D such that for each vertex w ∈ S, N(w) ∩
D = {v}. Then by joining each vertex in S to u, we see that D − {v} is a
γ-set of the resulting graph.

Thus,
bc(G) ≤ |S| ≤ ∆(G)− 1.

Case 2. Suppose D is independent. Then each vertex v ∈ D is an
isolated vertex in < D >. Let S be a set defined in Case 1. Since D
has at least two vertices, by joining each vertex in S ∪ {v} to some vertex
w ∈ D − {v}, we obtain a graph which has D − {v} as a γ-set. Hence,

bc(G) ≤ |S ∪ {v}| ≤ ∆(G) + 1.

The second part of the theorem directly follows from Cases 1 and 2.
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Corollary 6.1. For any graph G,

bc(G) ≤ min{p−∆(G)− 1, ∆(G) + 1}.(12)

Theorem 7. For any graph G,

bc(G) ≤ p− 1.(13)

Further, the bound is attained if and only if G = K2.

Proof. Since ∆(G) ≤ p− 2, (13) follows from (11).
Suppose the bound is attained. Then by (1), it follows that G = Kp.

Suppose G has at least three vertices. Then bc(G) = 1 < p − 1, a con-
tradiction. This implies that G = K2 and hence G = K2. Converse is
immediate.

The next result improves the inequality (13).

Theorem 8. For any graph G with p ≥ 3 vertices,

bc(G) ≤ p− 2.(14)

Further, the bound is attained if and only if G = 2K2 or K3 or K2 ∪K1.

Proof. (14) follows from (13).
Suppose the bound is attained. Then ∆(G) = 1. Suppose p ≥ 5. Then,

bc(G) ≤ p − 3, a contradiction. This implies that p = 3 or 4. For p = 3,
obviously G = K3 or K2 ∪ K1. If p = 4 and G contains an isolate, then,
bc(G) = 1, a contradiction. This proves that G = 2K2. Converse is easy to
prove.

The bondage number b(G) of G is the minimum cardinality among the sets
of edges X ⊆ E such that γ(G−X) > γ(G).

Theorem A [2]. For any nontrivial tree T ,

b(T ) ≤ 2.

As a consequence of Theorem 6 and Theorem A, we have
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Theorem 9. Let T be a tree with diam(T ) = 5 and has exactly two cutver-
tices which are adjacent to endvertices and further they have same degree.
Then,

bc(T ) ≥ b(T ) + 1(15)

where diam(T ) is the diameter of T .

Theorem 10. For any tree T ,

bc(T ) ≤ 1 + min{deg u}(16)

where u is a cutvertex adjacent to an endvertex.

Proof. Since there exists a γ-set containing u, by applying same technique
as we used in proving (11) we get (16).

The next result relates to bc(G) and bc(T ).

Theorem 11. Let T be a spanning tree of G such that γ(T ) = γ(G). Then,

bc(G) ≤ bc(T ).(17)

Proof. Let X be a bc-set of T . Then there exists a set X ′ ⊆ X such that
γ(G + X ′) < γ(G). This proves (17).

Now we obtain a relationship between bc(G) and γ(G).

Theorem 12. For any graph G,

bc(G) + γ(G) ≤ p + 1.(18)

Further, the equality holds if and only if G = Kp.

Proof. Let D be a γ-set of G. Let v ∈ V −D. Then there exists a vertex
u ∈ D such that v is adjacent to u. Since there exists a vertex w ∈ D−{u},
by joining the vertices of ((V −D)−{v})∪{w} to u, we see that D−{w} is
a γ-set of the resulting graph. This proves (18). Now we prove the second
part.

Suppose the equality holds. On the contrary, G 6= Kp. Then by above,
bc(G) ≤ p − γ(G), a contradiction. This proves that G = Kp. Converse is
obvious.

The next result sharpnes the inequality (18).
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Theorem 13. Let D be a γ-set of G. If There exists a vertex v ∈ D which
is adjacent to every other vertex in D, then,

bc(G) ≤ p− γ(G)− 1.(19)

Proof. This follows from (2), since ∆(G) ≥ deg v ≥ γ(G).

Lastly we obtain a Nordhaus-Gaddum type result.

Theorem 14. Let G be a graph with p ≥ 4 vertices such that neither G nor
G is 2K2. Then,

bc(G) + bc(G) ≤ 2 (p− 3).(20)

The equality holds if and only if G = P4 or C5.

Proof. (20) follows from Theorem 8.
Suppose the equality holds. Then, ∆(G), ∆(G) ≤ 2.

Suppose ∆(G) or ∆(G) = 1, say ∆(G) = 1. Then, ∆(G) ≥ 3, a contradic-
tion. Hence, ∆(G) = ∆(G) = 2. If p ≥ 6, then, ∆(G) ≥ 3, a contradiction.
Thus, p = 4 or 5. This implies that G = P4 or C5. Converse is easy to
prove.
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