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Abstract

In this paper we give all pairs of non mutually placeable (p, q)-
bipartite graphs G and H such that 2 ≤ p ≤ q, e(H) ≤ p and e(G) +
e(H) ≤ 2p + q − 1.
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1. Definitions

For a bipartite graph G = (L, R; E) with the vertex set V (G) = L ∪ R and
the egde set E(G) = E we denote by L = L(G) and R = R(G) the left and
the right set of bipartition of the vertex set of G, while the cardinality of the
set is denoted by e(G). For example, the graphs G = ({a, b}, {c, d}; {ac, ad})
and G′ = ({c, d}, {a, b}; {ac, ad}) shown in Figure 1 are different.
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Figure 1

We denote by N(x, G) the set of the neighbors of the vertex x in G. The
degree d(x, G) of the vertex x in G is the cardinality of the set N(x, G);
∆L(G)(δL(G)), ∆R(G)(δR(G)) and ∆(G)(δ(G)) are the maximum (mini-

mum) of the vertex degree in the sets L(G), R(G) and V (G), respectively.
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A vertex x of G is said to be pendent if d(x, G) = 1. Kpq stands for the
complete bipartite graph with |L(Kpq)| = p and |R(Kpq)| = q. A bipartite
graph G is called (p, q)-bipartite if |L(G)| = p and |R(G)| = q. If p = q, then
G is called balanced.

Two graphs G and H of the same order are packable if G can be embed-
ded in the complement H̄ of H. If G = (L, R; E) and H = (L′, R′; E′)
are two (p, q)-bipartite graphs, then we say that G and H are mutu-

ally placeable (or just m.p.) if there is a bijection f : L ∪ R → L′ ∪ R′

such that f(L) = L′ and f(x)f(y) is not an of H whenever xy is an
of G. The function f is called bi-placement of G and H. For example,
the graphs G = ({a, b}, {c, d, e, f}; {ac, ad, be, bf}) and H = ({a′, b′}, {c′, d′,
e′, f ′}; {a′c′, b′c′}) are not m.p. but G and H are packable. (See Figure 2).
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Figure 2

If a graph G = (L, R; E) is a subgraph of a graph F = (L, R′; E′), then
L ⊆ L′, R ⊆ R′, E ⊆ E′ and we write G ≤ F .

2. Introduction

The classical “marriage theorem” of Frobenius [5] and Philip Hall’s Theorem
[6] may also be formulated as concerning the mutual placement of a matching
and a bipartite graph. Richard Rado in [9] has proved a theorem in traversal
theory, which may easily be transformed into a necessary and sufficient
condition for two bipartite graphs to be mutually placeable (see [11]). So,
even if the mutual placement of bipartite graphs has been introduced in [4],
it is clear that the problem of mutual placeability of bipartite graphs is at
least eighty years old.

The purpose of this paper is to characterize all pairs of (p, q)-bipartite
graphs G and H such that e(G) + e(H) ≤ 2p + q − 1, e(H) ≤ p, 2 ≤ p ≤ q
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and G and H are not mutually placeable. For this reason we introduce now
several graphs and families of graphs.

A (p, q)-bipartite graph of size q or p is said to be left side bistar SL(p, q)
or right side bistar SR(p, q), respectively, if there is a vertex of the degree
q or p, respectively, in its left or right, respectively, set of bipartition. If
a (p, q)-bipartite graph G verifies SL(p, q) ≤ G or SR(p, q) ≤ G, then G is
an element of the set which we denote S ′L(p, q) or S ′R(p, q), respectively.
DR(p, q) or DL(p, q)) is the set of (p, q)-bipartite graphs G such that there
is no isolated vertex in R(G) or L(G), respectively. B′L(p, p) or B′R(p, p)
is the set of balanced bipartite graphs G of size 2p such that each vertex
of R(G) or L(G), respectively has degree two. BL(p, p) or BR(p, p) is the
(p, p)-bipartite graph of size 2p which has two vertices of degree p in its left
or right, respectively, set of bipartition. Clearly, BL(p, p) ∈ B′L(p, p) and
BR(p, p) ∈ B′R(p, p). Z ′L(p, p) or Z ′R(p, p) is the set of the (p, p)-bipartite
graphs G of size p−1 such that for each vertex in L(G) or R(G), respectively,
its degree is at most one. ZL(p, p) or ZR(p, p) is the (p, p)-bipartite graph of
size p − 1 such that ZL(p, p) ∈ Z ′L(p, p) or ZR(p, p) ∈ Z ′R(p, p) and there
is a vertex of degree p− 1 in its right or left, respectively, set of bipartition.
We define ZL(p, p) to be the set of pairs of (p, p)-bipartite graphs (G, H)
such that either

G = BL(p, p) and H ∈ Z ′L(p, p) (see Figure 3) or

G ∈ B′L(p, p) and H = ZL(p, p) (see Figure 4).

Figure 3
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Figure 4

The set ZR(p, p) we define analogically. By Z(p, p) we denote the set of
graphs ZL(p, p) ∪ ZR(p, p). It is not difficult to see that Z(p, p) is a set of
pairs of (p, p)-bipartite graphs (G, H) which are not bi-placeable, e(G) = 2p
and e(H) = p − 1.

In a (p, q)-bipartite graph G = (L, R; E) we denote by Pk(R) or Pk(L)
the set of the k-element subsets of the set R or L, respectively. Let Ak ∈
Pk(R). Define N(Ak) to be the set of such vertices x that there is a vertex
y in Ak such that xy is an edge in E(G). By T (Ak) we denote the set of
vertices z which are adjacent to each vertex in the set Ak. We denote by
n(Ak) and t(Ak) the cardinalities of the sets N(Ak) and T (Ak), respectively.

By W (p, q) we denote the set of graphs such that

W (p, q) =
6⋃

i=1

Wi(p, q), where

Wi(p, q) is the set of the pairs of (p, q)-bipartite graphs (G, H) such that
p ≤ q, e(H) = p, e(G) ≤ p+q−1 and W1(p, q) = {(G, H): (G ∈ S ′L(p, q) and
H ∈ DL(p, q)) or (p = q, G ∈ S ′R(p, p) and H ∈ DR(p, p)) or (G ∈ DR(p, q)
and H = SR(p, q)) or (p = q, G ∈ DL(p, p) and H = SL(p, p))} (see Figure
5a, 5b, 5c, 5d).
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Figure 5c

Figure 5d

W2(p, q) = {(G, H): q = p + 1, for each vertex in L(G) its degree is two and
there is a vertex of the degree p in L(H)} (see Figure 6),
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Figure 6

W3(p, q) = {(G, H): q = p + 1, there are two vertices y and y′ in R(G) such
that d(y, G) = d(y′, G) = p and for each vertex in R(H) its degree is at most
one} (see Figure 7),

Figure 7

W4(p, q) = {(G, H): either there is a vertex x in L(G) such that its degree
is q− 1 and the degree of the vertex y ∈ L non adjacent to x is at least two,
each vertex in L(H) is pendent, the degree of each non isolated vertex in
R(H) is at least p − d(y, G) + 1 (see Figure 8) or p = q, there is a vertex y
in R(G) such that its degree is p− 1 and the degree of the vertex x ∈ L non
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adjacent to y is at least two, each vertex in R(H) is pendent, the degree of
each non isolated vertex in L(H) is at least q − d(x, G) + 1}. In the latter
case we say that (G, H) ∈ W4′ .

Figure 8

W5(p, q) = {(G, H): (p = 3, q = 3, G = C4 ∪ K1,1, H = P3 ∪ K1,1 or p = 4,
q = 4, G = K1,1 ∪ C6, H = C4 ∪ K2,2} (see Figure 9a, 9b),

Figure 9a
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Figure 9b

W6(p, q) = {(G, H): pK1,1 ≤ H and there is an integer k in the set {1, . . . , p}
and a set Ak ∈ Pk(L) such that q − t(Ak) < k} (see Figure 10).

Figure 10

We denote by W ′(p, q) the subset
⋃

5

i=1 Wi(p, q) of the set W (p, q) and by
V (p, q) the set Z(p, p) ∪ W (p, q).
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3. Results

Consider graphs G and G′ with n vertices such that ∆(G), ∆(G′) < n − 1.
The main packing theorem proved by Bollobás and Eldridge [2] shows that
if we impose the extra condition: e(G) + e(G′) ≤ 2n − 3 then, with finitely
many exceptions (7 pairs), G and G′ are packable.

S.T. Teo and H.P. Yap [10] proved that if e(G)+ e(G′) ≤ 2n− 2, n ≥ 5,
then the number of forbidden pairs is 49.

J.-L. Fouquet and A.P. Wojda proved in [4] the following theorem.

Theorem A. Let G = (L, R; E) and H = (L′, R′; E′) be two (p, q)-bipartite
graphs, p, q ≥ 2, such that e(G) + e(H) ≤ p + q. Then G and H are m.p.

unless {G, H} = {F1, F2}, where either F1 = SL(p, q) and F2 ∈ DL(p, q) or

F1 = SR(p, q) and F2 ∈ DR(p, q).

Theorem B was proved in [8].

Theorem B. Let G and H be two (p, q)-bipartite graphs such that e(G) ≤
p+q, e(H) ≤ p−1, p ≤ q. Then G and H are m.p. unless p = q, e(G) = 2p,
e(H) = p − 1 and (G, H) ∈ Z(p, p).

In this paper we give a necessary and sufficient condition for two (p, q)-
bipartite graphs G and H such that 2 ≤ p ≤ q, e(H) ≤ p and e(G)+e(H) ≤
2p + q − 1 to be m.p.

The main result of this paper is Theorem 1.

Theorem 1. Let G and H be two (p, q)-bipartite graphs such that p ≤ q,
e(H) ≤ p and e(G) + e(H) ≤ 2p + q − 1. Then G and H are m.p. unless

e(H) ≥ p − 1 and (G, H) ∈ V (p, q).

4. Proof of Theorem 1

4.1. Bi-placement of two (p, q)-bipartite graphs G and H such
that ∆ (H) = 1

Remark 1.1. Let G = (L, G; E) and H = (L′, R′; E′) be two (p, q)-bipartite
graphs such that p ≤ q, ∆(H) = 1, e(H) ≤ p−1 and e(G) ≤ p+q−1. Then

G and H are m.p.

Remark 1.2. If G and H are two (p, q)-bipartite graphs such that e(H) = p,
pK1,1 ≤ H, then G and H are m.p. if and only if there is a matching of the

cardinality p in the graph G′ = Kp,q − G.
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Theorem of Philip Hall. Let G = (L, G; E) be a (p, q)-bipartite graph.

Then G has matching of cardinality p if and only if for each integer k ∈
{1, . . . , p}, for each set Ak ∈ Pk(L)

k ≤ n(Ak).

The following theorem is a corollary from Remark 1.2.

Theorem 1.3. Let G and H be two (p, q)-bipartite graphs such that p ≤ q,
e(H) = p and ∆(H) = 1. Then G and H are m.p. unless (G, H) ∈ W6(p, q).

4.2. Placing two (p, q)-bipartite graphs G and H such that
∆ (H) ≥ 2

We shall prove two lemmas first.

Lemma 2.1. Let G = (L, R; E) and H = (L′, R′; E′) be two (p, q)-bipartite
graphs such that 2 ≤ p ≤ q, ∆(H) ≥ 2, e(G) ≤ p + q − 1, e(H) ≤ p,
there is a vertex x in L such that d(x, G) = q − 1, the degree of the vertex

y ∈ R−N(x, G) is at least two and ∆L(H) = 1. Then G and H are mutually

placeable unless either (G, H) ∈ W1(p, q) or (G, H) ∈ W4(p, q).

Proof. Let G = (L, R; E) and H = (L′, R′; E′) be two (p, q)-bipartite
graphs verifying the assumptions of the lemma. If e(H) ≤ p−1 then H and G
are m.p. by Theorem B. Now we suppose that e(H) = p and e(G) ≤ p+q−1.
If (G, H) ∈ W1(p, q) or (G, H) ∈ W4(p, q), then clearly G and H are not
mutually placeable. Let d(y, G) = k. We may assume that there exists
a vertex w in R′ such that 0 < d(w, H) = k′ ≤ p − k. Let us define sets
Z and Z ′ and graphs G′, H ′ in the following way:

Z ⊆ L − N(y, G), x ∈ Z and |Z| = k′; Z ′ = N(w, H),

G′ = G − Z − {y}, H ′ = H − Z ′ − {w}.

G′ and H ′ are (p− k′, q− 1)-bipartite graphs, e(G′) ≤ p− k, e(H ′) = p− k′.
By the Theorem A, G′ and H ′ are mutually placeable. Hence a bi-placement
of G and H is evident.

Lemma 2.2. Let G = (L, R; E) and H = (L′, R′; E′) be two (p, q)-bipartite
graphs such that 2 ≤ p ≤ q, e(G) ≤ p + q − 1, e(H) ≤ p, ∆(H) ≥ 2,
∆L(H) = 1 and there is no isolated vertex in R. Then G and H are m.p.

unless either (G, H) ∈ W1(p, q) or (G, H) ∈ W4(p, q).
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Proof. Let G = (L, R; E) and H = (L′, R′; E′) be two (p, q)-bipartite
graphs verifying the assumptions of the lemma. We may suppose that
e(G) ≤ p + q − 1, e(H) = p and each vertex in L′ is pendent (if e(H) < p
we may use Theorem B). If there is a vertex of degree q in L, then
(G, H) ∈ W1(p, q). It is clear that there is a pendent vertex, say y, in R. Let
us take a vertex w in R′ such that d(w, H) = ∆R(H) ≥ 2. If d(w, H) = p
then (G, H) ∈ W1(p, q). If d(w, H) < p then, by Theorem B, there is a bi-
placement f : L′ ∪R′ −{w} → L∪R−{y} of the graphs H ′ = H −{w} and
G′ = G − {y}. If f [N(w, H)] ⊆ L − N(y, G), then a bi-placement of H and
G is evident. So now, we may assume that N(y, G) ∩ f [N(w, H)] 6= ∅. Put
{x} = N(y, G). Let us denote by z the vertex in L′ such that z ∈ N(w, H)
and f(z) = x. If there is a non isolated vertex w′ in R′ − {w} such that
f(w′) = y′ ∈ R−N(x, G), we take a vertex z′ in L′ such that z′ ∈ N(w′, H)
and the vertex x′ = f(z′) ∈ L. Now g defined by

g(s) = f(s) if s ∈ V (H) − {w, z, z′},

g(z′) = x, g(z) = x′, g(w) = y

is a bi-placement of H and G. So we assume that f(w′) ∈ N(x, G) for each
non isolated vertex w′ in R′−{w}. Since d(w, H) = ∆R(H), then d(w′, H) ≤
d(w, H). Hence d(w′, H) ≤ p/2. We may assume that there is a vertex
y′ ∈ R − N(x, G) such that d(y′, G) + d(w′, H) ≤ p. The above condition
is true unless d(x, G) = q (then (G, H) ∈ W1(p, q)) or d(x, G) = q − 1 and
d(y′′, G) > p/2 for y′′ /∈ N(x, G) (in this case we may use Lemma 2.1). Let
us denote by w′′ such a vertex of R′ that f(w′′) = y′. Let w′ be a non
isolated vertex in R′ − {w}, y′′ = f(w′), z′ ∈ N(w′, H) and f(z′) = x′.
If f [N(w′, H)] ∩ N(y′, G) = ∅, then we define by g a new bi-placement of
H − {w} and G − {y} in the following way:

g(s) = f(s) if s ∈ V (H) − {w, w′, w′′, z, z′},

g(w′) = y′, g(w′′) = y′′, g(z) = x′, g(z′) = x.

Now a bi-placement of H and G is evident. If f [N(w′, H)]∩N(y′, G) = A 6= ∅
let us denote elements of the set A by x′

i, i = 1, 2, . . . , l; by z′i such elements
of the set L′ that f(z′i) = x′

i. Let B = L − (N(y′, G) ∪ f [N(w′, H)]) ∪ {x}.
Let us denote elements of the set B by xi, i = 1, 2, . . . , k, x1 = x and by zi

such elements of the set L′ that f(zi) = xi. Since d(y′, G) + d(w′, H) ≤ p,
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l ≤ k. So now we define a bi-placement g of H −{w} and G−{y} such that

g(s) = f(s) if s ∈ V (H) − {{z1, z2, . . . , zl, z
′

1, . . . z
′

l} ∪ {w, w′, w′′}}

g(zi) = x′

i, g(z′i) = xi, i = 1, 2, . . . , l,

g(w′) = y′, g(w′′) = y′′.

It is clear now that H and G are m.p.

Theorem 2.3. Let G = (L, R; E) and H = (L′, R′; E′) be two (p, q)-
bipartite graphs such that 2 ≤ p ≤ q, ∆(H) ≥ 2, e(G) ≤ p+q−1, e(H) ≤ p.
Then G and H are m.p. unless e(H) = p and (G, H) ∈ W ′(p, q).

Proof. The proof is by induction on p + q. It is not difficult to check that
the theorem is true for p = 2 and arbitrary q ≥ p and for p + q ≤ 8. Let us
assume that p ≥ 3, p ≤ q, p + q ≥ 9 and every two (p′, q′)-bipartite graphs
G′ and H ′, with p′+q′ < p+q verifying the assumptions of the theorem, are
m.p. Let G = (L, R; E) and H = (L′, R′; E′) be two (p, q)-bipartite graphs
such that p ≥ 3, p ≤ q and ∆(H) ≥ 2. By Theorem B we may assume that
e(H) = p and e(G) ≤ p + q − 1. To prove the theorem we shall distinguish
two cases.

Case 1. There is an isolated vertex, say y, in R. If there is no isolated
vertex in L′, then for each vertex in L′ its degree is one. Then there is
a vertex w in R′ such that its degree is at least two, otherwise ∆(H) = 1.
Let x ∈ L be such that d(x, G) = ∆L(G) and let z ∈ N(w, H). G−{x, y} and
H−{w, z} are m.p. by the induction hypothesis when ∆(H−{z, w}) > 1 or
by Remark 1.1 when ∆(H − {z, w}) = 1. Hence also G and H are m.p. So
now, let z be an isolated vertex in L′, w ∈ R′ such that d(w, H) = ∆R(H),
and x ∈ L such that d(x, G) = ∆L(G). If d(w, H) ≥ 2, then the graphs
G′ = G − {x, y} and H ′ = H − {w, z} are (p − 1, q − 1)-bipartite and
e(G′) ≤ (p − 1) + (q − 1) − 1, e(H ′) ≤ p − 2. Hence, by the induction
hypothesis or Remark 1.1, G′ and H ′ are m.p. A bi-placement of G and H
is evident. If d(w, H) = 1, then e(H ′) = p−1 and if ∆(H ′) ≥ 2, then by the
induction hypothesis, G′ and H ′ are m. p. unless (G′, H ′) ∈ W ′(p−1, q−1).
(If (p − 1)K1,1 ≤ H ′, then there are two pendent adjacent vertices w′ and
z′ in H ′. We may take H ′ = H − {w′, z′} and ∆(H ′) ≥ 2.) Observe
that (G′, H ′) 6∈ W5(p − 1, q − 1). Hence we may assume that (G′, H ′) ∈⋃

4

i=1 Wi(p − 1, q − 1). Below we consider all possible cases.

1. (G′, H ′) ∈ W1(p − 1, q − 1)

(a) G′ ∈ S ′R(p − 1, q − 1) and H ′ ∈ DR(p − 1, q − 1). Then p = q and
we may use Lemma 2.2.
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(b) G′ ∈ S ′L(p−1, q−1) and H ′ ∈ DL(p−1, q−1). There is a vertex x′

in L − {x} such that d(x′, G) = q − 1. Since d(x, G) = ∆L(G), then
d(x, G) = q−1 and e(G) ≥ 2(q−1). Hence p = q or p = q−1. We may
choose a pendent vertex z′ in L′ and a vertex w′ in N(z′, H). If p = q
let us define the graphs G′′ = G−{x, x′, y} and H ′′ = H−{z, w′, z′},
where z′ ∈ L′ \ {z} and w′ ∈ N(z′). By the Theorem A G′′ and H ′′

are m.p. Hence G and H are m.p. too. If p = q−1, then any function
f such that f(x) = z, f(x′) = z′, f(y) = w′ is a bi-placement of G
and H.

(c) G′ ∈ DR(p− 1, q − 1) and H ′ = SR(p− 1, q − 1). We can check that
in this case p = 2.

(d) G′ ∈ DL(p − 1, q − 1) and H ′ = SL(p − 1, q − 1). Now p = q and
if w ∈ N(z′, H), where d(z′, H ′) = p − 1, then (G, H) ∈ W ′(p, p).
If w 6∈ N(z′, H), then a bi-placement of G and H is evident unless
G ∈ S ′R(p, p) and (G, H) ∈ W ′(p, p).

2. (G′, H ′) ∈ W2(p − 1, q − 1). Now we have: p = q − 1, d(x, G) = 2 and
for each vertex in L its degree is two. Let z1 be a vertex in L′ of degree
p− 1 in H’. If d(z1, H) = p, then (G, H) ∈ W2(p, p + 1). Now we suppose
that w 6∈ N(z1, H). If there are two vertices of degree p in R, then
(G, H) ∈ W3(p, p + 1). In other case there is a non isolated vertex in R,
say y1, of degree less than p. Let x1 ∈ N(y1, G), y2 ∈ N(x1, G) − {y1},
z2 ∈ N(w, H). Any bijection f such that: f(z1) = x1, f(w) = y1,
f(z2) ∈ L − N(y1, G), f [N(z1, H)] = R − {y1, y2} is a bi-placement of G
and H.

3. (G′, H ′) ∈ W3(p−1, q−1). Let y1, y2 be vertices in R−{y} of degree p−1
in G′. If d(y1, G) = d(y2, G) = p or ∆L(H) = p, then (G, H) ∈ W ′(p, q).
Now we assume that x 6∈ N(y1, G) and ∆L(H) < p. Let z1 be a vertex
in L′ such that 2 ≤ d(z1, H) ≤ p − 1. Let x1 ∈ L − {x}. Then y1,
y2 ∈ N(x1, G) and d(y1, G) ≤ d(y2, G). Let w1 be isolated in R′. The
graphs G′′ = G − {x, x1, y, y1} and H ′′ = H − {z, z1, w, w1} are m.p.
A function, say f , defined by f(s) = g(s), s ∈ V (H ′′), where g — a bi-
placement of H ′′ and G′′, f(z1) = x, f(z) = x1, f(w) = y, f(w1) = y1 is
a bi-placement of H and G.

4. (G′, H ′) ∈ W4(p−1, q−1) Let x′ ∈ L−{x} be such that d(x′, G′) = q/−2,
hboxy′ ∈ (R − N(x′, G′) − {y}). Notice that d(y′, G′) ≤ p − 2. For each
non isolated vertex w′ in R′ − {w} d(w′, H ′) + d(y′, G′) > p − 1. But
∆R(H ′) = 1. Hence d(y′, G′) ≥ p − 1 a contradiction. If (G′, H ′) ∈
W4′(p − 1, p − 1), then we may use Lemma 2.2.
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Case 2. There is no isolated vertex in R. Notice that there is a pen-
dent vertex, say y, in R. If each vertex in L′ is pendent then we may use
Lemma 2.2. So we assume that there is an isolated vertex z in L′. Let
w ∈ R′ be such that d(w, H) = ∆R(H). Now we consider two subcases.

Subcase 2.1. The degree of the vertex w is at least two. If d(x, G) ≥ 2
for x ∈ N(y, G) then, by the induction hypothesis, there is a bi-placement
of H − {z, w} and G − {x, y}. A bi-placement of H and G is evident. If
d(x, H) = 1, then we define the pair of graphs (G′, H ′) in the following way:

— if d(w, H) ≥ 3 put G′ = G−{x, y, y′}, H ′ = H −{z, w, w′}, where y′ is
a vertex in R such that e(G− {x, x′, y}) ≤ p + q − 4, and w′ is isolated
in R′;

— if d(w, H) = 2 and there is a non isolated vertex z′ in L′ − N(w, H)
then put G′ = G − {x, x′, y}, H ′ = H − {w, z, z′}, where x′ ∈ L such
that e(G − {x, x′, y}) ≤ p + q − 4;

— if d(w, H) = 2 and each vertex in L′ − N(w, H) is isolated, then we
take a vertex z′′ ∈ L′ such that d(z′′, H) ≥ p/2 and an isolated vertex
w′ in R.

For p ≥ 5 let G′ = G − {x, x′′, y}, H ′ = H − {z, z′′, w′}, where x′′ ∈ L such
that d(x′′, G) ≥ 2. By the induction hypothesis or Remark 1.1, G′ and H ′

are m.p. Hence G and H are m.p., too. For p ≤ 4 it is easy to check that
either (G, H) are m.p. or (G, H) ∈ W5(p, q).

Subcase 2.2. For each vertex in R′ its degree is at most one. Let z′ ∈ L′

and d(z′, H) = ∆L(H) = k. Hence k ≥ 2. Let us suppose first that
d(x, G) > q − k, for each vertex x ∈ L. Then we have

(∗) p + q − 1 ≥ e(G) ≥ p(q − k + 1)

and, since k ≤ p, we have q − 1 ≥ p(q − p) and we see that q ≤ p + 1.
Therefore, and by the unequality (∗), p ≥ q − 1 ≥ p(q − k) and k ≥ q − 1.
Thus k = p and now we may easily deduce that either (G, H) ∈ W1(p, q),
or else (G, H) ∈ W2(p, q). So from now on we may assume that there is
a vertex x ∈ L such that d(x, G) ≤ q − k. If d(x, G) = 0, then G and H
are m.p. by Theorem B. If d(x, G) ≥ 1, then we define the sets Z and Z ′

such that Z ′ = N(z′, H), |Z ′| = k, Z ⊆ R − N(x, G) and |Z| = k. Let
G′ = G−{x}−Z, H ′ = H −{z′}−Z. G′ and H ′ are (p−1, q−k)-bipartite
graphs and e(G′) ≤ (p − 1) + (q − k) − 1, e(H ′) = p − k and there is a bi-
placement of G′ and H ′. Hence for p < q we have p− k < min{p− 1, q − k}
and there is a bi-placement of G′ and H ′. A bi-placement of G and H is
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evident. For p = q each vertex in R′ is pendent and there are no isolated
vertices in L. Hence we may use Lemma 2.2.

Theorem 2.4. Let G = (L, R; E) and H = (L′, R′; E′) be two (p, q)-
bipartite graphs such that 2 ≤ p ≤ q, e(G) ≤ p + q + k − 1, e(H) ≤ p − k,

where 2 ≤ k ≤ p. Then G and H are m.p.

Proof. Let k be an integer such that k ∈ {2, . . . , p}. The proof is by
induction on p + q. The theorem is easy to check when p ≤ 3 and p ≤ q. So
let us suppose p ≥ 4, q ≥ p and the theorem is true for all positive integers
p′, q′ such that p′+q′ < p+q. Let H = (L, R; E) and G = (L′, R′; E′) be two
(p, q)-bipartite graphs verifying the assumptions of the theorem. We may
assumme that e(G) = p + q + k − 1 and e(H) = p− k. The theorem is easy
to check for k = p or k = p− 1. Now we suppose that 2 ≤ k ≤ p− 2. Notice
that δR(G) ≤ 2 and let z0 be a vertex in R such that d(z0, G) = δR(G). To
prove that G and H are m.p. we shall distinguish four cases.

Case 1. The vertex z0 is isolated. Let w ∈ L be such a vertex that
d(w, G) ≥ 2, y be non isolated in R′ and x be an isolated in L′. By the
induction hypothesis, there is a bi-placement of G−{w, z0} and H −{x, y}.
A bi-placement of G and H is evident.

Case 2. The vertex z0 is pendent and the degree of its neighbor w is at
least two. Now choose a vertex y ∈ R′ such that d(y, H) ≥ 1 and an isolated
vertex, say x, in L′ and proceed like in the preceding case.

Case 3. There is no isolated vertex in R, there are pendent vertices in
R and for each vertex in R also its neighbor is pendent. We may choose
vertices {w0, w1, z0, z1} of the graph G and vertices {x0, x1, y0, y1} of the
graph H in the following way: w0 is pendent in L, z0 ∈ N(w0, G), w1 ∈ L,
z1 ∈ R such that d(w1, G) ≥ 2, d(z1, G) ≥ 2 and x0, x1 ∈ L′, y0, y1 ∈ R′ such
that d(x1, H) = d(y1, H) = 0, (x0y0) 6∈ E′ and |N(x0, H) ∪ N(y0, H)| ≥ 2.
The graphs G′ = G − {w0, w1, z0, z1} and H ′ = H − {x0, x1, y0, y1} are
(p − 2, q − 2)-bipartite and, for k ≤ p − 2, verify the induction hypothesis.
Hence there is a bi-placement, say g, of G′ and H ′. The bijection f defined by

f(w) = g(w), for w ∈ V (G′),

f(wi) = xi,

f(zi) = yi i = 0, 1

is a bi-placement of G and H.

Case 4. The degree of the vertex z0 is two.
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a) If there is a vertex, say y0, in R′ such that d(y0, H) ≥ 2, then we choose
vertices x, x1 and y1 of the graph H in the following way: x, x1 are
isolated in L′, y is isolated in R′. Let w1, w2 ∈ N(z0, G) and z1 ∈
R − {z0}. Now we define the graphs G′ = G − {z0, z1, w1, w2} and
H ′ = H − {y1, y0, x, x1} and construct a bi-placement of G and H.

b) Now for each vertex in R′ let its degree is at most one. Let x be a vertex
in L′ such that d(x, H) = ∆L(H). Hence d(x, H) ∈ {1, . . . , p−k}. There
is a vertex w ∈ L such that d(w, G)+d(x, H) ≤ q. Otherwise the degree
of each vertex in L would be at least

(∗∗)
q − d(x, H) + 1 and

e(G) ≥ p(q − p + k + 1)

But, for p ≤ q and 2 ≤ k ≤ p − 2 the unequality (∗∗) cannot hold. If
d(w, G) = 0, then we choose a vertex z0, an isolated vertex in R′, say y,
and construct a bi-placement of G and H like in Case 1. If d(w, G) > 0,
we define the sets Z and Z ′ and graphs G′ and H ′ in the following way:

Z ′ = N(x, H), Z ⊆ R − N(w, G) and |Z| = d(x, H),

G′ = G − {w} − Z, H ′ = H − {x} − Z ′.

G′ and H ′ are (p − 1, q − d(x, H))-bipartite graphs such that

e(G′) ≤ p + q + k − 1 − 2d(x, H) ≤ (p − 1) + (q − d(x, H)) + k − 1

e(H ′) ≤ p − k − d(x, H) ≤ min{p − 1 − k, q − k − d(x, H)}.

Hence G′ and H ′ are m.p. A bi-placement of G and H is evident.

Proof of Theorem 1. Theorem 1 is a consequence of Theorem B, Re-
mark 1.1, Theorem 1.3 and Theorem 2.4.
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