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Abstract

Let e;; be the number of edges in a convex 3-polytope joining
the vertices of degree ¢ with the vertices of degree j. We prove that
for every convex 3-polytope there is 20e3 3 + 25e3 4 + 16e3 5 + 10e3 6 +
6%63’74-56378+2%63’9+263710+16%6414+116475+56476+1%64774-5%65’54-
2e5,6 > 120; moreover, each coefficient is the best possible. This result
brings a final answer to the conjecture raised by B. Griinbaum in 1973.
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1. INTRODUCTION AND STATEMENT OF RESULTS

This note deals with connected planar maps. We use standard terminology
and notation of graph theory, see e.g. Ore [16]. We recall, however, more
specialized notions. A plane map is called normal if it contains neither
vertices nor faces incident with less than 3 edges. Notice, however, that
both loops and multiple edges can appear in a normal plane map. By the
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Steinitz’s theorem (see e.g. Griinbaum [11], Jucovi¢ [13]) convex 3-polytopes
are distinguished among all planar maps by the property that their graphs
are 3-connected. The degree of a face w is the number of edges incident
to w where each cut-edge is counted twice. Similarly, each loop contributes
2 to the degree of the incident vertex. Vertices and faces of degree ¢ are
called i-vertices and i-faces, respectively. Let e; j(M) = e; j be the number
of edges in a planar map M which join i-vertices and j-vertices. Recall that
a convex 3-polytope is called simplicial if all its faces are 3-gons.

An excellent theorem of Kotzig [14] (see also [1,3,6,7,8,13,15,]) states
that every convex 3-polytope contains an edge of the weight (i.e., the sum of
degrees of its endvertices) at most 13; in other words >, ;<3 €;; > 0. This
Kotzig’s result was further developed in various directions, see e.g. Borodin
[1,2,3], Grinbaum [6,7,8], Griinbaum and Shephard [9], Ivanco [10], Ivanco
and Jendrol’ [11], Jucovi¢ [12,13], Zaks [17].

Grinbaum [8] has brought an idea that a relation of the type
> itj<13 @ijeij > 1 should hold for each convex 3-polytope (c;; denotes
the coeficient at e;;) and has conjectured that the following holds for every
simplicial convex 3-polytope

20e33 + 15e34 + 12e35 + 10e36 + 6%6377 + Se3 8 + 3%63,9 + 2e310
+ 12e44 + Teqs + des + desg7 + 2%64’8 + %6479
+ des 5 + 2e56 + 2es7
+ 1266,6 > 120.

Jucovié¢ [12] proved that for each simplicial convex 3-polytope there is

2063,3 + 256374 + 1663’5 + 1063,6 + 6%6377 + 563,8 + 2%63,9 + 263’10
+ 20e44 + 1leg s + Seq6 + 6es7 + Ses48 + 3es9
+ 8es5 + 2e56 + 2657 + 2e58 > 120.

Later on Jucovi¢, in [13], proved that this inequality holds for all convex
3-polytopes.

For a wider class of planar maps which also includes convex
3-polytopes Borodin [3] has obtained.

Theorem 1. For each normal planar map there holds

40633 + 256374 + 1663’5 + 106376 + 626377 + 56378 + 2%6379 + 263’10
(1) + 16Ze44 + 1leqs + e + 13ear
+ 53es5 4 2e56 > 120;

moreover, each coefficient of this inequality is the best possible.
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In the same paper Borodin [3] proves that for simplicial convex 3-polytopes
(1) is the best possible if we put ag3 = 20 instead of a3 3 = 40. For other
results of this type see Borodin [1,2,3], Borodin and Sanders [5], Jucovi¢
[13].

The main purpose of the present note is to give a final answer to the
above mentioned conjecture by Griinbaum [8]. We prove the following

Theorem 2. For each convex 3-polytopes there holds

206373 + 256374 + 166375 + 106376 + 626377 + 56378 + 2%6379 + 263710
(2) + 162e44 + 1leqs + Seas + 13ear
+ 5%6575 + 2e56 > 120;

moreover, each coefficient of this inequality is the best possible.

2. PROOF OF THEOREM 2

We prove our Theorem 2 in a dual form. It is well known that the dual of
a 3-connected planar map is also 3-connected, see e.g. Ore [16, Chapter 3]
and, due to Steinitz’s theorem, it is also true for convex 3-polytopes. It is
easy to check that the dual of a normal map is again normal.

For the purposes of this proof an edge h is called an (i, j)-edge when it
is incident with an i-gon and a j-gon. Let g; j(M) = g;; denote the number
of (i,7)-edges in a map M. If M? is the dual to a normal map M, then
clearly e;;(M?) = g;j(M). Let V(M), E(M) and F(M) denote the set of
vertices, edges and faces of the map M, respectively.

The proof is by contradiction. Replace e;; with g;; in the left part of (2)
and denote it by >.. We want to prove that for every 3-connected planar M
there is >~ (M) > 120. Suppose M be a counterexample having a minimum
number of faces.

To obtain a contradiction we are going to look for a suitable configura-
tion in M which will be changed locally to obtain a new 3-connected plane
map M* with Y (M*) < Y (M) < 120 and with a fewer number of faces
than in M. During this transformation of the map M into M* some edges
and vertices of M are deleted, some edges change their types (an edge is of
the type (7,7) if it is an (4, j)-edge) and some new edges and vertices can
appear in M*.

Asociate with an (4, j)-edge h of the map M the charge a(h, M) = ayj,
where «a;; is as in (2) or a;; = 0 for i = 3,7 > 11 or i = 4,5 > 8 or
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i =57 >Tori>6,j>6 Hence (M) = ,cpualh,M). Let
A(h) = a(h, M) — a(h, M*).

Since every 3-connected plane map is also normal Theorem 1 yields
g33(M) # 0, ie., M contains a (3,3)-edge hg = uv. Denote by s and t
the vertices incident to triangles incident with hg and different from u and
v, see Figure 1. Let h; = us, ho = sv, hg = vt and hy = ut be edges of M.

U
hy hy
S t
ho hs
v
Figure 1

To finish our proof several cases have to be considered

Case 1. deg u > 4 and deg v > 4.

1.1. Let deg s = 3 or deg t = 3. The required map M™* is obtained by delet-
ing the edge hg from M, i.e., M* = M — hy. Because M is 3-connected and
at least one of the vertices s and ¢ is a 3-vertex also M* is 3-connected. We
can easily see that |F(M*)| = |[F(M)| —1and A(Y) =X (M)— > (M*) =
alho, M) + iy (alhiy, M) — a(h, M¥)) = asg + i A(h) > 20+
4-(=5) = 0. The last inequality is due to the fact that if a (3,k)-edge
h is transformed into a (4, k)-edge, its charge always decreases or is the
same except of the case k = 3. We also refer to the fact that A(h;) > —5
for any edge h; € E(M).

1.2. deg s > 4 and deg t > 4. In this case we transform M into M™* as
shown in Figure 2. We delete the edge hg from M and split the vertex ¢ of
M into two new vertices ¢ and to such that we obtain, in M*, degt; = 3 and
deg to = deg t — 1. (The reason for this transformation of M into M* is to
preserve 3-connectivity also in M*.) Let 1/, hy, ho, hs and hg be edges and w;
and wo be faces of M™* as depicted in Figure 2. Without loss of generality we
can assume that 4 < deg w1 < deg wo. Put A" =37, c p(ar)— (ng,hg,ha) D(T)-
Then we have |F(M*)| = |F(M)| — 1 and A(Y]) = a(ho, M) + A(hs) +
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A(hg) + A* — a(h/, M*) > 0. To check it use a(hg, M) = a3 3 = 20 and for
the values A(hs), A(hyg),a(h', M*) and A* see Table 1 below. To count A*
we also refer to the fact that gz 3(M) <5 (because M is a counterexample)
and consider the "worst” case.

ha hy w2
s
th n' to
ho hs
w1
Figure 2

Case 2. deg u =3 and deg v > 4.
Let w be a face incident to the edges h; and hy, see Figure 1.

2.1. If deg w = 3 then M* is obtained by removing the vertex u from M, i.e.
M* = M —{u}. We have A(}") = a(ho, M)+a(hi, M)+a(hs, M) =60 > 0
and |F(M*)| = |F(M)| — 2.

2.2. Let deg w = k > 4. If we delete the vertex u from M and then insert a
new edge h* = st we obtain a required map M*, M* = M — {u} + {h*}. In
this case |[F(M*)| = |F(M)| — 1 and we can check that A(Y") = a(ho, M) +
a(hy, M) + o(hy, M) — a(h*, M*) + A > 0. To see it, take a(hg, M) =
az3 = 20 and the values a(hi, M), a(hs, M), a(h*, M*) and A from the
Table 2 below; here A = > A(g), where the sum is taken over all edges ¢
incident to the face w, g # h1, hy. Note that during this transformation the
edge g changes its type (n, k) into the type (n,k — 1) and in the counting
we consider the worst case, that is A > (k — 2)(azx — a3 _1)-

Case 3. deg u = deg v = 3.

This assumption leads immediately to the graph of the tetrahedron or to a
2-connected planar map. In both cases we get a contradiction.

The proof that a 3-connectivity of M implies a 3-connectivity of M™ is
easy and is left to the reader.
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The coeflicient a3 3 = 20 cannot be improved as we can see from the tetra-
hedron. The above mentioned examples by Borodin [3] also show the im-
possibility to improve the other coefficient «; ; in Theorem 2.

Table 1
deg wy deg wo | A(hg) |A(hg) |a(h,M*) |A*>
1 1 2
4 4 33 3% 162 —10
4 5 31 14 11 —20
4 6 33 11 5 —20
1 1 2
4 7 33 8% 12 —20
4 >3 33 >0 0 —20
5 5 14 14 5% —10
5 6 14 11 2 ~10
5 >7 14 >0 0 —10
>6 >6 >0 >0 0 ~10
Table 2
degw d(hlaM) d(h4aM) d(h*vM*) A >
4 25 25 20 2-(—83)
5 16 16 25 3-(-9)
6 10 10 16 4-(—6)
7 62 62 10 5-(—33)
8 5 5 63 6-(—13)
9 23 23 5 7-(-23)
10 2 2 21 8- (—3)
11 0 0 2 9-(-2)
> 12 0 0 0 0
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