ASSOCIATIVE GRAPH PRODUCTS AND THEIR INDEPENDENCE, DOMINATION AND COLORING NUMBERS

Richard J. Nowakowski*
Dalhousie University, Halifax, Nova Scotia, Canada B3J 3J5
and
Douglas F. Rall
Furman University, Greenville, SC 29613 U.S.A.

Abstract

Associative products are defined using a scheme of Imrich \& Izbicki [18]. These include the Cartesian, categorical, strong and lexicographic products, as well as others. We examine which product \otimes and parameter p pairs are multiplicative, that is, $p(G \otimes H) \geq p(G) p(H)$ for all graphs G and H or $p(G \otimes H) \leq p(G) p(H)$ for all graphs G and H. The parameters are related to independence, domination and irredundance. This includes Vizing's conjecture directly, and indirectly the Shannon capacity of a graph and Hedetniemi's coloring conjecture.

Keywords: graph products, independence, domination, irredundance, coloring.
1991 Mathematics Subject Classification: 05C99.

1. Product Definitions

We consider products of finite simple graphs. A graph G consists of a vertex set $V(G)$ and an edge set $E(G)$. We use \otimes as the symbol for an arbitrary product where, for the purposes of this paper, the product graph is defined by $V(G \otimes H)=\{a x \mid a \in V(G), x \in V(H)\}$ and whether two vertices in the product are adjacent depends solely on the adjacency relations in the factors. This can be represented by a 3×3 matrix, called the edge matrix. The rows (columns) are labeled by E which denotes adjacency of the vertices of

[^0]the first (second) factor; N nonadjacency; and Δ the case where the vertex is the same. An E in the matrix indicates there is an edge between the vertices of the product; an N nonadjacency; and in the case where the relationship in both factors is Δ then the two vertices are the same and so the entry is Δ.
\[

$$
\begin{gathered}
\\
E \\
\Delta \\
N
\end{gathered}
$$\left(\begin{array}{ccc}
E \& \Delta \& N

- \& - \& -

- \& \Delta \& -

- \& - \& -
\end{array}\right)
\]

Since the rows and columns will always be labeled in this fashion we drop the labels in the sequel.

This scheme was first introduced by Imrich \& Izbicki [18]. They showed that out of the 256 possible products there are 20 associative products but only 10 of these depend on the edge structure of both factors (that is, these products do not have all E's or all N's in the 1st and 3rd rows or in the 1 st and 3rd columns). Further, 8 of these are also commutative. (See also Harary \& Wilcox [9]).

Since a graph can be defined in terms of non-edges, there is the notion of a complementary product. Specifically, if \bar{G} is the complementary graph to G then the complementary product \otimes^{c} to a product \otimes is given by $G \otimes^{c} H=$ $\overline{(\bar{G} \otimes \bar{H})}$. The only two of these ten products which are not commutative are self-complementary. They are the lexicographic product and the product whose edge matrix is the transpose of that of the lexicographic product. We do not consider this latter product. Below are the definitions of these 9 associative products. Examples can be found in Figure 1.

Categorical

Cartesian

Strong

Figure 1a. $P_{3} \times P_{3}, P_{3} \square P_{3} \& P_{3} \boxtimes P_{3}$.

Figure 1b. $P_{3} \bullet P_{3}, P_{3} \bigoplus P_{3} \& P_{3} \nabla P_{3}$.

Figure 1c. The nonedges of $P_{3} \boxtimes^{c} P_{3}, P_{3} \square^{c} P_{3} \& P_{3} \times^{c} P_{3}$.
The symbols used to denote products are based mainly on those found in [21]. Some of these products are also known by other names (for more details see [22]):

Categorical: $G \times H\left(\begin{array}{ccc}E & N & N \\ N & \Delta & N \\ N & N & N\end{array}\right)$; Co-Categorical: $G \times^{c} H\left(\begin{array}{ccc}E & E & E \\ E & \Delta & E \\ E & E & N\end{array}\right)$;
Cartesian: $G \sqsubset H\left(\begin{array}{ccc}N & E & N \\ E & \Delta & N \\ N & N & N\end{array}\right) ; \quad$ Co-Cartesian: $G \square{ }^{c} H\left(\begin{array}{lll}E & E & E \\ E & \Delta & N \\ E & N & E\end{array}\right)$;

Strong: $G \boxtimes H\left(\begin{array}{ccc}E & E & N \\ E & \Delta & N \\ N & N & N\end{array}\right)$; Disjunction: $G \boxtimes^{c} H\left(\begin{array}{ccc}E & E & E \\ E & \Delta & N \\ E & N & N\end{array}\right)$; Equivalence: $G \ominus H\left(\begin{array}{ccc}E & E & N \\ E & \Delta & N \\ N & N & E\end{array}\right)$; Lexicographic: $G \bullet H\left(\begin{array}{ccc}E & E & E \\ E & \Delta & N \\ N & N & N\end{array}\right)$;

$$
\text { Symmetric Difference: } G \nabla H\left(\begin{array}{ccc}
N & E & E \\
E & \Delta & N \\
E & N & N
\end{array}\right) \text {. }
$$

All 256 products can be ordered by 'inclusion': that is, $\oplus \leq \otimes$ if for each pair of graphs G and $H, E(G \oplus H) \subset E(G \otimes H)$. The suborder for the products of interest in this paper is shown in Figure 2.

Figure 2. Partial Ordering of the Products.
We are mainly concerned with the question whether a parameter p with respect to a product \otimes has one of the following properties for all graphs G and H :
(i) $p(G \otimes H) \geq p(G) p(H)$ or
(ii) $p(G \otimes H) \leq p(G) p(H)$ or
(iii) $p(G \otimes H)=p(G) p(H)$.

Given p and \otimes, if (iii) is not true then a fourth question is to characterize universal graphs: that is, those graphs G where $p(G \otimes H)=p(G) p(H)$ for all graphs H. Some of our results preclude the existence of universal graphs for certain parameter/product pairings. We have not pursued the question in this paper.

There are many questions in the literature about independence-type parameters and products. Most take a form like our (i), (ii) and (iii). Indeed they motivated us to try a more systematic approach to these questions. Some of these we list below.

Vizing's conjecture [31] (see [10] and [11] for a survey of some of the results) - for all G and H is $\gamma(G \square H) \geq \gamma(G) \gamma(H)$?

Hedetniemi's coloring conjecture [12] (see [6] for a survey of some of the results) - for any indexed set of graphs $\left\{G_{i} \mid i \in I\right\}$ is $\chi\left(\times_{i \in I} G_{i}\right)=$ $\min _{i \in I}\left\{\chi\left(G_{i}\right)\right\}$?

The Shannon capacity of a graph G is $\Theta(G)=\lim _{n \rightarrow \infty} \alpha\left(G^{n}\right)^{1 / n}$ where $\alpha\left(G^{n}\right)$ is the maximum number of nonconfusable codewords of length n taken from an alphabet G. Let the letters be the vertices with two vertices being adjacent if they could be confused. The maximum number of nonconfusable codewords of length 1 is therefore $\beta(G)$ and thus $\Theta(G)=\lim _{n \rightarrow \infty} \beta\left(\boxtimes_{i=1}^{n} G\right)^{1 / n}$.

The problem is to find ways to determine $\Theta(G)$. It is easy to see that $\beta(G) \leq \Theta(G)$. This problem was introduced by Shannon [30] (see also Ore [23], Berge [2] and Roberts [26]). Rosenfeld [27] found a characterization of universal graphs for β and \boxtimes using linear programming techniques. A new approach was introduced by Lovász [20] who used eigenvalue techniques.

The ultimate chromatic number of a graph G is $\chi_{u}(G)=\lim _{n \rightarrow \infty}$ $\left(\chi\left(\square_{i=1}^{n} G\right)\right)^{1 / n}$. This was introduced by Hilton, Rado \& Scott [15] and is related to the problem of assigning radio frequencies to vehicles operating in zones (see Gilbert [8] and also Roberts [25]). The determination of the ultimate chromatic number can be solved using linear programming techniques; see Hell \& Roberts [14].

In addition there have been several other conjectures. V. Pus [24] answered in the negative a question of C. Thomassen: Is there any product \otimes such that for all graphs G and $H, \chi(G \otimes H)=\chi(G) \chi(H)$.

The following question is attributed to Lovász (see Hsu [16]). Let $h_{H}(G)$ be the number of homomorphisms of G to H. An increasing multiplicative graph function f is a function from graphs to the real numbers with the properties that $f(G \times H)=f(G) f(H)$ and if $G \subset H$ then $f(G) \leq f(H)$. Are all increasing multiplicative functions generated by functions of the type h_{H} ? Hsu answers this negatively for both the categorical product [16] and the
strong product [17]. It still leaves unanswered the question of characterizing such functions.

The parameters that we chose to consider reflect the content of these questions: that is, those involving notions of independence, domination and coloring.

Most of our results apply to just one product-parameter pair. However, some are tied to the product order and apply to many pairs. These are to be found in Section 2.2. The other results are to be found in Section 2.3. We were not able to settle all the cases. Some conjectures are to be found in Section 2.4. In some cases, better results can be found by using a mix of parameters, these are given in Section 3.

1.1. Terminology

Let $G=(V(G), E(G))$ be a graph. We will always assume that graphs are finite, simple and have at least two vertices. The latter assumption is made so as to avoid listing many exceptions in our results. We write, $a \simeq b$ if a is either equal or adjacent to $b, a \sim b$ if a is adjacent to but not equal to b, and $a \perp b$ if a is neither adjacent nor equal to b. Edges we denote by ordered pairs of vertices, e.g. $(a, b) \in E(G)$; we use $a x$ to denote a vertex in the product $G \otimes H$ where $a \in V(G)$ and $x \in V(H)$.

Let $S \subset V(G)$ and $v \in V(G) .\langle S\rangle$ is the induced subgraph on the vertices of S. The neighborhood of $v \in V(G)$ is $N(v)=\{y \mid y \sim v\}$ and $N(S)=$ $\cup_{v \in S} N(v) ; N[v]=N(v) \cup\{v\}$ is the closed neighborhood of v and $N[S]=$ $\cup_{v \in S} N[v] ; I(S, v)=N[v]-N[S-\{v\}]$ is the private neighborhood of v (with respect to S). The set S is called: independent if $\langle S\rangle$ contains no edges; dominating if $N[S]=V(G)$; and irredundant if $I(S, v) \neq \emptyset$ for each $v \in S$. If $N(S)=V(G)$ then S is a total-dominating set. Note that only graphs without isolated vertices have total-dominating sets.

The minimum (maximum) cardinality of a minimal dominating set is denoted by $\gamma(G)(\Gamma(G))$, and, if G has no isolated vertices, the minimum (maximum) cardinality of a minimal total-dominating set by $\gamma_{t}(G)\left(\Gamma_{t}(G)\right)$. Note that a minimal dominating set is also irredundant.

The maximum cardinality of an independent set is denoted by $\beta(G)$, and $i(G)$ denotes the minimum cardinality of an independent, dominating set; $\operatorname{IR}(G)$ is used to denote the maximum cardinality of an irredundant set and $\operatorname{ir}(G)$ the minimum cardinality of a maximal irredundant set.
A set $S \subset V(G)$ is a two-packing if $N[x] \cap N[y]=\emptyset$ for every pair $x, y \in S, x \neq y$. The maximum number of vertices in a two-packing is denoted by $P_{2}(G)$. 2-packings correspond to independent sets in the square
of G : that is, the graph on $V(G)$ but where a is adjacent to b just if they are at distance 1 or 2 in G. Therefore the results for 2-packings can be obtained from the results concerning independence. However, this parameter is useful in obtaining lower bounds in Section 3.

The following inequalities are easy consequences of the preceding definitions (see [5]).

Lemma 1.1. For any graph G, $\operatorname{ir}(G) \leq \gamma(G) \leq i(G) \leq \beta(G) \leq \Gamma(G) \leq$ $\operatorname{IR}(G)$. If G contains no isolated vertex, then $\gamma(G) \leq \gamma_{t}(G) \leq 2 \gamma(G)$.
The vertices of a graph can be decomposed into subsets with specified properties. An independence partition of G is a partition of $V(G)$ into nonempty, independent subsets where the union of any two subsets is not independent. The chromatic number is the fewest number of subsets in an independence partition and is denoted by $\chi(G)$. The achromatic number $\psi(G)$ is the greatest number of subsets in an independence partition.

A domination decomposition of G is a partition of $V(G)$ into subsets each of which is dominating where none of these subsets can be further partitioned into two dominating subsets. The domatic number, $d(G)$, is the largest number of dominating sets in a domination decomposition of G; and the smallest number is the adomatic number, denoted by $\operatorname{ad}(G)$. For any other notation, please see [1].

2. Product Results

2.1. Partial Product Results

In this section we consider what properties are required of a product to allow the cartesian product of independent (dominating, etc) sets in the factors to be independent (dominating, etc) in the product graph.

We call a graph product, \otimes, independent (dominating, total-dominating, irredundant, two-packing) multiplicative if for any two graphs G and H and any two independent (dominating, total-dominating, irredundant, twopacking) sets $A \subset V(G)$ and $B \subset V(H)$, the set $A \times B$ is an independent (dominating, total-dominating, irredundant, two-packing) subset of $G \otimes H$. The graph product is color (domatic) multiplicative if for any two graphs G and $H,\left\{A_{i} \times B_{j}: i=1, \ldots, p ; j=1 \ldots, q\right\}$ is an independence partition (domination decomposition) of $G \otimes H$ whenever $\left\{A_{i}\right\}_{i=1}^{p}$ and $\left\{B_{j}\right\}_{j=1}^{q}$ are independence partitions (domination decompositions) of G and H, respectively.

Lemma 2.1. Let \otimes be a graph product.

1. If $\otimes \leq \boxtimes^{c}$, then \otimes is independent multiplicative.
2. If $\otimes \leq \boxtimes$, then \otimes is irredundant and two-packing multiplicative.
3. If $\times \leq \otimes$, then \otimes is total-dominating multiplicative.
4. If $\boxtimes \leq \otimes$, then \otimes is dominating multiplicative.
5. If $\boxtimes \leq \otimes \leq \otimes^{c}$, then \otimes is color multiplicative.

Proof. 1. Let G and H be graphs and suppose that $a \perp b$ in G and $x \perp y$ in H. Suppose that $\otimes \leq \otimes^{c}$. Then, it follows that in $G \otimes H$ the vertices $a x, a y, b x$ and $b y$ are mutually nonadjacent. Therefore, the product of two independent sets is independent in $G \otimes H$.
2. Let A and B be irredundant sets of graphs G and H respectively. Suppose that $\otimes \leq \boxtimes$. Let $a \in A$ and $x \in B$. In each case $I(A, a) \neq \phi$ and $I(B, x) \neq \phi$.

If $a \in I(A, a)$ and $x \in I(B, x)$ then $a x \in I(A \times B, a x)$.
Suppose that $x \in I(B, x)$ and that $a \notin I(A, a)$ then there exists $b \neq a$, $b \in I(A, a)$. In the edge matrix of \otimes if $(\mathrm{E}, \Delta)=\mathrm{E}$, then $b x \in I(A \times B, a x)$. If $(\mathrm{E}, \Delta)=\mathrm{N}$, then $a x \in I(A \times B, a x)$. The case where $x \notin I(B, x)$ and $a \in I(A, a)$ is similar.

Lastly, suppose that $x \notin I(B, x)$ and $a \notin I(A, a)$ then there exist $b \in$ $I(A, a)$ and $y \in I(B, x)$, where $a \neq b$ and $x \neq y$. If, in the edge matrix of $\otimes,(\mathrm{E}, \mathrm{E})=\mathrm{E}$, then $b y \in I(A \times B, a x)$. If $(\mathrm{E}, \mathrm{E})=\mathrm{N}$ and $(\Delta, \mathrm{E})=\mathrm{E}$ then $a y \in I(A \times B, a x)$ and if $(\mathrm{E}, \Delta)=\mathrm{E}$ then $b x \in I(A \times B, a x)$. If (Δ, E) $=(\mathrm{E}, \Delta)=\mathrm{N}$ then there are no edges in the product graph and trivially $a x \in I(A \times B, a x)$.

Let A and B be 2-packings of $V(G)$ and $V(H)$ respectively. Since $G \otimes H$ is a spanning subgraph of $G \boxtimes H$, the distance from vertex $a x$ to by is at least $\max \left\{\operatorname{dist}_{G}(a, b), \operatorname{dist}_{H}(x, y)\right\}$ and so $A \times B$ is a 2-packing of $G \otimes H$.
3. Let A and B be total-dominating sets of graphs G and H respectively and suppose that $\times \leq \otimes$. Let $a \in V(G)$ and $x \in V(H)$. There exist $b \in A$, $b \sim a$ and $y \in B, y \sim x$. In $G \otimes H$, it follows that $b y \sim a x$ and so $A \times B$ is a total-dominating set in $G \otimes H$.
4. Let A and B be dominating sets of graphs G and H respectively. Let $a \in V(G)$ and $x \in V(H)$. There exist $b \in A$ and $y \in B$ with $b \simeq a$ and $y \simeq x$. Then, since $\boxtimes \leq \otimes, a x \simeq b y$ and therefore $A \times B$ is a dominating set of $G \otimes H$.
5. Let $\left\{A_{i}\right\}_{i=1}^{p}$ and $\left\{B_{j}\right\}_{j=1}^{q}$ be independence partitions of the graphs G and H respectively. Color classes are independent sets and so $\otimes \leq \otimes \leq \otimes^{c}$ implies (from 1) that each $A_{i} \times B_{j}$ is an independent set of $G \otimes H$. For any
two distinct sets $A_{i} \times B_{j}$ and $A_{r} \times B_{s}$ there are vertices $a \in A_{i}, b \in A_{r}, x \in B_{j}$ and $y \in B_{s}$ (else the partitions would not be independence partitions) where $a \simeq b$ and $x \simeq y$. Then $a x \sim b y$ and consequently $\left\{A_{i} \times B_{j}: i=1, \ldots, p ;\right.$ $j=1, \ldots, q\}$ is an independence partition.

An immediate consequence of this lemma is.
Corollary 2.2. Let G and H be finite graphs.

1. If $\otimes \leq \otimes^{c}$, then $\beta(G) \beta(H) \leq \beta(G \otimes H)$; if also $\boxtimes \leq \otimes$, then $i(G \otimes H) \leq$ $i(G) i(H)$.
2. If $\boxtimes \leq \otimes$, then $\gamma(G \otimes H) \leq \gamma(G) \gamma(H)$; if also $\otimes \leq \boxtimes$, then $\Gamma(G \otimes H) \geq$ $\Gamma(G) \Gamma(H)$.
3. If $\otimes \leq \otimes$, then $I R(G) I R(H) \leq I R(G \otimes H)$.
4. If $\times \leq \otimes$, then $\gamma_{t}(G \otimes H) \leq \gamma_{t}(G) \gamma_{t}(H)$.
5. If $\otimes \leq \mathbb{}^{c}$, then $\chi(G \otimes H) \leq \chi(G) \chi(H)$; if also $\boxtimes \leq \otimes$, then $\psi(G) \psi(H) \leq \psi(G \otimes H)$.
6. If $\boxtimes \leq \otimes$, then $d(G \otimes H) \geq d(G) d(H)$.

The following products are helpful when considering the projections of sets down to one or both of the factors.

$$
Y=\left(\begin{array}{ccc}
E & E & E \\
E & \Delta & E \\
N & N & N
\end{array}\right) ; Z=\left(\begin{array}{ccc}
E & E & E \\
N & \Delta & N \\
N & N & N
\end{array}\right)
$$

The proofs of the first two of the following lemmas are straightforward so we omit them.

Lemma 2.3. Let D be a dominating set of $G \otimes H$.

1. If $\otimes \leq \times^{c}$, then either $\prod_{G}(D)$ is a dominating set of G or $\prod_{H}(D)$ is a dominating set of H.
2. If $\otimes \leq \times^{c}$, then $d(G \otimes H) \leq|V(G) \times V(H)| / \min \{\gamma(G), \gamma(H)\}$.
3. If $\otimes \leq Y$, then $\prod_{G}(D)$ is a dominating set of G.

Lemma 2.4. Let I be an independent set of $G \otimes H$. If $Z \leq \otimes$, then $\prod_{G}(I)$ is an independent set of G.

The next result is an extension of Corollary 2.2.(4).
Lemma 2.5. If $\bullet \leq \otimes$, then $\gamma_{t}(G \otimes H) \leq \gamma_{t}(G)$. If $\otimes^{c} \leq \otimes$ then $\gamma(G \otimes H) \leq$ $\min \left\{\gamma_{t}(G), \gamma_{t}(H)\right\}$.

Proof. Suppose that $\bullet \leq \otimes$. If A is any total-dominating set of G and $x \in V(H)$ is fixed, then $\{a x \mid a \in A\}$ is a total-dominating set of $G \otimes H$. The second part follows since the lexicographic and the product whose edge matrix is the transpose of the lexicographic edge matrix are both less than \boxtimes^{c}.

2.2. Parameters which Respect the Product Order

Some of the parameters behave nicely with respect to the inclusion order of the products. The next lemma extends part of Corollary 2.2.

Lemma 2.6. For a graph G, let $p(G)$ be one of $\beta(G), \gamma(G), \gamma_{t}(G)$ and $q(G)$ one of $\chi(G), d(G)$. Let \oplus, \otimes be two products such that $\oplus \leq \otimes$. Then, for every pair of graphs G and $H, p(G \oplus H) \geq p(G \otimes H)$ and $q(G \oplus H) \leq$ $q(G \otimes H)$.

Proof. Let G and H be an arbitrary pair of graphs. An independent set in $G \otimes H$ is also independent set in $G \oplus H$. Therefore, $\beta(G \oplus H) \geq \beta(G \otimes H)$. In addition, any coloring of $G \otimes H$ is also a partition of $V(G \oplus H)$ into independent sets so that $\chi(G \oplus H) \leq \chi(G \otimes H)$.
A dominating (total-dominating) set of $G \oplus H$ is also a dominating (totaldominating) set of $G \otimes H$. Therefore, $\gamma(G \oplus H) \geq \gamma(G \otimes H), \gamma_{t}(G \oplus H) \geq$ $\gamma_{t}(G \otimes H)$. Also any domination decomposition of $G \oplus H$ is a partition of $V(G \otimes H)$ into dominating sets and so $d(G \otimes H) \geq d(G \oplus H)$.

As the next corollary shows, this result allows us to search just for extremal cases (with respect to the product ordering).

Corollary 2.7. For a graph G, let $p(G)$ be one of $\beta(G), \gamma(G), \gamma_{t}(G)$ and $q(G)$ one of $\chi(G), d(G)$. Let \oplus, \otimes be two products such that $\oplus \leq \otimes$. Then,

1. If for every pair of graphs G and $H, p(G \oplus H) \leq p(G) p(H)$, then $p(G \otimes H) \leq p(G) p(H) ;$ and if $q(G \oplus H) \geq q(G) q(H)$, then $q(G \otimes H) \geq$ $q(G) q(H)$.
2. If for every pair of graphs G and $H, p(G \otimes H) \geq p(G) p(H)$, then $p(G \oplus H) \geq p(G) p(H) ;$ and if $q(G \otimes H) \leq q(G) q(H)$, then $q(G \oplus H) \leq$ $q(G) q(H)$.
3. If for some pair G and $H, p(G \oplus H)<p(G) p(H)$, then $p(G \otimes H) \nsupseteq$ $p(G) p(H)$; and if $q(G \oplus H)>q(G) q(H)$, then $q(G \otimes H) \not \leq q(G) q(H)$.
4. If for some pair G and $H, p(G \otimes H)>p(G) p(H)$, then $p(G \oplus H) \not 又$ $p(G) p(H)$; and if $q(G \otimes H)<q(G) q(H)$, then $q(G \oplus H) \nsupseteq q(G) q(H)$.

In the following table, the columns are labelled by the products and the rows are labelled by the inequalities. Here, $p \geq p^{2}$ is shorthand for: for all graphs G and $H, p(G \otimes H) \geq p(G) p(H)$. A ' + ' entry indicates that the inequality listed for that row and column is true for all pairs of graphs. A '-' entry indicates that there is a pair of graphs for which the inequality is false. From Corollary 2.7, it follows that to prove the correctness of the entries, it suffices to exhibit proofs or counterexamples for the extremal products. The requisite counterexamples immediately follow the table. A '!' indicates an extremal product, where '! x ' ('x!') denotes that every product above (below) this product in inclusion order has the same entry ' x '. A '?' indicates we do not know the status of the problem (see Section 2.4).

All the ' + ' entries follow directly from Corollaries 2.2 and 2.7 , except for the lexicographic and disjunctive products with respect to $\beta \leq \beta^{2}$. The proof of these entries is given in Lemmas 2.8 and 2.9 immediately after the counterexamples. Some stronger results are known. These are given in Section 3.

Table 1

$\otimes=$	\times	\square	\boxtimes	\bullet	∇	Θ	\boxtimes^{c}	\square^{c}	\times^{c}
1. $\beta \geq \beta^{2}$	+	+	+	+	+	$!-$	$+!$	-	$!-$
2. $\beta \leq \beta^{2}$	-	-	-	$!+$	$-!$	$-!$	+	+	+
3. $\chi \geq \chi^{2}$	-	-	-	-	-	$-!$	$-!$	$?$	$?$
4. $\chi \leq \chi^{2}$	+	+	+	+	+	$!-$	$+!$	-	$!-$
5. $\gamma \geq \gamma^{2}$	$!-$	$?^{1}$	-	-	$!-$	-	-	-	-
6. $\gamma \leq \gamma^{2}$	$-!$	-	$!+$	+	$-!$	+	+	+	+
7. $\gamma_{t} \geq \gamma_{t}^{2}$	$!-$	$!-$	-	-	-	-	-	-	-
8. $\gamma_{t} \leq \gamma_{t}^{2}$	$!+$	-	+	+	$-!$	+	+	+	+
9. $d \geq d^{2}$	$-!$	-	$!+$	+	$-!$	+	+	+	+
10. $d \leq d^{2}$	$!-$	$!-$	-	-	-	-	-	-	-

The graphs G_{1} and G_{2} can be found in Figure 3. The counterexamples are:

1. $\beta\left(P_{3} \cong P_{3}\right)=3<2 \times 2$;
$\beta\left(P_{3} \times{ }^{c} P_{3}\right)=2<2 \times 2$.
2. $\beta\left(C_{5} \cong C_{5}\right)=5>2 \times 2$;
$\beta\left(P_{3} \nabla P_{3}\right)=5>2 \times 2$.
3. $\chi\left(C_{7} \boxtimes^{c} C_{5}\right) \leq 8<3 \times 3$;
$\chi\left(C_{5} \cong C_{5}\right)=5<3 \times 3$.
4. $\chi\left(P_{4} \cong P_{4}\right) \geq 5>2 \times 2$;
$\chi\left(P_{3} \times{ }^{c} P_{3}\right)=7>2 \times 2$.
5. $\gamma\left(G_{1} \times G_{1}\right)=3<2 \times 2$;
$\gamma\left(G_{2} \nabla C_{4}\right)=2<2 \times 2$.
6. $\gamma\left(P_{3} \times P_{3}\right)=3>1 \times 1$;
$\gamma\left(K_{n} \nabla K_{n}\right)=n>1 \times 1$.
7. $\gamma_{t}\left(K_{3} \times K_{3}\right)=3<2 \times 2$;
$\gamma_{t}\left(P_{3} \square P_{3}\right)=3<2 \times 2$.
8. $\gamma_{t}\left(K_{n} \nabla K_{n}\right)=n>2 \times 2(n>4)$.
9. $d\left(P_{3} \times P_{3}\right)=2<2 \times 2 ; \quad d\left(K_{n} \nabla K_{n}\right)=n<n \times n$.
10. $d\left(C_{5} \times C_{5}\right)=5>2 \times 2$;
$d\left(C_{5} \square C_{5}\right)=5>2 \times 2$ 。

Figure 3. Some Counterexample Graphs.

Part of the next result, $\beta(G \bullet H)=\beta(G) \beta(H)$, can also be found in [7], see also [14].

Lemma 2.8. For all graphs G and $H, i(G \bullet H)=i(G) i(H)$ and $\beta(G \bullet H)=$ $\beta(G) \beta(H)$.

Proof. From Corollary $2.2(1)$ we have $\beta(G) \beta(H) \leq \beta(G \bullet H) ; i(G \bullet H) \leq$ $i(G) i(H)$.

Let I be a maximal independent set of $G \bullet H$. Then, by Lemmas 2.4 and $2.3(3), \prod_{G}(I)$ is a maximal independent set of G. Also, for any $a \in \prod_{G}(I)$, $I \cap(\{a\} \times H)$ is a maximal independent set of $\{a\} \times H$ and so the result follows.

The second part of the next result is also to be found in [14].
Lemma 2.9. For all graphs G and $H, i\left(G \boxtimes^{c} H\right)=i(G) i(H)$ and $\beta\left(G \boxtimes^{c} H\right)$ $=\beta(G) \beta(H)$.

Proof. Let I be an independent set of $G \boxtimes^{c} H$. By Lemma 2.4, $\prod_{G}(I)$ and $\prod_{H}(I)$ are independent. By Lemma 2.1, the product of two independent sets is an independent set of $G \boxtimes^{c} H$. Hence, $\beta\left(G \boxtimes^{c} H\right)=\beta(G) \beta(H)$ and $i\left(G \boxtimes^{c} H\right)=i(G) i(H)$.

2.3. Other Parameters

As in Table 1, a '-' entry means that there is a counterexample which is given immediately after the table. A ' + ' indicates that the inequality is true and the associated number is the number of the result that gives the proof; (3T) refers to the table in Section 3 where a construction is indicated; otherwise the number of the appropriate Theorem, Lemma or Corollary is given. A '?' indicates that we know of no proof nor of a counterexample.

Table 2

The graphs $G_{1}, G_{2}, G_{3}, G_{4}, G_{5}$ and G_{6} are to be found in Figure 3.

1. $\operatorname{ir}\left(G_{1} \times G_{1}\right) \leq 3<2 \times 2 ; \quad \operatorname{ir}\left(C_{4} \boxtimes C_{4}\right)=3<2 \times 2$;
$i r\left(C_{4} \bullet C_{4}\right)=2<2 \times 2 ; \quad \quad \operatorname{ir}\left(C_{4} \nabla C_{4}\right)=2<2 \times 2 ;$
$\operatorname{ir}\left(P_{n} \cong P_{n}\right) \leq 4 n-3<n^{2} / 9,(n$ large $) ;$
$i r\left(C_{4} \square{ }^{c} C_{4}\right)=2<2 \times 2 ;$
$i r\left(C_{4} \boxtimes^{c} C_{4}\right)=2<2 \times 2 ;$
$i r\left(C_{4} \times{ }^{c} C_{4}\right)=2<2 \times 2$.
2. $\quad i r\left(K_{3} \times K_{3}\right)=3>1 \times 1 ; \quad i r\left(K_{3} \square K_{3}\right)=3>1 \times 1 ;$
$i r\left(G_{3} \boxtimes P_{3}\right)=3>2 \times 1 ; \quad i r\left(G_{3} \bullet P_{3}\right)=3>2 \times 1 ;$
$i r\left(P_{3} \nabla P_{3}\right)=2>1 \times 1$.
3. $\quad i\left(G_{6} \square \overline{G_{6}}\right)=15<8 \times 2 ; \quad i\left(G_{4} \boxtimes C_{5}\right)=5<3 \times 2$;
$i\left(C_{5} \nabla G_{2}\right)=3<2 \times 2 ; \quad i\left(\bar{K}_{2} \cong \bar{K}_{2}\right)=2<2 \times 2$;
$i\left(\bar{K}_{2} \square{ }^{c} \bar{K}_{2}\right)=2<2 \times 2 ; \quad i\left(C_{4} \times{ }^{c} C_{4}\right)=2<2 \times 2$.
4. $\quad i\left(P_{3} \times P_{3}\right)=3>1 \times 1 ; \quad i\left(P_{3} \square K_{2}\right)=2>1 \times 1$;
$i\left(P_{3} \nabla P_{3}\right)=4>1 \times 1 ; \quad i\left(K_{2,5} \cong K_{2,5}\right) \geq 5>2 \times 2$.
5. $\quad \Gamma\left(G_{2} \bullet P_{3}\right)=4<3 \times 2 ; \quad \Gamma\left(G_{5} \nabla G_{5}\right)<3 \times 3$;
$\Gamma\left(P_{3} \cong P_{4}\right)=3<2 \times 2 ; \quad \Gamma\left(G_{5} \otimes^{c} P_{3}\right)=4<3 \times 2$.
6. $\quad \Gamma\left(K_{n} \times K_{2}\right)=n>1 \times 1, n>1$;
$\Gamma\left(K_{n} \square K_{2}\right)=n>1 \times 1, n>1 ;$
$\Gamma\left(C_{5} \boxtimes C_{5}\right)=5>2 \times 2 ;$
$\Gamma\left(K_{n} \nabla K_{2}\right)=n>1 \times 1, n>1 ;$
$\Gamma\left(P_{4} \fallingdotseq P_{4}\right) \geq 5>2 \times 2$.
7. $\quad I R\left(G_{5} \bullet P_{3}\right)=4<3 \times 2 ; \quad I R\left(G_{5} \nabla G_{5}\right)<3 \times 3$;
$I R\left(P_{3} \fallingdotseq P_{3}\right)=3<2 \times 2 ; \quad \operatorname{IR}\left(G_{5} \boxtimes^{c} P_{3}\right)=4<3 \times 2 ;$
$I R\left(C_{4} \square{ }^{c} C_{4}\right)=2<2 \times 2 ; \quad I R\left(P_{3} \times{ }^{c} P_{3}\right)=2<2 \times 2$.
8. $\quad I R\left(K_{2} \times K_{2}\right)=2>1 \times 1 ; \quad I R\left(K_{2} \square K_{2}\right)=2>1 \times 1$;
$I R\left(C_{5} \boxtimes C_{5}\right)=5>2 \times 2 ; \quad I R\left(P_{3} \nabla P_{3}\right)=5>2 \times 2 ;$
$I R\left(C_{5} \fallingdotseq C_{5}\right)=5>2 \times 2$.
9. $\quad \psi\left(K_{2} \times K_{2}\right)=2<2 \times 2 ; \quad \psi\left(K_{2} \square K_{2}\right)=2<2 \times 2 ;$
$\psi\left(K_{2} \nabla K_{2}\right)=2<2 \times 2$.
10. $\quad \psi\left(P_{7} \times P_{6}\right) \geq 10>3 \times 3 ; \quad \psi\left(P_{7} \square P_{3}\right) \geq 7>3 \times 2$;
$\psi\left(P_{3} \boxtimes P_{3}\right) \geq 6>2 \times 2 ; \quad \psi\left(P_{3} \bullet P_{5}\right) \geq 7>2 \times 3 ;$
$\psi\left(P_{3} \cong P_{3}\right) \geq 5>2 \times 2 ; \quad \psi\left(P_{3} \square{ }^{c} P_{3}\right) \geq 5>2 \times 2 ;$
$\psi\left(P_{3} \times{ }^{c} P_{3}\right) \geq 7>2 \times 2$.

$$
\begin{array}{lll}
\text { 11. } & a d\left(K_{2} \times P_{3}\right)=2<2 \times 2 ; & a d\left(K_{2} \square P_{3}\right)=2<2 \times 2 ; \\
& a d\left(K_{2} \boxtimes P_{3}\right)=2<2 \times 2 ; & a d\left(K_{2} \bullet P_{3}\right)=3<2 \times 2 ; \\
& a d\left(K_{2} \nabla P_{3}\right)=2<2 \times 2 ; & a d\left(K_{2} \circledast P_{3}\right)=2<2 \times 2 ; \\
& a d\left(K_{2} \boxtimes^{c} P_{3}\right)=3<2 \times 2 ; & a d\left(K_{2} \square^{c} P_{3}\right)=3<2 \times 2 \\
\text { 12. } & a d\left(\bar{K}_{2} \circledast \bar{K}_{2}\right)=2>1 \times 1 ; & a d\left(\bar{K}_{2}{ }^{c} \bar{K}_{2}\right)=2>1 \times 1 ; \\
& a d\left(G_{2} \times{ }^{c} G_{2}\right)=2>1 \times 1 . &
\end{array}
$$

Lemma 2.10. For all graphs G and $H, \Gamma(G \bullet H) \leq \Gamma(G) \Gamma(H)$.
Proof. Let D be an irredundant dominating set of maximum cardinality for $G \bullet H$. For $F \subset G \bullet H$, let $\prod_{G}(F)=S_{F} \cup C_{F}=X_{F}$ where S_{F} is the set of isolated vertices and C_{F} the union of the connected components in $\left\langle X_{F}\right\rangle$.

Suppose $\Gamma(H)=1$ then $H \cong K_{n}$ for some n. Since D is irredundant, we have for each $a \in V(G),|(\{a\} \times V(H)) \cap D| \leq 1$. Also $\prod_{G}(D)$ dominates $G($ Lemma $2.3(3))$ and is irredundant (since D is). Therefore $\Gamma(G \bullet H)=$ $|D|=\left|\prod_{G}(D)\right| \leq \Gamma(G)=\Gamma(G) \Gamma(H)$.

We may assume, therefore, that $\Gamma(H)>1$. Choose D to be an irredundant dominating set of maximum cardinality for $G \bullet H$ which has the additional property that $\left|S_{D}\right|$ is maximum.

Suppose $a \in X_{D}$ and $a x, a y \in D$. Then, all their respective private neighbors must lie in $\{a\} \times H$ since they are adjacent to the same vertices of $(G-a) \bullet H$: In particular, this implies that $a \in S_{D}$. Also, if $a \in C_{D}$ then it has exactly one pre-image and we denote this vertex by $a x_{a}$. Moreover, if $a \in C_{D}$ then $a x_{a}$ has no private neighbor in $\{a\} \times H$.

Now, C_{D} can be partitioned into two subsets, $C_{D}=C_{D}^{1} \cup C_{D}^{2}$. Specifically, $a \in C_{D}^{1}$ if $a x_{a}$ has a private neighbor of the form $b y, b \notin X_{D}$; and $a \in C_{D}^{2}$ if all the private neighbors of $a x_{a}$ are of the form $b y, b \in X_{D}$.

We claim that $C_{D}^{2}=\emptyset$. Suppose to the contrary that there exists $a \in C_{D}^{2}$. Let $Y=\left\{b y \mid b y \in I\left(D, a x_{a}\right)\right\}, Y_{G}=\prod_{G}(Y)$ and let Z be a maximum irredundant dominating set of H. Put $E=\left(D-\left(Y \cup\left\{a x_{a}\right\}\right)\right) \cup\left(Y_{G} \times Z\right)$. Note that for any $b \in Y_{G}, a x_{a}$ has a private neighbor in $\{b\} \times H$ and so b is isolated in X_{E}, that is, $S_{E}=S_{D} \cup Y_{G}$. Any vertex of $G \bullet H$ which is dominated by only vertices $a x_{a}$ or vertices of Y and no other vertices of D, are in either $\{a\} \times H$ or $\{b\} \times H, b \in Y_{G}$. These vertices are dominated by $Y_{G} \times Z$ and the other vertices of $G \bullet H$ are dominated by $D-\left(Y \cup\left\{a x_{a}\right\}\right)$, and so E is a dominating set of $G \bullet H$. The vertices of $D-\left(Y \cup\left\{a x_{a}\right\}\right)$ have the same private neighbors with respect to E as with respect to D. If $b y \in Y_{G} \times Z$ then y has a private neighbor, say z, in $V(H)$ and so $b z \in I(E, b x)$. Hence E is an
irredundant set. Now $|E|=|D|-\left(\left|Y_{G}\right|+1\right)+\left|Y_{G}\right| \Gamma(H)$ and since $\Gamma(H)>1$, then $|E| \geq|D|$, which contradicts the choice of D. Therefore, $C_{D}^{2}=\emptyset$.

Hence, $X_{D}=S_{D} \cup C_{D}^{1}$. By Lemma 2.3(3), X_{D} is a dominating set of G. By the definition of C_{D}^{1}, X_{D} is irredundant so that $\left|X_{D}\right| \leq \Gamma(G)$. Let $\left|S_{D}\right|=$ s and $\left|C_{D}^{1}\right|=c$. Then, $|D| \leq s \Gamma(H)+c \leq(s+c) \Gamma(H) \leq \Gamma(G) \Gamma(H)$.

Corollary 2.11. For all graphs G and $H, \operatorname{IR}(G \bullet H) \leq I R(G) I R(H)$.
Proof. Let D be a maximum-sized irredundant set for $G \bullet H$.
Suppose $I R(H)=1$ then $H \cong K_{n}$ for some n. Hence, for each $a \in V(G)$, $|(\{a\} \times V(H)) \cap D| \leq 1$, since D is irredundant. Also $\prod_{G}(D)$ is irredundant (since D is). Therefore $I R(G \bullet H)=|D|=\left|\prod_{G}(D)\right| \leq I R(G)=I R(G) I R(H)$.

In the proof of Lemma 2.10, note that if D is a maximum-sized irredundant set such that $\left|S_{D}\right|$ is maximized then it still follows (where Z is now a maximum-sized irredundant set of H) that $X_{D}=S_{D} \cup C_{D}^{1}$ and that X_{D} is an irredundant set for G. Hence, $|D| \leq\left|S_{D}\right| I R(H)+\left|C_{D}^{1}\right| \leq$ $\left(\left|S_{D}\right|+\left|C_{D}^{1}\right|\right) I R(H) \leq I R(G) I R(H)$.

Lemma 2.12. For all graphs G and $H, \Gamma\left(G \boxtimes^{c} H\right) \leq \Gamma(G) \Gamma(H)$.
Proof. Let D be an irredundant dominating set of $G \boxtimes^{c} H$ with $|D|=$ $\Gamma\left(G \boxtimes^{c} H\right)$. From Lemma 2.3, we have that $\prod_{G}(D)$ is a dominating set of G or else $\prod_{H}(D)$ is a dominating set of H.

Suppose that $\prod_{G}(D)$ is a total-dominating set of G. Let E be a minimal total-dominating set of G contained in $\prod_{G}(D)$. For each $a \in E$ choose one pre-image $a x_{a} \in D$ and put $F=\left\{a x_{a} \mid a \in E\right\}$. Let by $\in V\left(G \boxtimes^{c} H\right)$, then there is some $a \in E$ such that $b \sim a$ and $b y \sim a x_{a}$. Since $F \subset D, F$ is irredundant and since it is dominating, $F=D$ and $\Gamma\left(G \boxtimes^{c} H\right)=|F| \leq$ $\Gamma_{t}(G) \leq 2 \Gamma(G)$. Similarly, if $\prod_{G}(H)$ is a total-dominating set of H then $\Gamma\left(G \otimes^{c} H\right) \leq 2 \Gamma(H)$.

Suppose that $\Gamma(G)=\Gamma(H)=1$ then both graphs are isomorphic to complete graphs and hence, so is $G \boxtimes^{c} H$. In this case $\Gamma\left(G \boxtimes^{c} H\right)=1$.

Suppose that $\Gamma(G)=1$ (i.e $G \cong K_{n}$) and $\Gamma(H)>1$. Now, if $\left|\prod_{G}(D)\right|>1$ then $\prod_{G}(D)$ is a total-dominating set and $\Gamma\left(G \boxtimes^{c} H\right) \leq 2 \leq \Gamma(G) \Gamma(H)$. If $\prod_{G}(D)=\{a\}$ then $D=\{a\} \times E$ where E is an irredundant dominating set of H and again we have $\Gamma\left(G \boxtimes^{c} H\right) \leq \Gamma(G) \Gamma(H)$. (By the commutativity of the product, we do not have to consider $\Gamma(H)=1$ and $\Gamma(G)>1$.)

We may suppose, therefore, that both $\Gamma(G)$ and $\Gamma(H)$ are at least two. Suppose that $\prod_{G}(D)$ is not a dominating set of G. Then there exists $a \in$ $V(G)-N\left[\prod_{G}(D)\right]$. Since D dominates $\{a\} \times H$, for every vertex $a x \in\{a\} \times H$ there is a vertex by $\in D$ where $b y \sim a x$. But, since $b \perp a$ it follows that
$y \sim x$: that is, $\Pi_{H}(D)$ contains a total dominating set of H. Therefore, in this case, $\Gamma\left(G \boxtimes^{c} H\right) \leq 2 \Gamma(H) \leq \Gamma(G) \Gamma(H)$.

Finally, therefore, we may assume that both $\prod_{G}(D)$ and $\prod_{H}(D)$ are dominating but not total-dominating sets in their respective graphs. Let $E(F)$ be an irredundant dominating set of $G(H)$ contained in $\prod_{G}(D)\left(\prod_{H}(D)\right)$. Let $E=C_{G} \cup S_{G}$ and $F=C_{H} \cup S_{H}$ where S_{G} is the set of isolated vertices and C_{G} is the union of the connected components in $\langle E\rangle$ and C_{H}, S_{H} are defined similarly for F. Let W be a set formed by taking one pre-image (not necessarily distinct) for each vertex of $C_{G} \cup C_{H}$. Now W dominates every vertex of $\left(N\left[C_{G}\right] \times H\right) \cup\left(G \times N\left[C_{H}\right]\right)$ so that no other vertex of D can have a vertex of $\left(N\left[C_{G}\right] \times H\right) \cup\left(G \times N\left[C_{H}\right]\right)$ as its private neighbor.

Let X be a set formed by taking one pre-image (not necessarily distinct) for each vertex of $S_{G} \cup S_{H}$. Now X dominates every vertex of $\left(N\left(S_{G}\right) \times H\right) \cup$ $\left(G \times N\left(S_{H}\right)\right)$ so that no other vertex of D can have a vertex of $\left(N\left(S_{G}\right) \times H\right) \cup$ $\left(G \times N\left(S_{H}\right)\right)$ as its private neighbor. Therefore, only vertices of $S_{G} \times S_{H}$ are available as private neighbors. Consequently, since $\left|C_{G}\right|+\left|S_{G}\right| \leq \Gamma(G)$ and $\left|C_{H}\right|+\left|S_{H}\right| \leq \Gamma(H)$, we have that

$$
\begin{aligned}
\Gamma\left(G \boxtimes^{c} H\right)= & |D| \leq\left|C_{G}\right|+\left|C_{H}\right|+\Gamma(G)-\left|C_{G}\right|+\Gamma(H)-\left|C_{H}\right| \\
& +\left(\Gamma(G)-\left|C_{G}\right|\right)\left(\Gamma(H)-\left|C_{H}\right|\right) \\
= & \Gamma(G)+\Gamma(H)+\left(\Gamma(G)-\left|C_{G}\right|\right)\left(\Gamma(H)-\left|C_{H}\right|\right) \\
\leq & \Gamma(G) \Gamma(H) .
\end{aligned}
$$

The last inequality follows since all of $\left|C_{G}\right|,\left|C_{H}\right|, \Gamma(G)$ and $\Gamma(H)$ are at least 2 .

2.4. Conjectures

In addition to Vizing's conjecture, we believe the following statements to be true but we were not able to find proofs. For all graphs G and H

1. $i r(G \square H) \geq \operatorname{ir}(G) i r(H)$.
2. $i(G \times H) \geq i(G) i(H)$.
3. $\gamma(G \square H) \geq \gamma(G) \gamma(H)$ - Vizing's conjecture.
4. $\Gamma(G \times H) \geq \Gamma(G) \Gamma(H) ; \quad \Gamma(G \square H) \geq \Gamma(G) \Gamma(H)$.
5. $\operatorname{IR}\left(G \boxtimes^{c} H\right) \leq I R(G) I R(H) ; \quad \operatorname{IR}\left(G \times^{c} H\right) \leq I R(G) I R(H)$.
6. $\chi\left(G \square^{c} H\right) \geq \chi(G) \chi(H) ; \quad \chi\left(G \times^{c} H\right) \geq \chi(G) \chi(H)$.
7. $\psi(G \ominus H) \geq \psi(G) \psi(H) ; \quad \psi\left(G \times^{c} H\right) \geq \psi(G) \psi(H)$.

The other missing entries in our tables we believe to have counterexamples, but we have not been able to find any.

3. Other Multiplicative Results

Some of the inequalities presented in the previous sections can be improved by using combinations of different parameters. These are included in this section and are previewed in the next table. The entries in the table are

Table 3

parameters that have been stripped of references to the factors. For the commutative products the order is unimportant and there is an implied optimization operator. For the lexicographic product, the order is important and the parameters refer to the factors in that order, or if only one parameter is given, this refers to the first factor.

In the table, (x) means the cartesian product of two of the indicated sets results in a set of the required type; (e) means that an appropriate set in one graph multiplied by a single vertex from the other graph is a set of the required type, (2e) means take the union of two such sets where an appropriate set is taken from both factors; (o) means that the inequality is true because of the inclusion order of the products; square brackets are references; all other numbers refer to the Lemma or Corollary where the proof can be found. The superscript 1 means the result is only true for graphs with a minimum-sized total-dominating set D where for all vertices of G there is a vertex of D to which it is not adjacent. The superscript 2 means that the result is true if G has no isolated vertices. The superscript 3 means the result is only true for graphs with a minimum-sized independent dominating set I such that for all vertices of G there is a vertex of I to which it is not adjacent. The superscript 4 means the result is only true for graphs with an independence partition of maximum size where no subset is of cardinality 1 . The set S refers to a set of singletons in an independence partition of G.

3.1. Categorical Product

Theorem 3.1. Let G be a graph with no isolated vertices. Then, for every graph H,

$$
\gamma(G \times H) \geq P_{2}(H) \gamma_{t}(G)
$$

Proof. Let P be a maximum 2-packing of H. Let D be any dominating set of $G \times H$. For each $x \in V(H)$, set $G_{x}=V(G) \times\{x\}$ and $E_{x}=D \cap$ $V(G \times N[x])$.

Note that, if, for some $x \in V(H), E_{x} \cap G_{x}=\emptyset$ then every $a x \in G_{x}$ must be adjacent to some $b y \in E_{x}$ with $b \in N(a)$ and $y \in N(x)$. In this case, let $A=\left\{c \mid c y \in E_{x}\right\}$ then A is a total-dominating set of G and $\left|E_{x}\right| \geq$ $|A| \geq \gamma_{t}(G)$. On the other hand, if $x \in V(H), E_{x} \cap G_{x} \neq \emptyset$, then replace each vertex $a x \in E_{x}$ with a vertex by where $b \sim a$ and $y \sim x$ to form the set F. F still dominates $G_{x}, F \cap G_{x}=\emptyset$ and so by the previous argument, $\left|E_{x}\right| \geq|F| \geq \gamma_{t}(G)$.
Therefore, if $P=\left\{y_{1}, y_{2}, \ldots, y_{r}\right\}$ is a maximum 2-packing of H then $\mid D \cap$ $V\left(G \times N\left[y_{i}\right]\right) \mid \geq \gamma_{t}(G)$, and for $i \neq j, V\left(G \times N\left[y_{i}\right]\right) \cap V\left(G \times N\left[y_{j}\right]\right)=\emptyset$.

Thus $|D| \geq P_{2}(H) \gamma_{t}(G)$.
Corollary 3.2. Let G and H be graphs. Then

1. $\gamma(G \times H) \geq P_{2}(G) \gamma(H)$.
2. If G is a graph with $P_{2}(G)=\gamma(G)$ then $\gamma(G \times H) \geq \gamma(G) \gamma(H)$.

Proof. 1. Let $G=E \cup F$ where E is the set of isolated vertices of G. Then $\gamma(G \times H) \geq P_{2}(H)\left(\gamma_{t}(F)+|E|\right) \geq P_{2}(H) \gamma(G)$.
2. Immediate.

These lower bounds can be achieved. For example, $P_{2}\left(P_{4}\right)=\gamma\left(P_{4}\right)=2$, $\gamma_{t}\left(C_{6}\right)=4$ and it is straightforward to verify that $\gamma\left(C_{6} \times P_{4}\right)=8$.

3.2. Strong Product

Theorem 3.3. If G is a graph with $P_{2}(G)=\gamma(G)$ then $\gamma(G \boxtimes H)=$ $\gamma(G) \gamma(H)$.

Proof. Let D be a dominating set of $G \boxtimes H$ and $a \in V(G)$. Let $E=$ $D \cap(N[a] \otimes V(H))$. E dominates $\{a\} \times H$ and so every vertex of H is dominated by $\Pi_{H}(E)$ and therefore $|D \cap(N[a] \boxtimes V(H))| \geq \gamma(H)$.

Consider $g=P_{2}(G)=\gamma(G)$ disjoint closed neighborhoods $N\left[a_{1}\right]$, $N\left[a_{2}\right], \ldots, N\left[a_{g}\right]$ in G. Then $N\left[a_{1}\right] \times V(H), N\left[a_{2}\right] \times V(H), \ldots, N\left[a_{g}\right] \times V(H)$ are pairwise disjoint. If D is any dominating set of $G \otimes H$, then by the preceding paragraph, for each $i,\left|D \cap\left(N\left[a_{i}\right] \boxtimes V(H)\right)\right| \geq \gamma(H)$. It follows that

$$
\begin{gathered}
|D| \geq\left|D \cap\left(\cup_{i=1}^{g} N\left[a_{i}\right] \boxtimes V(H)\right)\right| \\
=\left|\cup_{i=1}^{g} D \cap\left(N\left[a_{i}\right] \boxtimes V(H)\right)\right| \geq \gamma(G) \gamma(H) .
\end{gathered}
$$

This, together with Corollary 2.2(2), gives the result.
Corollary 3.4. $\gamma(G \boxtimes H) \geq P_{2}(G) \gamma(H)$.
As an application of this result, note that if T is a tree then $\gamma(T \otimes H)=$ $\gamma(T) \gamma(H)$.

3.3. Equivalence Product

Although this product produces many edges, note that if $G \cong K_{n}$ then $G \boxtimes H \cong G \ominus H$. Thus to construct an equivalence product with $\gamma(G \ominus H)=$ r let $G=K_{3}$, and $H=P_{3 r}$.

Theorem 3.5. Let G and H be graphs.

1. If $\operatorname{diam}(G) \geq 5$, then $\gamma(G \cong H) \leq \gamma(G)$.
2. Suppose that $P_{2}(G) \geq 3$ and $P_{2}(H) \geq 3$, then $\gamma(G \ominus H) \leq 3$.
3. Suppose that $P_{2}(G) \geq 2$ and $P_{2}(H) \geq 2$, then $\gamma(G \circledast H) \leq 4$.
4. $\gamma(G \ominus H) \leq \gamma(G)+\gamma(H)-1$.

Proof. 1. Let D be a minimum dominating set of G and $x \in V(H)$. Consider the set $D \times\{x\}$. Let $b z \in V(G \cong H)$. Suppose that $z \simeq x$ then for some $g \in D, b \simeq g$ and so $b z \simeq g x$. If $z \perp x$ then there is some $g \in D$ such that $g \perp b$ and so again, $b z \simeq g x$.
2. Let $\{a, b, c\}$ and $\{x, y, z\}$ be 2-packings of G and H, respectively, then consider $D=\{a x, b y, c z\}$. Let $d v \in V(G \circledast H)$. If $d \notin N[c]$ and $v \notin N[z]$ then $c z$ dominates $d v$. If $d \in N[c]$ and $v \in N[z]$ then again $c z$ dominates $d v$. If $d \in N[c]$ and $v \notin N[z]$ then $d \notin N[a] \cup N[b]$ and either $v \notin N[x]$ or $v \notin N[y]$. Therefore either $a x$ or by dominates $d v$. The case $d \notin N[c]$ and $v \in N[z]$ is similar to the last case. Therefore, D dominates $G \cong H$.
3. Let $\{a, b\}$ and $\{x, y\}$ be 2-packings of G and H respectively. Then $D=$ $\{a x, a y, b x, b y\}$ is a dominating set for $G \ominus H$.
4. Let $D=\left\{g_{1}, g_{2}, \ldots, g_{k}\right\}$ and $E=\left\{h_{1}, h_{2}, \ldots, h_{s}\right\}$ be minimum dominating sets of G and H. Consider the set $F=\left(D \times\left\{h_{1}\right\}\right) \cup\left(\left\{g_{1}\right\} \times E\right)$. Let $b z \in V(G \bigoplus H)$. If $b \simeq g_{1}$ then there is some j such that $z \simeq h_{j}$ and therefore $b z \simeq g_{1} h_{j}$; if $z \simeq h_{1}$ then there is some j such that $b \simeq g_{j}$ and therefore $b z \simeq g_{j} h_{1}$; if $b \perp g_{1}$ and $z \perp h_{1}$ then $b z \simeq g_{1} h_{1}$. Therefore, F is a dominating set of $G \ominus H$.

3.4. Cartesian complement

Theorem 3.6. Let G and H be graphs. Then

1. if $\min \{i(G), i(H)\}=1$, then $i\left(G \square^{c} H\right)=\max \{i(G), i(H)\}$, otherwise $i\left(G \square^{c} H\right)=\min \{i(G), i(H)\}$.
2. $\beta\left(G \square{ }^{c} H\right)=\max \{\beta(G), \beta(H)\}$.
3. $\max \{\Gamma(G), \Gamma(H)\} \leq \Gamma\left(G \square{ }^{c} H\right) \leq \max \{4, \Gamma(G), \Gamma(H)\}$.
4. $\max \{I R(G), I R(H)\} \leq I R\left(G \square^{c} H\right) \leq \max \{4, I R(G), I R(H)\}$.

Proof. Let S and T be dominating sets of G and H, respectively. If $|S|>1$ then for each $x \in V(H)$ the set $S \times\{x\}$ is a dominating set for $G \square^{c} H$. If $|S|=1$ then for each $a \in V(G)$ the set $\{a\} \times T$ is a dominating set for $G \square^{c} H$. In addition, suppose that S is an independent or irredundant set of G.

Then for each $x \in V(H)$ the set $S \times\{x\}$ is an, respectively, independent or irredundant set for $G \square^{c} H$. Therefore, by the symmetry of the product, we have $i\left(G \square{ }^{c} H\right) \leq \min \{i(G), i(H)\}$, if $\min \{i(G), i(H)\}>1$ else $i\left(G \square{ }^{c} H\right) \leq$ $\max \{i(G), i(H)\} ; \beta\left(G \square{ }^{c} H\right) \geq \max \{\beta(G), \beta(H)\}, \max \{\Gamma(G), \Gamma(H)\} \leq$ $\Gamma\left(G \square^{c} H\right)$ and $\max \{I R(G), I R(H)\} \leq I R\left(G \square^{c} H\right)$.

Let $a \in V(G)$ and $x \in V(H)$. Then the only vertices of $G \square{ }^{c} H$ not adjacent to $a x$ are in the subsets $\{a\} \times \overline{N[x]}$ and $\overline{N[a]} \times\{x\}$. Moreover, any vertex in either subset dominates all the vertices of the other. Therefore, the only independent sets containing more than one vertex are of the form $\{a\} \times X$ or $A \times\{x\}$ where A and X are independent sets. Thus $i\left(G \square^{c} H\right)=$ $\min \{i(G), i(H)\}$ and $\beta\left(G \square{ }^{c} H\right)=\max \{\beta(G), \beta(H)\}$.

Let $a x$ and by be two vertices with $a \neq b$ and $x \neq y$. The only vertices of $G \square{ }^{c} H$ not dominated by $\{a x, b y\}$ are $b x$ and $a y$. Therefore, if D is a maximal irredundant or minimal dominating set such that both $\left|\prod_{G}(D)\right|$ and $\left|\prod_{H}(D)\right|$ are at least two then $|D| \leq 4$. Thus, if $|D| \geq 5$ then either $D \subseteq\{a\} \times H$ for some vertex a or $D \subseteq G \times\{x\}$ for some vertex x.

Suppose D is an irredundant set of $G \square^{c} H,|D| \geq 5$ and $D \subseteq\{a\} \times H$ for some vertex a. Let $X \subseteq V(H),|X| \geq 3$. If for some $x \in X, N[x] \subseteq N[X-x]$ then $\{a\} \times X$ is not an irredundant set of $G \square^{c} H$ since $I(\{a\} \times X, a x)=\emptyset$. Therefore, D is an irredundant set of $\{a\} \times H$. Thus, by the symmetry of the product, we have $I R\left(G \square^{c} H\right) \leq \max \{4, I R(G), I R(H)\}$.

Suppose D is an irredundant dominating set of $G \square{ }^{c} H,|D| \geq 5$ and $D \subseteq\{a\} \times H$ for some vertex a. Trivially, D must be a dominating set of $\{a\} \times H$ and, by the previous paragraph, D must also be an irredundant set of $\{a\} \times H$. Thus $\Gamma\left(G \square{ }^{c} H\right) \leq \max \{4, \Gamma(G), \Gamma(H)\}$.
Since $I R\left(2 K_{2} \square^{c} 2 K_{2}\right)=\Gamma\left(2 K_{2} \square^{c} 2 K_{2}\right)=4$, it is not possible to remove the ' 4 ' from the previous result.

Theorem 3.7. Let G and H be graphs. If one of G and H contains an edge then $\gamma\left(G \square{ }^{c} H\right) \leq 2$; if both are trivial graphs then $\gamma\left(G \square{ }^{c} H\right) \leq 3$.
Proof. Let a, b be distinct vertices of G and x, y distinct vertices of H. If one or both of (a, b) and (x, y) are edges then $\{a x, b y\}$ is a dominating set of $G \square^{c} H$. If both graphs are trivial then $\{a x, a y, b x\}$ dominates.
For a graph G let $s(G)$ be the least number of singleton sets in an independence partition of G where the size of the partition is $\psi(G)$.

Theorem 3.8. Suppose that G and H are graphs, then $\psi\left(G \square{ }^{c} H\right) \geq$

$$
\max \{|V(G)|(\psi(H)-s(G))+s(G) \psi(G),|V(H)|(\psi(G)-s(H))+s(H) \psi(H)\} .
$$

Proof. Let $A_{1}, A_{2}, \ldots, A_{k}, S_{1}, S_{2}, \ldots, S_{s}$ be the sets of an independence partition of G where $\left|S_{1}\right|=\left|S_{2}\right|=\ldots=\left|S_{s}\right|=1$. Also let $Y_{1}, Y_{2}, \ldots, Y_{f}$ be an independence partition of H. Consider the sets $A_{i} \times\{x\}, 1 \leq i \leq k$, $x \in V(H)$ and $\{a\} \times Y_{j}, 1 \leq j \leq f, a \in \cup_{i=1}^{s} S_{i}$.

All the sets in this partition of $V(G \times H)$ are independent. Consider two sets of the form $A_{i} \times\{x\}$ and $A_{j} \times\{y\}$. If $i=j, x \neq y$ then for $a, b \in A_{i}$, $a \neq b$, it follows that $a x \sim b y$. If $i \neq j$ then there exists $a \in A_{i}$ and $b \in A_{j}$ such that $a \sim b$ so again $a x \sim b y$. Thus the union of two sets such sets is not an independent set.

Similar arguments show that the same is true for any two sets of the form $\{a\} \times Y_{i}$ and $\{b\} \times Y_{j}$.

Consider then a set $A_{i} \times\{x\}$ and $\{a\} \times Y_{j}$. If either $a \in N\left(A_{i}\right)$ or $x \in N\left(Y_{j}\right)$ then the union of these two sets is not independent. If $a \notin N\left(A_{i}\right)$ and $x \notin N\left(Y_{j}\right)$ then for any $b \in A_{i}$ and $y \in Y_{j}$ we have $b x \sim a y$.

Thus, the sets $A_{i} \times\{x\}, 1 \leq i \leq k, x \in V(H)$ and $\{a\} \times Y_{j}, a \in V(G)$, $1 \leq j \leq f$ form an independence partition of $G \square^{c} H$.

Theorem 3.9. Suppose that G and H are graphs that have maximummatchings with g and h edges respectively. Then

$$
d\left(G \square^{c} H\right) \geq\left(\left\lfloor\frac{|V(G)|}{2}\right\rfloor+g\right)\left(\left\lfloor\frac{|V(H)|}{2}\right\rfloor+h\right)-2 g h .
$$

In particular, $d\left(G \square{ }^{c} H\right) \geq|V(G)||V(H)| / 4$.
Proof. Let F and W be maximum matchings of G and H respectively. Then $G-F$ and $H-W$ are independent sets. In each of these independent sets partition the vertices into pairs. If either set is of odd cardinality then form a single group of size three in that set. The following are all dominating sets:

1. If both $(a, b) \in F$ and $(x, y) \in W$ then take the sets $\{a x, b y\}$ and $\{a y, b x\}$.
2. If $(a, b) \in F$ and x, y are paired in $H-W$ then take the sets $\{a x, b y\}$ and $\{a y, b x\}$; if x, y, z is the group of size three then take $\{a x, b y, a z\}$ and $\{a y, b x, b z\}$.
3. If a, b are paired in $G-F$ and $x y \in W$ then take the sets $\{a x, b y\}$ and $\{a y, b x\}$; if a, b, c is the group of size three then take $\{a x, b y, c x\}$ and $\{a y, b x, c y\}$.
4. For a pair or triple, A, grouped in $G-F$ and a pair or triple, B grouped in $H-W$ take the set $A \times B$.

These sets partition $V(G \times H)$ so that if $g=|F|$ and $h=|W|$ then we have

$$
\begin{gathered}
d\left(G \square^{c} H\right) \geq 2 g h+2 g\left\lfloor\frac{|V(H)|-2 h}{2}\right\rfloor+2 h\left\lfloor\frac{|V(G)|-2 g}{2}\right\rfloor \\
+\left\lfloor\frac{|V(H)|-2 h}{2}\right\rfloor\left\lfloor\frac{|V(G)|-2 g}{2}\right\rfloor=\left(\left\lfloor\frac{|V(G)|}{2}\right\rfloor+g\right)\left(\left\lfloor\frac{|V(H)|}{2}\right\rfloor+h\right)-2 g h .
\end{gathered}
$$

This expression is always at least $|V(G)||V(H)| / 4$.

3.5. Categorical complement

Theorem 3.10. For all graphs G and $H, i\left(G \times{ }^{c} H\right)=\min \{i(G), i(H)\}$ and $\beta\left(G \times{ }^{c} H\right)=\min \{\beta(G), \beta(H)\}$.
Proof. Let I be a maximal independent set of $G \times^{c} H$. From Lemma 2.4 both $\prod_{G}(I)$ and $\prod_{H}(I)$ are independent and at least one of them is maximal independent. It follows that

$$
\min \{\beta(G), \beta(H)\} \geq|I| \geq \min \{i(G), i(H)\} .
$$

Let $X=\left\{g_{1}, g_{2}, \ldots, g_{s}\right\}$ and $Y=\left\{h_{1}, h_{2}, \ldots, h_{r}\right\}$ be maximal independent sets of G and H respectively, with $k=\min \{s, r\}$. Let $M=\left\{g_{1} h_{1}, \ldots, g_{k} h_{k}\right\}$. M is an independent set of $G \times^{c} H$. Also, it is easily seen that if $a x \in$ $V\left(G \times^{c} H\right)$, then $a x \in N[M]$ and so M is a dominating set. Therefore, if $|X|=i(G)$ and $|Y|=i(H)$ then $i\left(G \times^{c} H\right) \leq|M|=\min \{i(G), i(H)\}$, that is, $i\left(G \times^{c} H\right)=\min \{i(G), i(H)\}$. Similarly, if $|X|=\beta(G)$ and $|Y|=$ $\beta(H)$ then $\beta\left(G \times^{c} H\right) \geq|M|=\min \{\beta(G), \beta(H)\}$, and so $\beta\left(G \times^{c} H\right)=$ $\min \{\beta(G), \beta(H)\}$.

Theorem 3.11. For all graphs G and H,

1. $\gamma\left(G \times^{c} H\right)=\min \{\gamma(G), \gamma(H)\}$.
2. $\Gamma\left(G \times{ }^{c} H\right)=\max \{\Gamma(G), \Gamma(H)\}$.

Proof. Let D be a minimal dominating set of $G \times{ }^{c} H$.

1. By Lemma 2.3(1) it follows that one of $\Pi_{G}(D)$ or $\Pi_{H}(D)$ is a dominating set hence $\gamma\left(G \times^{c} H\right) \geq \min \{\gamma(G), \gamma(H)\}$.

If E is a dominating set of G and $x \in H$ then $E \times\{x\}$ is a dominating set of $G \times{ }^{c} H$. Consequently, $\gamma\left(G \times{ }^{c} H\right)=\min \{\gamma(G), \gamma(H)\}$.
2. By Lemma 2.3(1), we may suppose that $\Pi_{G}(D)$ is a dominating set. It is minimal since if any vertex is redundant in $\prod_{G}(D)$ its pre-image is also redundant in D. In addition, no two vertices of D project to the same vertex in G, since if they did both would have the same closed neighborhood
so that at least one would be redundant in D. Hence, $\Gamma\left(G \times^{c} H\right) \leq$ $\max \{\Gamma(G), \Gamma(H)\}$.

Let E be a dominating set of G. For each $a \in E$ let $p_{a} \in I(E, a)$. Choose $x, y \in V(H), x \perp y$. Then $E \times\{x\}$ is a dominating set of $G \times^{c} H$ and $p_{a} y$ is a private neighbor for $a x$. Consequently, $\Gamma\left(G \times^{c} H\right)=\max \{\Gamma(G), \Gamma(H)\}$.

References

[1] M. Behzad, G. Chartrand and L. Lesniak-Foster, Graphs and Digraphs (Prindle, Weber \& Schmidt International Series, 1979).
[2] C. Berge, The Theory of Graphs and Its Applications (London, Methuen, 1962) MR 24 \#A2381.
[3] M. Borowiecki, On chromatic number of products of two graphs, Coll. Math. 25 (1972) 49-52; MR 46 \#1630.
[4] M. Borowiecki, On the graphs with minimaximal kernels, Scientific Papers Inst. Math. Wrocław Techn. Univ. 17 (1977) 3-7; Zbl. 398:05C064.
[5] E.J. Cockayne, S.T. Hedetniemi and D.J. Miller, Properties of hereditary hypergraphs and middle graphs, Canad. Math. Bull. 21 (1978) 461-468; MR 80m:05087.
[6] M. El-Zahar and N. W. Sauer, The chromatic number of the product of two 4-chromatic graphs is 4, Combinatorica 5 (1985) 121-126; MR 87a:05067.
[7] D. Geller and S. Stahl, The chromatic number and other functions of the lexicographic product, J. Combin. Theory (B) 19 (1975) 87-95; MR 52\#13462.
[8] E.N. Gilbert, Unpublished Technical Memorandum, Bell Telephone Laboratories, Murray Hill, New Jersey (1972).
[9] F. Harary and G. W. Wilcox, Boolean operations on graphs, Math. Scand. 20 (1967) 41-51; MR 35 \#2775.
[10] B. Hartnell and D. Rall, On Vizing's Conjecture, Congressus Numerantium 82 (1991) 87-96; MR 92k:05071.
[11] B. Hartnell and D. Rall, Vizing's conjecture and the one-half argument, Discussiones Mathematicae-Graph Theory 15 (1995) 205-216.
[12] S. T. Hedetniemi, Homomorphisms of graphs and automata, University of Michigan Technical Report 03105-44-T (1966).
[13] P. Hell and D.J. Miller, Achromatic numbers and graph operations, Discrete Math. 108 (1992) 297-305; MR 93k:05062.
[14] P. Hell and F.S. Roberts, Analogues of the Shannon capacity of a graph, Theory and practice of combinatorics, SE-North-Holland Math. Stud., 60, North-Holland, Amsterdam-New York (1982) 155-168; MR 86k:05053.
[15] A.J.W. Hilton, R. Rado and S.H. Scott, $A(<5)$-colour theorem for planar graphs, Bull. London Math. Soc. 5 (1973) 302-306; MR 48 \#1960.
[16] L.-H. Hsu, On a multiplicative graph function conjecture, Discrete Math. 45 (1983) 245-253; MR 84j:05099.
[17] L.-H. Hsu, On a strongly multiplicative graph function conjecture, Chinese J. Math. 13(2) (1985) 103-108; MR 87a:05127.
[18] W. Imrich and H. Izbicki, Associative Products of Graphs, Monatshefte für Mathematik 80 (1975) 277-281; MR 53 \#7864.
[19] M.S. Jacobson and L.S. Kinch, On the domination of the products of graphs II, trees, J. Graph Theory 10 (1986) 97-106; MR 87e:05056.
[20] L. Lovász, On the Shannon Capacity of a Graph, IEEE Trans. on Inform. Theory, IT-25(1) (1979) 1-7; MR 81g:05095.
[21] J. Nešetřil and V. Rödl, Products of graphs and their applications, in: Graph Theory, Lagów 1981 (Lecture Notes in Mathematics 1018, Springer, Berlin, 1983) 151-160; MR 85d:05179.
[22] R.J. Nowakowski and D. Rall, A survey of the introduction and history of graph products, preprint.
[23] O. Ore, Theory of Graphs (Amer. Math. Colloq. Publ., Vol. 38, Amer. Math. Soc., Providence, R.I., 1962).
[24] V. Pus, Chromatic number of products of graphs, Comment. Math. Univ. Carolin. 29 (1988) 457-463; MR 90a:05088.
[25] F.S. Roberts, Graph theory and its applications to problems of society, CBMSNSF monographs (1978) \#29 (S.I.A.M, Philadelphia, PA); MR 80g:90036.
[26] F.S. Roberts, On the mobile radio frequency assignment problem and the traffic light phasing problem, in: Second International Conference on Combinatorial Mathematics (New York, 1978), Annals New York Acad. Sci. 319 (1979) 466-483; MR 81e:05071.
[27] M. Rosenfeld, On a Problem of C.E. Shannon in Graph Theory, Proc. Amer. Math. Soc. 18 (1967) 315-319; MR 34 \#7405.
[28] G. Sabidussi, Graphs with given group and given graph-theoretical properties, Canad. J. Math. 9 (1957) 515-525; MR 20 \#1322.
[29] G. Sabidussi, The composition of graphs, Duke Math. J. 26 (1959) 693-696; MR $22 \# 1524$.
[30] C.E. Shannon, The zero error capacity of a noisy channel, I.R.E., Trans. on Inform. Theory, IT-2 (1956) 8-19; MR $19 \# 623$.
[31] V.G. Vizing, The cartesian product of graphs, Vyčisl. Sistemy 9 (1963) 30-43; MR $35 \# 81$.

[^0]: *Partially supported by a grant from the NSERC.

