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Abstract

Associative products are defined using a scheme of Imrich & Izbicki
[18]. These include the Cartesian, categorical, strong and lexicographic
products, as well as others. We examine which product ⊗ and param-
eter p pairs are multiplicative, that is, p(G ⊗ H) ≥ p(G)p(H) for all
graphs G and H or p(G⊗H) ≤ p(G)p(H) for all graphs G and H. The
parameters are related to independence, domination and irredundance.
This includes Vizing’s conjecture directly, and indirectly the Shannon
capacity of a graph and Hedetniemi’s coloring conjecture.
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1. Product Definitions

We consider products of finite simple graphs. A graph G consists of a vertex
set V (G) and an edge set E(G). We use ⊗ as the symbol for an arbitrary
product where, for the purposes of this paper, the product graph is defined
by V (G⊗H) = {ax|a ∈ V (G), x ∈ V (H)} and whether two vertices in the
product are adjacent depends solely on the adjacency relations in the fac-
tors. This can be represented by a 3×3 matrix, called the edge matrix. The
rows (columns) are labeled by E which denotes adjacency of the vertices of

∗Partially supported by a grant from the NSERC.
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the first (second) factor; N nonadjacency; and ∆ the case where the vertex is
the same. An E in the matrix indicates there is an edge between the vertices
of the product; an N nonadjacency; and in the case where the relationship
in both factors is ∆ then the two vertices are the same and so the entry
is ∆.







E ∆ N

E − − −
∆ − ∆ −
N − − −







Since the rows and columns will always be labeled in this fashion we drop
the labels in the sequel.

This scheme was first introduced by Imrich & Izbicki [18]. They showed
that out of the 256 possible products there are 20 associative products but
only 10 of these depend on the edge structure of both factors (that is, these
products do not have all E’s or all N’s in the 1st and 3rd rows or in the
1st and 3rd columns). Further, 8 of these are also commutative. (See also
Harary & Wilcox [9]).

Since a graph can be defined in terms of non-edges, there is the notion of
a complementary product. Specifically, if G is the complementary graph to
G then the complementary product ⊗c to a product ⊗ is given by G⊗cH =

(G⊗H). The only two of these ten products which are not commutative
are self-complementary. They are the lexicographic product and the product
whose edge matrix is the transpose of that of the lexicographic product. We
do not consider this latter product. Below are the definitions of these 9
associative products. Examples can be found in Figure 1.
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Figure 1a. P3 × P3, P3 P3 & P3 × P3.
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Figure 1b. P3 • P3, P3 ©∼= P3 & P3∇P3.

Disjunction Co-Cartesian Co-Categorical

Figure 1c. The nonedges of P3 ×c P3, P3
cP3 & P3 ×

c P3.

The symbols used to denote products are based mainly on those found in [21].
Some of these products are also known by other names (for more details
see [22]):

Categorical: G×H





E N N
N ∆ N
N N N



; Co-Categorical: G×c H





E E E
E ∆ E
E E N



;

Cartesian: G H





N E N
E ∆ N
N N N



; Co-Cartesian: G cH





E E E
E ∆ N
E N E



;
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Strong: G ×H





E E N
E ∆ N
N N N



; Disjunction: G ×c H





E E E
E ∆ N
E N N



;

Equivalence: G©∼= H





E E N
E ∆ N
N N E



; Lexicographic: G •H





E E E
E ∆ N
N N N



;

Symmetric Difference: G∇H





N E E
E ∆ N
E N N



.

All 256 products can be ordered by ‘inclusion’: that is, ⊕ ≤ ⊗ if for each
pair of graphs G and H, E(G ⊕ H) ⊂ E(G ⊗ H). The suborder for the
products of interest in this paper is shown in Figure 2.
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Figure 2. Partial Ordering of the Products.

We are mainly concerned with the question whether a parameter p with
respect to a product ⊗ has one of the following properties for all graphs G
and H:

(i) p(G⊗H) ≥ p(G)p(H) or

(ii) p(G⊗H) ≤ p(G)p(H) or

(iii) p(G⊗H) = p(G)p(H).
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Given p and ⊗, if (iii) is not true then a fourth question is to characterize
universal graphs: that is, those graphs G where p(G ⊗H) = p(G)p(H) for
all graphs H. Some of our results preclude the existence of universal graphs
for certain parameter/product pairings. We have not pursued the question
in this paper.

There are many questions in the literature about independence-type
parameters and products. Most take a form like our (i), (ii) and (iii). Indeed
they motivated us to try a more systematic approach to these questions.
Some of these we list below.

Vizing’s conjecture [31] (see [10] and [11] for a survey of some of the
results) — for all G and H is γ(G H) ≥ γ(G)γ(H)?

Hedetniemi’s coloring conjecture [12] (see [6] for a survey of some of
the results) — for any indexed set of graphs {Gi|i ∈ I} is χ(×i∈IGi) =
mini∈I{χ(Gi)}?

The Shannon capacity of a graph G is Θ(G) = limn→∞ α(Gn)1/n where
α(Gn) is the maximum number of nonconfusable codewords of length n
taken from an alphabet G. Let the letters be the vertices with two
vertices being adjacent if they could be confused. The maximum num-
ber of nonconfusable codewords of length 1 is therefore β(G) and thus
Θ(G) = limn→∞ β(×n

i=1
G)1/n.

The problem is to find ways to determine Θ(G). It is easy to see that
β(G) ≤ Θ(G). This problem was introduced by Shannon [30] (see also Ore
[23], Berge [2] and Roberts [26]). Rosenfeld [27] found a characterization of
universal graphs for β and × using linear programming techniques. A new
approach was introduced by Lovász [20] who used eigenvalue techniques.

The ultimate chromatic number of a graph G is χu(G) = limn→∞

(χ( n
i=1
G))1/n. This was introduced by Hilton, Rado & Scott [15] and is

related to the problem of assigning radio frequencies to vehicles operating in
zones (see Gilbert [8] and also Roberts [25]). The determination of the ulti-
mate chromatic number can be solved using linear programming techniques;
see Hell & Roberts [14].

In addition there have been several other conjectures. V. Pus [24] an-
swered in the negative a question of C. Thomassen: Is there any product ⊗
such that for all graphs G and H, χ(G⊗H) = χ(G)χ(H).

The following question is attributed to Lovász (see Hsu [16]). Let hH(G)
be the number of homomorphisms of G to H. An increasing multiplicative

graph function f is a function from graphs to the real numbers with the
properties that f(G×H) = f(G)f(H) and if G ⊂ H then f(G) ≤ f(H). Are
all increasing multiplicative functions generated by functions of the type hH?
Hsu answers this negatively for both the categorical product [16] and the
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strong product [17]. It still leaves unanswered the question of characterizing
such functions.

The parameters that we chose to consider reflect the content of these
questions: that is, those involving notions of independence, domination and
coloring.

Most of our results apply to just one product-parameter pair. However,
some are tied to the product order and apply to many pairs. These are to
be found in Section 2.2. The other results are to be found in Section 2.3.
We were not able to settle all the cases. Some conjectures are to be found
in Section 2.4. In some cases, better results can be found by using a mix of
parameters, these are given in Section 3.

1.1. Terminology

Let G = (V (G), E(G)) be a graph. We will always assume that graphs are
finite, simple and have at least two vertices. The latter assumption is made
so as to avoid listing many exceptions in our results. We write, a ≃ b if a is
either equal or adjacent to b, a ∼ b if a is adjacent to but not equal to b, and
a ⊥ b if a is neither adjacent nor equal to b. Edges we denote by ordered
pairs of vertices, e.g. (a, b) ∈ E(G); we use ax to denote a vertex in the
product G⊗H where a ∈ V (G) and x ∈ V (H).

Let S ⊂ V (G) and v ∈ V (G). 〈S〉 is the induced subgraph on the vertices
of S. The neighborhood of v ∈ V (G) is N(v) = {y|y ∼ v} and N(S) =
∪v∈SN(v); N [v] = N(v) ∪ {v} is the closed neighborhood of v and N [S] =
∪v∈SN [v]; I(S, v) = N [v]−N [S−{v}] is the private neighborhood of v (with
respect to S). The set S is called: independent if 〈S〉 contains no edges;
dominating if N [S] = V (G); and irredundant if I(S, v) 6= ∅ for each v ∈ S.
If N(S) = V (G) then S is a total-dominating set. Note that only graphs
without isolated vertices have total-dominating sets.

The minimum (maximum) cardinality of a minimal dominating set is
denoted by γ(G) (Γ(G)), and, if G has no isolated vertices, the minimum
(maximum) cardinality of a minimal total-dominating set by γt(G) (Γt(G)).
Note that a minimal dominating set is also irredundant.

The maximum cardinality of an independent set is denoted by β(G),
and i(G) denotes the minimum cardinality of an independent, dominating
set; IR(G) is used to denote the maximum cardinality of an irredundant set
and ir(G) the minimum cardinality of a maximal irredundant set.

A set S ⊂ V (G) is a two-packing if N [x] ∩ N [y] = ∅ for every pair
x, y ∈ S, x 6= y. The maximum number of vertices in a two-packing is
denoted byP2(G). 2-packings correspond to independent sets in the square
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of G: that is, the graph on V (G) but where a is adjacent to b just if they are
at distance 1 or 2 in G. Therefore the results for 2-packings can be obtained
from the results concerning independence. However, this parameter is useful
in obtaining lower bounds in Section 3.

The following inequalities are easy consequences of the preceding defi-
nitions (see [5]).

Lemma 1.1. For any graph G, ir(G) ≤ γ(G) ≤ i(G) ≤ β(G) ≤ Γ(G) ≤
IR(G). If G contains no isolated vertex, then γ(G) ≤ γt(G) ≤ 2γ(G).

The vertices of a graph can be decomposed into subsets with specified prop-
erties. An independence partition of G is a partition of V (G) into nonempty,
independent subsets where the union of any two subsets is not independent.
The chromatic number is the fewest number of subsets in an independence
partition and is denoted by χ(G). The achromatic number ψ(G) is the
greatest number of subsets in an independence partition.

A domination decomposition of G is a partition of V (G) into subsets
each of which is dominating where none of these subsets can be further
partitioned into two dominating subsets. The domatic number, d(G), is the
largest number of dominating sets in a domination decomposition of G; and
the smallest number is the adomatic number, denoted by ad(G). For any
other notation, please see [1].

2. Product Results

2.1. Partial Product Results

In this section we consider what properties are required of a product to allow
the cartesian product of independent (dominating, etc) sets in the factors
to be independent (dominating, etc) in the product graph.

We call a graph product, ⊗, independent (dominating, total-dominating,

irredundant, two-packing) multiplicative if for any two graphs G and H
and any two independent (dominating, total-dominating, irredundant, two-
packing) sets A ⊂ V (G) and B ⊂ V (H), the set A × B is an independent
(dominating, total-dominating, irredundant, two-packing) subset of G⊗H.
The graph product is color (domatic) multiplicative if for any two graphs G
and H, {Ai × Bj : i = 1, . . . , p; j = 1. . . . , q} is an independence partition
(domination decomposition) of G ⊗ H whenever {Ai}

p
i=1

and {Bj}
q
j=1

are
independence partitions (domination decompositions) of G and H, respec-
tively.

Lemma 2.1. Let ⊗ be a graph product.
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1. If ⊗ ≤ ×c, then ⊗ is independent multiplicative.

2. If ⊗ ≤ ×, then ⊗ is irredundant and two-packing multiplicative.

3. If × ≤ ⊗, then ⊗ is total-dominating multiplicative.

4. If × ≤ ⊗, then ⊗ is dominating multiplicative.

5. If × ≤ ⊗ ≤ ×c, then ⊗ is color multiplicative.

Proof. 1. Let G and H be graphs and suppose that a ⊥ b in G and x ⊥ y
in H. Suppose that ⊗ ≤ ×c. Then, it follows that in G ⊗ H the vertices
ax, ay, bx and by are mutually nonadjacent. Therefore, the product of two
independent sets is independent in G⊗H.

2. Let A and B be irredundant sets of graphs G and H respectively. Suppose
that ⊗ ≤ ×. Let a ∈ A and x ∈ B. In each case I(A, a) 6= φ and
I(B, x) 6= φ.

If a ∈ I(A, a) and x ∈ I(B, x) then ax ∈ I(A×B, ax).

Suppose that x ∈ I(B, x) and that a /∈ I(A, a) then there exists b 6= a,
b ∈ I(A, a). In the edge matrix of ⊗ if (E,∆) = E, then bx ∈ I(A× B, ax).
If (E,∆) = N, then ax ∈ I(A × B, ax). The case where x /∈ I(B, x) and
a ∈ I(A, a) is similar.

Lastly, suppose that x /∈ I(B, x) and a /∈ I(A, a) then there exist b ∈
I(A, a) and y ∈ I(B, x), where a 6= b and x 6= y. If, in the edge matrix
of ⊗, (E,E) = E, then by ∈ I(A × B, ax). If (E,E) = N and (∆,E) = E
then ay ∈ I(A×B, ax) and if (E,∆) = E then bx ∈ I(A×B, ax). If (∆,E)
= (E,∆) = N then there are no edges in the product graph and trivially
ax ∈ I(A×B, ax).

Let A and B be 2-packings of V (G) and V (H) respectively. Since G⊗H
is a spanning subgraph of G × H, the distance from vertex ax to by is at
least max{distG(a, b), distH(x, y)} and so A×B is a 2-packing of G⊗H.

3. Let A and B be total-dominating sets of graphs G and H respectively
and suppose that × ≤ ⊗. Let a ∈ V (G) and x ∈ V (H). There exist b ∈ A,
b ∼ a and y ∈ B, y ∼ x. In G⊗H, it follows that by ∼ ax and so A×B is
a total-dominating set in G⊗H.

4. Let A and B be dominating sets of graphs G and H respectively. Let
a ∈ V (G) and x ∈ V (H). There exist b ∈ A and y ∈ B with b ≃ a and
y ≃ x. Then, since × ≤ ⊗, ax ≃ by and therefore A × B is a dominating
set of G⊗H.

5. Let {Ai}
p
i=1

and {Bj}
q
j=1

be independence partitions of the graphs G
and H respectively. Color classes are independent sets and so × ≤ ⊗ ≤ ×c

implies (from 1) that each Ai ×Bj is an independent set of G⊗H. For any
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two distinct sets Ai×Bj and Ar×Bs there are vertices a ∈ Ai, b ∈ Ar, x ∈ Bj

and y ∈ Bs (else the partitions would not be independence partitions) where
a ≃ b and x ≃ y. Then ax ∼ by and consequently {Ai × Bj : i = 1, . . . , p;
j = 1, . . . , q} is an independence partition.

An immediate consequence of this lemma is.

Corollary 2.2. Let G and H be finite graphs.

1. If ⊗ ≤ ×c, then β(G)β(H) ≤ β(G⊗H); if also × ≤ ⊗, then i(G⊗H) ≤
i(G)i(H).

2. If × ≤ ⊗, then γ(G⊗H) ≤ γ(G)γ(H); if also ⊗ ≤ ×, then Γ(G⊗H) ≥
Γ(G)Γ(H).

3. If ⊗ ≤ ×, then IR(G)IR(H) ≤ IR(G⊗H).

4. If × ≤ ⊗, then γt(G⊗H) ≤ γt(G)γt(H).

5. If ⊗ ≤ ×c, then χ(G ⊗ H) ≤ χ(G)χ(H); if also × ≤ ⊗, then

ψ(G)ψ(H) ≤ ψ(G⊗H).

6. If × ≤ ⊗, then d(G⊗H) ≥ d(G)d(H).

The following products are helpful when considering the projections of sets
down to one or both of the factors.

Y =





E E E
E ∆ E
N N N



 ; Z =





E E E
N ∆ N
N N N



 .

The proofs of the first two of the following lemmas are straightforward so
we omit them.

Lemma 2.3. Let D be a dominating set of G⊗H.

1. If ⊗ ≤ ×c, then either
∏

G(D) is a dominating set of G or
∏

H(D) is

a dominating set of H.

2. If ⊗ ≤ ×c, then d(G⊗H) ≤ |V (G) × V (H)|/min{γ(G), γ(H)}.

3. If ⊗ ≤ Y , then
∏

G(D) is a dominating set of G.

Lemma 2.4. Let I be an independent set of G⊗H. If Z ≤ ⊗, then
∏

G(I)
is an independent set of G.

The next result is an extension of Corollary 2.2.(4).

Lemma 2.5. If • ≤ ⊗, then γt(G⊗H) ≤ γt(G). If ×c ≤ ⊗ then γ(G⊗H) ≤
min{γt(G), γt(H)}.
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Proof. Suppose that • ≤ ⊗. If A is any total-dominating set of G and
x ∈ V (H) is fixed, then {ax|a ∈ A} is a total-dominating set of G ⊗ H.
The second part follows since the lexicographic and the product whose
edge matrix is the transpose of the lexicographic edge matrix are both less
than ×c.

2.2. Parameters which Respect the Product Order

Some of the parameters behave nicely with respect to the inclusion order of
the products. The next lemma extends part of Corollary 2.2.

Lemma 2.6. For a graph G, let p(G) be one of β(G), γ(G), γt(G) and

q(G) one of χ(G), d(G). Let ⊕, ⊗ be two products such that ⊕ ≤ ⊗. Then,

for every pair of graphs G and H, p(G ⊕H) ≥ p(G ⊗H) and q(G ⊕H) ≤
q(G⊗H).

Proof. Let G and H be an arbitrary pair of graphs. An independent set in
G⊗H is also independent set in G⊕H. Therefore, β(G⊕H) ≥ β(G⊗H).
In addition, any coloring of G ⊗ H is also a partition of V (G ⊕ H) into
independent sets so that χ(G⊕H) ≤ χ(G⊗H).

A dominating (total-dominating) set of G ⊕H is also a dominating (total-
dominating) set of G⊗H. Therefore, γ(G⊕H) ≥ γ(G⊗H), γt(G⊕H) ≥
γt(G ⊗H). Also any domination decomposition of G ⊕H is a partition of
V (G⊗H) into dominating sets and so d(G⊗H) ≥ d(G⊕H).

As the next corollary shows, this result allows us to search just for extremal
cases (with respect to the product ordering).

Corollary 2.7. For a graph G, let p(G) be one of β(G), γ(G), γt(G) and

q(G) one of χ(G), d(G). Let ⊕, ⊗ be two products such that ⊕ ≤ ⊗. Then,

1. If for every pair of graphs G and H, p(G ⊕ H) ≤ p(G)p(H), then

p(G⊗H) ≤ p(G)p(H); and if q(G⊕H) ≥ q(G)q(H), then q(G⊗H) ≥
q(G)q(H).

2. If for every pair of graphs G and H, p(G ⊗ H) ≥ p(G)p(H), then

p(G⊕H) ≥ p(G)p(H); and if q(G⊗H) ≤ q(G)q(H), then q(G⊕H) ≤
q(G)q(H).

3. If for some pair G and H, p(G ⊕H) < p(G)p(H), then p(G ⊗H) 6≥
p(G)p(H); and if q(G⊕H) > q(G)q(H), then q(G⊗H) 6≤ q(G)q(H).

4. If for some pair G and H, p(G ⊗H) > p(G)p(H), then p(G ⊕H) 6≤
p(G)p(H); and if q(G⊗H) < q(G)q(H), then q(G⊕H) 6≥ q(G)q(H).
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In the following table, the columns are labelled by the products and the rows
are labelled by the inequalities. Here, p ≥ p2 is shorthand for: for all graphs

G and H, p(G⊗H) ≥ p(G)p(H). A ‘+’ entry indicates that the inequality
listed for that row and column is true for all pairs of graphs. A ‘—’ entry
indicates that there is a pair of graphs for which the inequality is false.
From Corollary 2.7, it follows that to prove the correctness of the entries, it
suffices to exhibit proofs or counterexamples for the extremal products. The
requisite counterexamples immediately follow the table. A ‘!’ indicates an
extremal product, where ‘!x’ (‘x!’) denotes that every product above (below)
this product in inclusion order has the same entry ‘x’. A ‘?’ indicates we
do not know the status of the problem (see Section 2.4).

All the ‘+’ entries follow directly from Corollaries 2.2 and 2.7, except
for the lexicographic and disjunctive products with respect to β ≤ β2 . The
proof of these entries is given in Lemmas 2.8 and 2.9 immediately after
the counterexamples. Some stronger results are known. These are given in
Section 3.

Table 1

⊗ = × × • ∇ ©∼= ×c c ×c

1. β ≥ β2 + + + + + !– +! – !–
2. β ≤ β2 – – – !+ –! –! + + +
3. χ ≥ χ2 – – – – – –! –! ? ?
4. χ ≤ χ2 + + + + + !– +! – !–
5. γ ≥ γ2 !– ?1 – – !– – – – –
6. γ ≤ γ2 –! – !+ + –! + + + +
7. γt ≥ γ2

t !– !– – – – – – – –
8. γt ≤ γ2

t !+ – + + –! + + + +
9. d ≥ d2 –! – !+ + –! + + + +

10. d ≤ d2 !– !– – – – – – – –

The graphs G1 and G2 can be found in Figure 3. The counterexamples are:
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1. β(P3 ©∼= P3) = 3 < 2 × 2; β(P3 ×
c P3) = 2 < 2 × 2.

2. β(C5 ©∼= C5) = 5 > 2 × 2; β(P3∇P3) = 5 > 2 × 2.
3. χ(C7 ×c C5) ≤ 8 < 3 × 3; χ(C5 ©∼= C5) = 5 < 3 × 3.
4. χ(P4 ©∼= P4) ≥ 5 > 2 × 2; χ(P3 ×

c P3) = 7 > 2 × 2.
5. γ(G1 ×G1) = 3 < 2 × 2; γ(G2∇C4) = 2 < 2 × 2.
6. γ(P3 × P3) = 3 > 1 × 1; γ(Kn∇Kn) = n > 1 × 1.
7. γt(K3 ×K3) = 3 < 2 × 2; γt(P3 P3) = 3 < 2 × 2.
8. γt(Kn∇Kn) = n > 2 × 2 (n > 4).
9. d(P3 × P3) = 2 < 2 × 2; d(Kn∇Kn) = n < n× n.

10. d(C5 × C5) = 5 > 2 × 2; d(C5 C5) = 5 > 2 × 2.
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Figure 3. Some Counterexample Graphs.

Part of the next result, β(G •H) = β(G)β(H), can also be found in [7], see
also [14].

Lemma 2.8. For all graphs G and H, i(G•H) = i(G)i(H) and β(G•H) =
β(G)β(H).
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Proof. From Corollary 2.2 (1) we have β(G)β(H) ≤ β(G •H); i(G •H) ≤
i(G)i(H).

Let I be a maximal independent set of G•H. Then, by Lemmas 2.4 and
2.3(3),

∏

G(I) is a maximal independent set of G. Also, for any a ∈
∏

G(I),
I ∩ ({a} × H) is a maximal independent set of {a} × H and so the result
follows.

The second part of the next result is also to be found in [14].

Lemma 2.9. For all graphs G and H, i(G×cH) = i(G)i(H) and β(G×cH)
= β(G)β(H).

Proof. Let I be an independent set of G ×cH. By Lemma 2.4,
∏

G(I) and
∏

H(I) are independent. By Lemma 2.1, the product of two independent
sets is an independent set of G ×c H. Hence, β(G ×c H) = β(G)β(H) and
i(G ×c H) = i(G)i(H).

2.3. Other Parameters

As in Table 1, a ‘–’ entry means that there is a counterexample which is
given immediately after the table. A ‘+’ indicates that the inequality is
true and the associated number is the number of the result that gives the
proof; (3T) refers to the table in Section 3 where a construction is indicated;
otherwise the number of the appropriate Theorem, Lemma or Corollary is
given. A ‘?’ indicates that we know of no proof nor of a counterexample.

Table 2

⊗ = × × • ∇ ©∼= ×c c ×c

1. ir ≥ ir2 – ? – – – – – – –
2. ir ≤ ir2 – – – – – + (3T) +(3T) +(3T) +(3T)
3. i ≥ i2 ? – – +(2.8) – – +(2.9) – –
4. i ≤ i2 – – +(2.2) +(2.8) – – +(2.9) +(3.6) +(3.10)
5. Γ ≥ Γ2 ? ? +(2.2) – – – – ? ?
6. Γ ≤ Γ2 – – – +(2.10) – – +(2.12) +(3.7) +(3.11)
7. IR ≥ IR2 +(2.2) +(2.2) +(2.2) – – – – – –
8. IR ≤ IR2 – – – +(2.11) – – ? +(3.6) ?
9. ψ ≥ ψ2 – – +(2.2) +(2.2) – ? +(2.2) +(3.8) ?

10. ψ ≤ ψ2 – – – – ? – ? – –
11. ad ≥ ad2 – – – – – – – – ?
12. ad ≤ ad2 ? ? ? ? ? – ? – –
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The graphs G1, G2, G3, G4, G5 and G6 are to be found in Figure 3.

1. ir(G1 ×G1) ≤ 3 < 2 × 2; ir(C4 × C4) = 3 < 2 × 2;
ir(C4 • C4) = 2 < 2 × 2; ir(C4∇C4) = 2 < 2 × 2;
ir(Pn ©∼= Pn) ≤ 4n− 3 < n2/9, (n large); ir(C4 ×c C4) = 2 < 2 × 2;
ir(C4

cC4) = 2 < 2 × 2; ir(C4 ×
c C4) = 2 < 2 × 2.

2. ir(K3 ×K3) = 3 > 1 × 1; ir(K3 K3) = 3 > 1 × 1;
ir(G3 × P3) = 3 > 2 × 1; ir(G3 • P3) = 3 > 2 × 1;
ir(P3∇P3) = 2 > 1 × 1.

3. i(G6 G6) = 15 < 8 × 2; i(G4 × C5) = 5 < 3 × 2;
i(C5∇G2) = 3 < 2 × 2; i(K2 ©∼= K2) = 2 < 2 × 2;
i(K2

cK2) = 2 < 2 × 2; i(C4 ×
c C4) = 2 < 2 × 2.

4. i(P3 × P3) = 3 > 1 × 1; i(P3 K2) = 2 > 1 × 1;
i(P3∇P3) = 4 > 1 × 1; i(K2,5 ©∼= K2,5) ≥ 5 > 2 × 2.

5. Γ(G2 • P3) = 4 < 3 × 2; Γ(G5∇G5) < 3 × 3;
Γ(P3 ©∼= P4) = 3 < 2 × 2; Γ(G5 ×c P3) = 4 < 3 × 2.

6. Γ(Kn ×K2) = n > 1 × 1, n > 1; Γ(Kn K2) = n > 1 × 1, n > 1;
Γ(C5 × C5) = 5 > 2 × 2; Γ(Kn∇K2) = n > 1 × 1, n > 1;
Γ(P4 ©∼= P4) ≥ 5 > 2 × 2.

7. IR(G5 • P3) = 4 < 3 × 2; IR(G5∇G5) < 3 × 3;
IR(P3 ©∼= P3) = 3 < 2 × 2; IR(G5 ×c P3) = 4 < 3 × 2;
IR(C4

cC4) = 2 < 2 × 2; IR(P3 ×
c P3) = 2 < 2 × 2.

8. IR(K2 ×K2) = 2 > 1 × 1; IR(K2 K2) = 2 > 1 × 1;
IR(C5 × C5) = 5 > 2 × 2; IR(P3∇P3) = 5 > 2 × 2;
IR(C5 ©∼= C5) = 5 > 2 × 2.

9. ψ(K2 ×K2) = 2 < 2 × 2; ψ(K2 K2) = 2 < 2 × 2;
ψ(K2∇K2) = 2 < 2 × 2.

10. ψ(P7 × P6) ≥ 10 > 3 × 3; ψ(P7 P3) ≥ 7 > 3 × 2;
ψ(P3 × P3) ≥ 6 > 2 × 2; ψ(P3 • P5) ≥ 7 > 2 × 3;
ψ(P3 ©∼= P3) ≥ 5 > 2 × 2; ψ(P3

cP3) ≥ 5 > 2 × 2;
ψ(P3 ×

c P3) ≥ 7 > 2 × 2.
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11. ad(K2 × P3) = 2 < 2 × 2; ad(K2 P3) = 2 < 2 × 2;
ad(K2 × P3) = 2 < 2 × 2; ad(K2 • P3) = 3 < 2 × 2;
ad(K2∇P3) = 2 < 2 × 2; ad(K2 ©∼= P3) = 2 < 2 × 2;
ad(K2 ×c P3) = 3 < 2 × 2; ad(K2

cP3) = 3 < 2 × 2.

12. ad(K2 ©∼= K2) = 2 > 1 × 1; ad(K2
cK2) = 2 > 1 × 1;

ad(G2 ×
c G2) = 2 > 1 × 1.

Lemma 2.10. For all graphs G and H, Γ(G •H) ≤ Γ(G)Γ(H).

Proof. Let D be an irredundant dominating set of maximum cardinality
for G •H. For F ⊂ G •H, let

∏

G(F ) = SF ∪CF = XF where SF is the set
of isolated vertices and CF the union of the connected components in 〈XF 〉.

Suppose Γ(H) = 1 then H ∼= Kn for some n. Since D is irredundant, we
have for each a ∈ V (G), |({a} × V (H)) ∩ D| ≤ 1. Also

∏

G(D) dominates
G (Lemma 2.3(3)) and is irredundant (since D is). Therefore Γ(G • H) =
|D| = |

∏

G(D)| ≤ Γ(G) = Γ(G)Γ(H).

We may assume, therefore, that Γ(H) > 1. Choose D to be an irre-
dundant dominating set of maximum cardinality for G • H which has the
additional property that |SD| is maximum.

Suppose a ∈ XD and ax, ay ∈ D. Then, all their respective private
neighbors must lie in {a} ×H since they are adjacent to the same vertices
of (G− a) •H : In particular, this implies that a ∈ SD. Also, if a ∈ CD then
it has exactly one pre-image and we denote this vertex by axa. Moreover, if
a ∈ CD then axa has no private neighbor in {a} ×H.

Now, CD can be partitioned into two subsets, CD = C1

D ∪ C2

D. Specif-
ically, a ∈ C1

D if axa has a private neighbor of the form by, b 6∈ XD; and
a ∈ C2

D if all the private neighbors of axa are of the form by, b ∈ XD.

We claim that C2

D = ∅. Suppose to the contrary that there exists a ∈ C2

D.
Let Y ={by|by ∈ I(D, axa)}, YG =

∏

G(Y ) and let Z be a maximum irredun-
dant dominating set of H. Put E = (D− (Y ∪{axa}))∪ (YG×Z). Note that
for any b ∈ YG, axa has a private neighbor in {b} ×H and so b is isolated
in XE , that is, SE =SD ∪ YG. Any vertex of G •H which is dominated by
only vertices axa or vertices of Y and no other vertices of D, are in either
{a} ×H or {b} ×H, b ∈ YG. These vertices are dominated by YG × Z and
the other vertices of G •H are dominated by D − (Y ∪ {axa}), and so E is
a dominating set of G •H. The vertices of D − (Y ∪ {axa}) have the same
private neighbors with respect to E as with respect to D. If by ∈ YG×Z then
y has a private neighbor, say z, in V (H) and so bz ∈ I(E, bx). Hence E is an
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irredundant set. Now |E|= |D| − (|YG|+ 1) + |YG|Γ(H) and since Γ(H)>1,
then |E|≥|D|, which contradicts the choice of D. Therefore, C2

D =∅.
Hence, XD =SD∪C1

D. By Lemma 2.3(3), XD is a dominating set of G.
By the definition of C1

D, XD is irredundant so that |XD| ≤ Γ(G). Let |SD| =
s and |C1

D| = c. Then, |D| ≤ sΓ(H) + c ≤ (s+ c)Γ(H) ≤ Γ(G)Γ(H).

Corollary 2.11. For all graphs G and H, IR(G •H) ≤ IR(G)IR(H).

Proof. Let D be a maximum-sized irredundant set for G •H.
Suppose IR(H)=1 then H ∼= Kn for some n. Hence, for each a ∈ V (G),

|({a} × V (H)) ∩D|≤1, since D is irredundant. Also
∏

G(D) is irredundant
(since D is). Therefore IR(G •H)= |D|= |

∏

G(D)|≤IR(G)=IR(G)IR(H).
In the proof of Lemma 2.10, note that if D is a maximum-sized ir-

redundant set such that |SD| is maximized then it still follows (where Z
is now a maximum-sized irredundant set of H) that XD = SD ∪ C1

D and
that XD is an irredundant set for G. Hence, |D| ≤ |SD|IR(H) + |C1

D| ≤
(|SD| + |C1

D|)IR(H) ≤ IR(G)IR(H).

Lemma 2.12. For all graphs G and H, Γ(G ×c H) ≤ Γ(G)Γ(H).

Proof. Let D be an irredundant dominating set of G ×c H with |D| =
Γ(G ×c H). From Lemma 2.3, we have that

∏

G(D) is a dominating set of
G or else

∏

H(D) is a dominating set of H.
Suppose that

∏

G(D) is a total-dominating set of G. Let E be a minimal
total-dominating set of G contained in

∏

G(D). For each a ∈ E choose one
pre-image axa ∈ D and put F = {axa|a ∈ E}. Let by ∈ V (G ×c H), then
there is some a ∈ E such that b ∼ a and by ∼ axa. Since F ⊂ D, F is
irredundant and since it is dominating, F = D and Γ(G ×c H) = |F | ≤
Γt(G) ≤ 2Γ(G). Similarly, if

∏

G(H) is a total-dominating set of H then
Γ(G ×c H) ≤ 2Γ(H).

Suppose that Γ(G) = Γ(H) = 1 then both graphs are isomorphic to
complete graphs and hence, so is G ×c H. In this case Γ(G ×c H) = 1.

Suppose that Γ(G)=1 (i.e G ∼= Kn) and Γ(H)>1. Now, if |
∏

G(D)| > 1
then

∏

G(D) is a total-dominating set and Γ(G ×c H) ≤ 2 ≤ Γ(G)Γ(H). If
∏

G(D) = {a} then D = {a}×E where E is an irredundant dominating set
of H and again we have Γ(G ×cH) ≤ Γ(G)Γ(H). (By the commutativity of
the product, we do not have to consider Γ(H) = 1 and Γ(G) > 1.)

We may suppose, therefore, that both Γ(G) and Γ(H) are at least two.
Suppose that

∏

G(D) is not a dominating set of G. Then there exists a ∈
V (G)−N [

∏

G(D)]. Since D dominates {a}×H, for every vertex ax ∈ {a}×H
there is a vertex by ∈ D where by ∼ ax. But, since b ⊥ a it follows that
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y ∼ x: that is,
∏

H(D) contains a total dominating set of H. Therefore, in
this case, Γ(G ×c H) ≤ 2Γ(H) ≤ Γ(G)Γ(H).

Finally, therefore, we may assume that both
∏

G(D) and
∏

H(D) are do-
minating but not total-dominating sets in their respective graphs. Let E(F )
be an irredundant dominating set of G(H) contained in

∏

G(D) (
∏

H(D)).
Let E =CG∪SG and F =CH ∪SH where SG is the set of isolated vertices
and CG is the union of the connected components in 〈E〉 and CH , SH are
defined similarly for F. Let W be a set formed by taking one pre-image (not
necessarily distinct) for each vertex of CG ∪ CH . Now W dominates every
vertex of (N [CG]×H)∪ (G×N [CH ]) so that no other vertex of D can have
a vertex of (N [CG] ×H) ∪ (G×N [CH ]) as its private neighbor.

Let X be a set formed by taking one pre-image (not necessarily distinct)
for each vertex of SG∪SH . Now X dominates every vertex of (N(SG)×H)∪
(G×N(SH)) so that no other vertex of D can have a vertex of (N(SG)×H)∪
(G × N(SH)) as its private neighbor. Therefore, only vertices of SG × SH

are available as private neighbors. Consequently, since |CG| + |SG| ≤ Γ(G)
and |CH | + |SH | ≤ Γ(H), we have that

Γ(G ×c H) = |D| ≤ |CG| + |CH | + Γ(G) − |CG| + Γ(H) − |CH |

+(Γ(G) − |CG|)(Γ(H) − |CH |)

= Γ(G) + Γ(H) + (Γ(G) − |CG|)(Γ(H) − |CH |)

≤ Γ(G)Γ(H).

The last inequality follows since all of |CG|, |CH |, Γ(G) and Γ(H) are at
least 2.

2.4. Conjectures

In addition to Vizing’s conjecture, we believe the following statements to be
true but we were not able to find proofs. For all graphs G and H

1. ir(G H) ≥ ir(G)ir(H).

2. i(G×H) ≥ i(G)i(H).

3. γ(G H) ≥ γ(G)γ(H) – Vizing’s conjecture.

4. Γ(G×H) ≥ Γ(G)Γ(H); Γ(G H) ≥ Γ(G)Γ(H).

5. IR(G ×c H) ≤ IR(G)IR(H); IR(G×c H) ≤ IR(G)IR(H).

6. χ(G cH) ≥ χ(G)χ(H); χ(G×c H) ≥ χ(G)χ(H).

7. ψ(G©∼= H) ≥ ψ(G)ψ(H); ψ(G×c H) ≥ ψ(G)ψ(H).

The other missing entries in our tables we believe to have counterexamples,
but we have not been able to find any.
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3. Other Multiplicative Results

Some of the inequalities presented in the previous sections can be improved
by using combinations of different parameters. These are included in this
section and are previewed in the next table. The entries in the table are

Table 3

⊗ = × × • ∇

ir ≤ γtγ (1.1) ≤ γt (1.1) ≤ γt (i1)
γ ≤ γtγt (x) ≤ γ|V | (x) ≤ γ2 (2.2) ≤ γt (e2) ≤ γt (e1)

≥ P2γt (x2) ≥ P2γ [19] ≥ P2γ (3.4)
i ≤ i|V | (x2) ≤ i2 (2.2) = i2 (2.8) ≤ i2 (x)3

β ≥ β|V | (x) ≥ β2 (2.2) ≥ ρ2 [27] = β2 [7] ≥ β2 (x)
Γ ≥ β|V | (x) ≥ β2 (1.1) ≥ Γ2 (2.2) ≥ βΓ (x) ≥ β2 (x)

≤ Γ2 (2.10)
IR ≥ IR2 (2.2) ≥ IR2 (2.2) ≥ IR2 (2.2) ≥ βIR (x) ≥ β2 (x)

≤ IR2 (2.11)
γt ≤ γ2

t
(x) ≤ γtγ (x) ≤ γt (2.5) ≤ γt (e1)

Γt ≥ βΓt (x)
χ ≤ min{χ, χ} = max{χ, χ}[28] ≤ χ2 (2.2) ≤ χ2 [7] ≤ χ2 [3]

≥ χ(G) + 2χ(H)
−2[7]

ψ ≥ max{ψ,ψ}([13]) ≥ ψ2 (2.2) ≥ ψ2 (2.2)
d ≥ d2 (2.2) ≥ d2 (2.2)

⊗ = ©∼= ×c c ×c

ir ≤ ir + ir (2e) ≤ min{ir, ir}(e) ≤ 3(1.1) ≤ min{γ, γ}(1.1)
γ ≤ γ + γ − 1(3.5) ≤ min{γ, γ}(2.5) ≤ 3 (3.7) = min{γ, γ}(3.11)
i = i2 (2.9) = min{i, i} (3.6) = min{i, i}(3.10)
β = β2 [4] = max{β, β} (3.6) = min{β, β}(3.10)
Γ ≤ Γ2 (2.12) ≤ max{Γ,Γ, 4} (3.7) = max{Γ,Γ}(3.11)

≥ max{Γ,Γ} (2.2)
IR ≥ β2 (x) ≤ max{4, IR, IR}(3.6)

≥ max{IR, IR}(3.6)
γt ≤ γ2

t
(2.2) ≤ γt (o) ≤ 6 (1.1) ≤ γt (o)

χ ≤ χ2 [3]
ψ ≥ ψ2 (2.2) ≥ |V (G)|(ψ(H) − |S|) ≥ ψ|V | (x4)

+ψ(G)|S| (3.8)
d ≥ d2(2.2) ≥ d|V | (x) ≥ |V |2/4 (3.9) ≥ d|V | (x)
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parameters that have been stripped of references to the factors. For the
commutative products the order is unimportant and there is an implied
optimization operator. For the lexicographic product, the order is important
and the parameters refer to the factors in that order, or if only one parameter
is given, this refers to the first factor.

In the table, (x) means the cartesian product of two of the indicated
sets results in a set of the required type; (e) means that an appropriate set
in one graph multiplied by a single vertex from the other graph is a set
of the required type, (2e) means take the union of two such sets where an
appropriate set is taken from both factors; (o) means that the inequality
is true because of the inclusion order of the products; square brackets are
references; all other numbers refer to the Lemma or Corollary where the
proof can be found. The superscript 1 means the result is only true for
graphs with a minimum-sized total-dominating set D where for all vertices
of G there is a vertex of D to which it is not adjacent. The superscript 2
means that the result is true if G has no isolated vertices. The superscript 3
means the result is only true for graphs with a minimum-sized independent
dominating set I such that for all vertices of G there is a vertex of I to
which it is not adjacent. The superscript 4 means the result is only true for
graphs with an independence partition of maximum size where no subset is
of cardinality 1. The set S refers to a set of singletons in an independence
partition of G.

3.1. Categorical Product

Theorem 3.1. Let G be a graph with no isolated vertices. Then, for every

graph H,

γ(G×H) ≥ P2(H)γt(G).

Proof. Let P be a maximum 2-packing of H. Let D be any dominating
set of G × H. For each x ∈ V (H), set Gx = V (G) × {x} and Ex = D ∩
V (G×N [x]).

Note that, if, for some x ∈ V (H), Ex ∩ Gx = ∅ then every ax ∈ Gx

must be adjacent to some by ∈ Ex with b ∈ N(a) and y ∈ N(x). In this
case, let A = {c|cy ∈ Ex} then A is a total-dominating set of G and |Ex| ≥
|A| ≥ γt(G). On the other hand, if x ∈ V (H), Ex ∩ Gx 6= ∅, then replace
each vertex ax ∈ Ex with a vertex by where b ∼ a and y ∼ x to form the
set F. F still dominates Gx, F ∩Gx = ∅ and so by the previous argument,
|Ex| ≥ |F | ≥ γt(G).

Therefore, if P = {y1, y2, . . . , yr} is a maximum 2-packing of H then |D ∩
V (G × N [yi])| ≥ γt(G), and for i 6= j, V (G × N [yi]) ∩ V (G × N [yj ]) = ∅.
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Thus |D| ≥ P2(H)γt(G).

Corollary 3.2. Let G and H be graphs. Then

1. γ(G×H) ≥ P2(G)γ(H).

2. If G is a graph with P2(G) = γ(G) then γ(G×H) ≥ γ(G)γ(H).

Proof. 1. Let G = E ∪F where E is the set of isolated vertices of G. Then
γ(G×H) ≥ P2(H)(γt(F ) + |E|) ≥ P2(H)γ(G).

2. Immediate.

These lower bounds can be achieved. For example, P2(P4) = γ(P4) = 2,
γt(C6) = 4 and it is straightforward to verify that γ(C6 × P4) = 8.

3.2. Strong Product

Theorem 3.3. If G is a graph with P2(G) = γ(G) then γ(G × H) =
γ(G)γ(H).

Proof. Let D be a dominating set of G × H and a ∈ V (G). Let E =
D ∩ (N [a] × V (H)). E dominates {a} × H and so every vertex of H is
dominated by

∏

H(E) and therefore |D ∩ (N [a] × V (H))| ≥ γ(H).

Consider g = P2(G) = γ(G) disjoint closed neighborhoods N [a1],
N [a2], . . . , N [ag] in G. Then N [a1]×V (H), N [a2]×V (H), . . . , N [ag]×V (H)
are pairwise disjoint. If D is any dominating set of G ×H, then by the pre-
ceding paragraph, for each i, |D ∩ (N [ai] × V (H))| ≥ γ(H). It follows that

|D| ≥ |D ∩ (∪g
i=1
N [ai] × V (H))|

= | ∪g
i=1

D ∩ (N [ai] × V (H))| ≥ γ(G)γ(H).

This, together with Corollary 2.2(2), gives the result.

Corollary 3.4. γ(G ×H) ≥ P2(G)γ(H).

As an application of this result, note that if T is a tree then γ(T ×H) =
γ(T )γ(H).

3.3. Equivalence Product

Although this product produces many edges, note that if G ∼= Kn then
G×H ∼= G©∼=H. Thus to construct an equivalence product with γ(G©∼=H) =
r let G = K3, and H = P3r.
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Theorem 3.5. Let G and H be graphs.

1. If diam(G) ≥ 5, then γ(G©∼= H) ≤ γ(G).

2. Suppose that P2(G) ≥ 3 and P2(H) ≥ 3, then γ(G©∼= H) ≤ 3.

3. Suppose that P2(G) ≥ 2 and P2(H) ≥ 2, then γ(G©∼= H) ≤ 4.

4. γ(G©∼= H) ≤ γ(G) + γ(H) − 1.

Proof. 1. Let D be a minimum dominating set of G and x ∈ V (H). Con-
sider the set D × {x}. Let bz ∈ V (G©∼= H). Suppose that z ≃ x then for
some g ∈ D, b ≃ g and so bz ≃ gx. If z ⊥ x then there is some g ∈ D such
that g ⊥ b and so again, bz ≃ gx.

2. Let {a, b, c} and {x, y, z} be 2-packings of G and H, respectively, then
consider D = {ax, by, cz}. Let dv ∈ V (G©∼= H). If d /∈ N [c] and v /∈ N [z]
then cz dominates dv. If d ∈ N [c] and v ∈ N [z] then again cz dominates
dv. If d ∈ N [c] and v /∈ N [z] then d /∈ N [a] ∪ N [b] and either v /∈ N [x] or
v /∈ N [y]. Therefore either ax or by dominates dv. The case d /∈ N [c] and
v ∈ N [z] is similar to the last case. Therefore, D dominates G©∼= H.

3. Let {a, b} and {x, y} be 2-packings of G and H respectively. Then D =
{ax, ay, bx, by} is a dominating set for G©∼= H.

4. Let D = {g1, g2, . . . , gk} and E = {h1, h2, . . . , hs} be minimum domi-
nating sets of G and H. Consider the set F = (D × {h1}) ∪ ({g1} × E).
Let bz ∈ V (G©∼= H). If b ≃ g1 then there is some j such that z ≃ hj and
therefore bz ≃ g1hj ; if z ≃ h1 then there is some j such that b ≃ gj and
therefore bz ≃ gjh1; if b ⊥ g1 and z ⊥ h1 then bz ≃ g1h1. Therefore, F is a
dominating set of G©∼= H.

3.4. Cartesian complement

Theorem 3.6. Let G and H be graphs. Then

1. if min{i(G), i(H)} = 1, then i(G cH) = max{i(G), i(H)}, otherwise

i(G cH) = min{i(G), i(H)}.

2. β(G cH) = max{β(G), β(H)}.

3. max{Γ(G),Γ(H)} ≤ Γ(G cH) ≤ max{4,Γ(G),Γ(H)}.

4. max{IR(G), IR(H)} ≤ IR(G cH) ≤ max{4, IR(G), IR(H)}.

Proof. Let S and T be dominating sets of G and H, respectively. If |S| > 1
then for each x ∈ V (H) the set S × {x} is a dominating set for G cH. If
|S| = 1 then for each a ∈ V (G) the set {a}×T is a dominating set for G cH.
In addition, suppose that S is an independent or irredundant set of G.
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Then for each x ∈ V (H) the set S × {x} is an, respectively, independent or
irredundant set for G cH. Therefore, by the symmetry of the product, we
have i(G cH) ≤ min{i(G), i(H)}, if min{i(G), i(H)} > 1 else i(G cH) ≤
max{i(G), i(H)}; β(G cH) ≥ max{β(G), β(H)}, max{Γ(G),Γ(H)} ≤
Γ(G cH) and max{IR(G), IR(H)} ≤ IR(G cH).

Let a ∈ V (G) and x ∈ V (H). Then the only vertices of G cH not
adjacent to ax are in the subsets {a}×N [x] and N [a]×{x}. Moreover, any
vertex in either subset dominates all the vertices of the other. Therefore,
the only independent sets containing more than one vertex are of the form
{a}×X or A×{x} where A and X are independent sets. Thus i(G cH) =
min{i(G), i(H)} and β(G cH) = max{β(G), β(H)}.

Let ax and by be two vertices with a 6= b and x 6= y. The only vertices
of G cH not dominated by {ax, by} are bx and ay. Therefore, if D is a
maximal irredundant or minimal dominating set such that both |

∏

G(D)|
and |

∏

H(D)| are at least two then |D| ≤ 4. Thus, if |D| ≥ 5 then either
D ⊆ {a} ×H for some vertex a or D ⊆ G× {x} for some vertex x.

Suppose D is an irredundant set of G cH, |D| ≥ 5 and D ⊆ {a}×H for
some vertex a. Let X ⊆ V (H), |X| ≥ 3. If for some x ∈ X, N [x] ⊆ N [X−x]
then {a} ×X is not an irredundant set of G cH since I({a} ×X, ax) = ∅.
Therefore, D is an irredundant set of {a} ×H. Thus, by the symmetry of
the product, we have IR(G cH) ≤ max{4, IR(G), IR(H)}.

Suppose D is an irredundant dominating set of G cH, |D| ≥ 5 and
D ⊆ {a} ×H for some vertex a. Trivially, D must be a dominating set of
{a}×H and, by the previous paragraph, D must also be an irredundant set
of {a} ×H. Thus Γ(G cH) ≤ max{4,Γ(G),Γ(H)}.

Since IR(2K2
c2K2) = Γ(2K2

c2K2) = 4, it is not possible to remove the
‘4’ from the previous result.

Theorem 3.7. Let G and H be graphs. If one of G and H contains an

edge then γ(G cH) ≤ 2; if both are trivial graphs then γ(G cH) ≤ 3.

Proof. Let a, b be distinct vertices of G and x, y distinct vertices of H. If
one or both of (a, b) and (x, y) are edges then {ax, by} is a dominating set
of G cH. If both graphs are trivial then {ax, ay, bx} dominates.

For a graph G let s(G) be the least number of singleton sets in an indepen-
dence partition of G where the size of the partition is ψ(G).

Theorem 3.8. Suppose that G and H are graphs, then ψ(G cH) ≥

max{|V (G)|(ψ(H)−s(G))+s(G)ψ(G), |V (H)|(ψ(G)−s(H))+s(H)ψ(H)}.
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Proof. Let A1, A2, . . . , Ak, S1, S2, . . . , Ss be the sets of an independence
partition of G where |S1| = |S2| = . . . = |Ss| = 1. Also let Y1, Y2, . . . , Yf

be an independence partition of H. Consider the sets Ai × {x}, 1 ≤ i ≤ k,
x ∈ V (H) and {a} × Yj , 1 ≤ j ≤ f , a ∈ ∪s

i=1
Si.

All the sets in this partition of V (G × H) are independent. Consider
two sets of the form Ai×{x} and Aj ×{y}. If i = j, x 6= y then for a, b ∈ Ai,
a 6= b, it follows that ax ∼ by. If i 6= j then there exists a ∈ Ai and b ∈ Aj

such that a ∼ b so again ax ∼ by. Thus the union of two sets such sets is
not an independent set.

Similar arguments show that the same is true for any two sets of the
form {a} × Yi and {b} × Yj .

Consider then a set Ai × {x} and {a} × Yj . If either a ∈ N(Ai) or
x ∈ N(Yj) then the union of these two sets is not independent. If a 6∈ N(Ai)
and x 6∈ N(Yj) then for any b ∈ Ai and y ∈ Yj we have bx ∼ ay.

Thus, the sets Ai × {x}, 1 ≤ i ≤ k, x ∈ V (H) and {a} × Yj , a ∈ V (G),
1 ≤ j ≤ f form an independence partition of G cH.

Theorem 3.9. Suppose that G and H are graphs that have maximum-

matchings with g and h edges respectively. Then

d(G cH) ≥ (
⌊ |V (G)|

2

⌋

+ g)(
⌊ |V (H)|

2

⌋

+ h) − 2gh.

In particular, d(G cH) ≥ |V (G)||V (H)|/4.

Proof. Let F and W be maximum matchings of G and H respectively.
Then G−F and H −W are independent sets. In each of these independent
sets partition the vertices into pairs. If either set is of odd cardinality then
form a single group of size three in that set. The following are all dominating
sets:

1. If both (a, b) ∈ F and (x, y) ∈W then take the sets {ax, by} and {ay, bx}.

2. If (a, b) ∈ F and x, y are paired in H −W then take the sets {ax, by}
and {ay, bx}; if x, y, z is the group of size three then take {ax, by, az} and
{ay, bx, bz}.

3. If a, b are paired in G − F and xy ∈ W then take the sets {ax, by}
and {ay, bx}; if a, b, c is the group of size three then take {ax, by, cx} and
{ay, bx, cy}.

4. For a pair or triple, A, grouped in G− F and a pair or triple, B grouped
in H −W take the set A×B.
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These sets partition V (G×H) so that if g = |F | and h = |W | then we have

d(G cH) ≥ 2gh+ 2g
⌊ |V (H)| − 2h

2

⌋

+ 2h
⌊ |V (G)| − 2g

2

⌋

+
⌊ |V (H)| − 2h

2

⌋⌊ |V (G)| − 2g

2

⌋

= (
⌊ |V (G)|

2

⌋

+ g)(
⌊ |V (H)|

2

⌋

+ h) − 2gh.

This expression is always at least |V (G)||V (H)|/4.

3.5. Categorical complement

Theorem 3.10. For all graphs G and H, i(G×cH) = min{i(G), i(H)} and

β(G×c H) = min{β(G), β(H)}.

Proof. Let I be a maximal independent set of G×c H. From Lemma 2.4
both

∏

G(I) and
∏

H(I) are independent and at least one of them is maximal
independent. It follows that

min{β(G), β(H)} ≥ |I| ≥ min{i(G), i(H)}.

Let X = {g1, g2, . . . , gs} and Y = {h1, h2, . . . , hr} be maximal independent
sets of G and H respectively, with k = min{s, r}. Let M = {g1h1, . . . , gkhk}.
M is an independent set of G ×c H. Also, it is easily seen that if ax ∈
V (G ×c H), then ax ∈ N [M ] and so M is a dominating set. Therefore,
if |X| = i(G) and |Y | = i(H) then i(G ×c H) ≤ |M | = min{i(G), i(H)},
that is, i(G ×c H) = min{i(G), i(H)}. Similarly, if |X| = β(G) and |Y | =
β(H) then β(G ×c H) ≥ |M | = min{β(G), β(H)}, and so β(G ×c H) =
min{β(G), β(H)}.

Theorem 3.11. For all graphs G and H,

1. γ(G×c H) = min{γ(G), γ(H)}.

2. Γ(G×c H) = max{Γ(G),Γ(H)}.

Proof. Let D be a minimal dominating set of G×c H.

1. By Lemma 2.3(1) it follows that one of
∏

G(D) or
∏

H(D) is a dominating
set hence γ(G×c H) ≥ min{γ(G), γ(H)}.

If E is a dominating set of G and x ∈ H then E × {x} is a dominating
set of G×c H. Consequently, γ(G×c H) = min{γ(G), γ(H)}.

2. By Lemma 2.3(1), we may suppose that
∏

G(D) is a dominating set. It
is minimal since if any vertex is redundant in

∏

G(D) its pre-image is also
redundant in D. In addition, no two vertices of D project to the same vertex
in G, since if they did both would have the same closed neighborhood
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so that at least one would be redundant in D. Hence, Γ(G ×c H) ≤
max{Γ(G),Γ(H)}.

Let E be a dominating set of G. For each a ∈ E let pa ∈ I(E, a). Choose
x, y ∈ V (H), x ⊥ y. Then E × {x} is a dominating set of G ×c H and pay
is a private neighbor for ax. Consequently, Γ(G×c H) = max{Γ(G),Γ(H)}.
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[21] J. Nešetřil and V. Rödl, Products of graphs and their applications, in: Graph
Theory,  Lagów 1981 (Lecture Notes in Mathematics 1018, Springer, Berlin,
1983) 151–160; MR 85d:05179.

[22] R.J. Nowakowski and D. Rall, A survey of the introduction and history of

graph products, preprint.

[23] O. Ore, Theory of Graphs (Amer. Math. Colloq. Publ., Vol. 38, Amer.
Math. Soc., Providence, R.I., 1962).

[24] V. Pus, Chromatic number of products of graphs, Comment. Math. Univ.
Carolin. 29 (1988) 457–463; MR 90a:05088.

[25] F.S. Roberts, Graph theory and its applications to problems of society, CBMS-
NSF monographs (1978) #29 (S.I.A.M, Philadelphia, PA); MR 80g:90036.

[26] F.S. Roberts, On the mobile radio frequency assignment problem and the

traffic light phasing problem, in: Second International Conference on Combi-
natorial Mathematics (New York, 1978), Annals New York Acad. Sci. 319

(1979) 466–483; MR 81e:05071.

[27] M. Rosenfeld, On a Problem of C.E. Shannon in Graph Theory, Proc. Amer.
Math. Soc. 18 (1967) 315–319; MR 34 #7405.

[28] G. Sabidussi, Graphs with given group and given graph-theoretical properties,
Canad. J. Math. 9 (1957) 515–525; MR 20 #1322.

[29] G. Sabidussi, The composition of graphs, Duke Math. J. 26 (1959) 693–696;
MR 22 #1524.

[30] C.E. Shannon, The zero error capacity of a noisy channel, I.R.E., Trans. on
Inform. Theory, IT-2 (1956) 8–19; MR 19 #623.

[31] V.G. Vizing, The cartesian product of graphs, Vyčisl. Sistemy 9 (1963) 30–43;
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