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Abstract

A graph is said to be k-factor-critical if the removal of any set of
k vertices results in a graph with a perfect matching. We study some
properties of k-factor-critical graphs and show that many results on
q-extendable graphs can be improved using this concept.
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1. Introduction

The graphs G = (V, E) we consider here are undirected, simple and finite of
order |V | = n. A graph is even if its order is even and odd if its order is odd.
The neighborhood of a vertex x is the set N(x) = {y : y ∈ V and xy ∈ E}
and the degree of x is the integer d(x) = |N(x)|. The integer δ = min{d(x) :
x ∈ V } is called the minimum degree of G. For any set A ⊆ V , 〈A〉 denotes
the subgraph of G induced by A, G − A stands for 〈V \ A〉, and c(G − A)
denotes the number of connected components of G − A. A set A such that
c(G − A) > 1 is called a cutset of G. The connectivity of G is the integer
κ(G) = min{|A| : A is a cutset of G}. A claw of G is an induced subgraph
isomorphic to the star K1,3, and the claw center is the center of the star.
A matching F of G is a set of independent edges. The maximum matching

number of G is the integer ν(G) = max{|F | : F is a matching of G}. A
perfect matching, or a 1-factor, is a matching covering all the vertices of G.
For convenience, we will say that a graph of order 0 has a perfect matching.
A graph without perfect matching is called prime. Clearly, every odd graph
is prime. For details concerning the Matching Theory, the reader is referred
to [7] by Lovász and Plummer.
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The concepts of factor-critical and bicritical graphs were introduced by Gal-
lai [5] and by Lovász [6], respectively. A graph G is factor-critical if G − x

has a perfect matching for every vertex x of G. A graph G is bicritical if
G − x − y has a perfect matching for every pair of distinct vertices of G.
Motivated by the similitude and the interest of these two concepts, which
lead to powerful results, the author extended them to k-factor-critical graphs
in [3].

Definition. For a given integer k with 0 ≤ k ≤ n, a graph G of order n is
k-factor-critical, in brief k-fc, if G−X has a perfect matching for every set
X of k vertices of G.

Equivalently, G is k-factor-critical if 〈Y 〉 has a perfect matching for
every set Y of n − k vertices of G.

Remarks. 1. If a graph of order n is k-fc, then n and k have the same
parity, i.e., n + k is even.

2. 0-fc, 1-fc and 2-fc graphs are respectively graphs with a perfect matching,
factor-critical graphs and bicritical graphs. The only (n−2)-fc graph of order
n is the clique Kn.

3. With the convention that the graph of order 0 has a perfect matching,
every graph of order n is n-fc. The concept of k-factor-criticality for k =
n is thus not very interesting. We still admit the possibility for k to be
equal to n to get a definition more consistent with that of factor-critical
or bicritical graphs. In particular, the factor-critical components appearing
in the Edmonds-Gallai structure theorem can be effectively reduced to one
vertex, which corresponds to the case k = n = 1. But most properties of
k-fc graphs will be proved for n > k.

Examples of k-fc graphs. For a given integer k, 0 ≤ k ≤ n−3, a graph G

of order n is said to be k-hamiltonian [2] if the removal of any set of at most
k vertices of G results in a hamiltonian graph. Since any even cycle has a
perfect matching, every k-hamiltonian graph of order n with n + k even is
k-fc. Similarly, if we remove one vertex from an odd cycle we obtain a path
with a perfect matching. Hence every k-hamiltonian graph of order n with
n + k odd is (k + 1)-fc. The most famous examples of k-hamiltonian graphs
are powers of graphs whose hamiltonian properties have been extensively
studied. The qth power Gq of a connected graph G has as its vertices those
of G, and two distinct vertices u and v are adjacent in Gq if their distance in
G is at most q. For instance, it is known that if G is connected of order n,
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then Gk+2 is k-hamiltonian for any k, 1 ≤ k ≤ n − 3 [1]. On the other
hand, a graph Gk that is obtained by taking an arbitrary nonhamiltonian
graph having a perfect matching and by joining each of its vertices with
every vertex of a clique Kk is an example of a k-fc graph with n + k even
that is not k-hamiltonian.

In Section 2 of this paper, we study some simple properties of k-fc
graphs. In Section 3, we extend to k-fc graphs the characterization of 0-fc,
1-fc and 2-fc graphs in terms of the number of odd or prime components of
induced subgraphs of G. In Section 4, we discuss the relationship between
the concepts of k-factor-criticality and q-extendability.

2. Basic Properties of k-FC Graphs

We begin with some easy observations.

Theorem 2.1. For k ≥ 2, any k-fc graph of order n > k is (k − 2)-fc.

Proof. Let G be a k-fc graph of order n > k (i.e., by parity, n ≥ k+2) and
Y a set of n− (k − 2) ≥ 4 vertices of G. The set Y is not independent since
〈Y \ {z, t}〉 has a perfect matching for any pair {z, t} of vertices of Y . Let
xy be an edge of 〈Y 〉. Since G is k-fc, 〈Y \ {x, y}〉 has a perfect matching
F , and F ∪ xy is a perfect matching of 〈Y 〉.

As a first consequence we get that every k-fc graph of order n > k is 0-fc or
1-fc, depending on its parity. In particular

Corollary 2.2. For k ≥ 1, no k-fc graph G of order n > k is bipartite.

Proof. By theorem 2.1, G is 1-fc or 2-fc, and it is known, and easy to
check, that 1-fc or 2-fc graphs of order greater than 2 are not bipartite.

Theorem 2.3. If a graph G is k-fc, then G − Y is (k − p)-fc for every

integer p with 0 ≤ p ≤ k and every set Y of p vertices of G.

Proof. If Z is a set of k − p vertices of G − Y , then X = Y ∪ Z is a set of
k vertices of G and thus G − X = (G − Y ) − Z has a perfect matching.

The next property extends Gallai’s result saying that a connected graph G

is 1-fc if and only if ν(G − x) = ν(G) for every vertex x of G [5], to k-fc
graphs with k > 1.

Theorem 2.4. Let G be a graph of order n > 2 and maximum matching

number ν. For 2 ≤ k < n, the following three properties are equivalent.
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(i) The graph G is k-fc.

(ii) The integer n + k is even and ν(G − X) = n−k
2 = ν − ⌊k

2⌋ for every

set X of k vertices of G.

(iii) The graph G contains at least one edge, n + k is even, and ν(G − X)
has the same value for any set X of k vertices of G.

Proof. (i) =⇒ (ii). For any k-fc graph G of order n > k, n + k is even and
for any subset X of V with |X| = k, ν(G−X) = n−k

2 . If n and k are even,
then G is 0-fc and ν = n

2 . If n and k are odd, G is 1-fc and ν = n−1
2 . In

both cases, n−k
2 = ν − ⌊k

2⌋.

(ii) =⇒ (iii). Obvious.

(iii) =⇒ (i). Let G be a graph satisfying (iii), xy an edge of G, X a set
of k vertices containing x and y, and M a maximum matching of G − X.
If at least two vertices u and v of G − X are not covered by M , then for
X ′ = (X − {x, y}) ∪ {u, v}, which is another set of k vertices of G, M ∪ xy

is a matching of G−X ′ greater than M , in contradiction to the hypothesis.
Therefore, by parity, M is a perfect matching of G−X and thus G−Y has
also a perfect matching for any other set Y of k vertices of G.

For k = 1, the implication (iii) =⇒ (i) fails, as shown for instance by the
graph formed by one odd clique and two isolated vertices. This explains the
necessity of the hypothesis “G is connected” in Gallai’s statement.

We finish this section with two connectivity results.

Theorem 2.5. Every k-fc graph of order n > k is k-connected and this

result is sharp.

Proof. If k = 0, the result is obvious, and obviously sharp since a graph
with a perfect matching is not necessarily connected. Suppose now that the
k-fc graph G with k ≥ 1 admits a cutset S of k − 1 vertices. Let C1 and C2

be two components of G−S, and ai a vertex of Ci for i ∈ {1, 2}. Since both
G−(S∪{a1}) and G−(S∪{a2}) have a perfect matching, every component
Ci must be even and odd, a contradiction. Therefore each cutset of G has
at least k vertices. The graph G obtained by joining all the vertices of a
clique Kk to all the vertices of two disjoint even cliques K2q is k-fc and its
connectivity is exactly k, which proves the sharpness of the result.

Theorem 2.6. For k ≥ 1, every k-fc graph G of order n > k is (k + 1)-
edge-connected.
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Proof. By Theorem 2.5, G is at least k-edge-connected. Suppose G is not
(k + 1)-edge-connected and let F = {aibi} be a set of k edges such that
G−F consists of two connected components 〈X〉 and 〈Y 〉, with ai ∈ X and
bi ∈ Y for 1 ≤ i ≤ k. Let A = {ai; 1 ≤ i ≤ k} and B = {bi; 1 ≤ i ≤ k}. If
|A| = k, i.e., if the k vertices ai are distinct, then A′ = (A \ {ak}) ∪ {bk} is
a cutset of G, and, since |A| = k, the component 〈(X \A)∪ {ak}〉 of G−A′

has a perfect matching. Hence |X| − k + 1 is even, X 6= A, A is another
cutset of k vertices of G, and the component 〈X \ A〉 of G − A has also a
perfect matching. This leads to a contradiction. Hence |A| < k and X = A,
for otherwise A is a cutset of G smaller than k. Since G is k- connected,
every vertex has degree at least k. Every vertex of A has at most |A| − 1
neighbors in A, and thus at least k − |A| + 1 neighbors in B. Therefore,
k = |F | ≥ |A|(k − |A|+ 1), from which (|A| − 1)(k − |A|) ≤ 0, which implies
|A| = 1. Similarly, Y = B and |B| = 1, which gives a final contradiction
since n ≥ 3. Hence G is (k + 1)-edge-connected.

Theorem 2.7. Every k-fc graph of order n > k has at least
(k+1)n

2 edges

and this bound is sharp.

Proof. In a k-fc graph, the minimum degree is at least k + 1 since no
vertex can be isolated after the removal of k vertices (for k ≥ 1, this is
also a consequence of Theorem 2.6), and thus the number of edges is at

least (k+1)n
2 . It is known that every (k − 1)-hamiltonian graph of order n

has minimum degree at least k + 1, and thus at least (k+1)n
2 edges [2]. In

[15] and [8], the authors give examples of (k−1)-hamiltonian graphs having
exactly this number of edges. These graphs are, if k is odd, powers of cycles,
and if k is even, powers of cycles plus all or part of the diameters where one
pair of consecutive diameters is untwisted in some particular cases. As seen
in the previous section, when n + k is even these graphs are k-fc. Hence the
result on the number of edges, and thus that on the edge-connectivity, of
k-fc graphs is sharp.

3. Tutte and Gallai Type Properties

Let B be a set of vertices of the graph G. We denote by co(G − B) the
number of odd components of G − B and by cp(G − B) the number of its
prime components. Clearly co(G−B) ≤ cp(G−B) since a component of odd
order has no perfect matching. Tutte and Gallai respectively characterized
0-fc and 1-fc graphs in terms of co(G − B) and cp(G − B) where B is any
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subset of V . In order to compare their results and to extend them to k-fc
graphs, we first unify the notation.

Definition. For a graph G = (V, E), the properties Qk, Q′
k

and Q′′
k

are
defined as follows:

Qk : co(G − B) ≤ |B| − k for any B ⊆ V with |B| ≥ k,

Q′
k

: cp(G − B) ≤ |B| − k for any B ⊆ V with |B| ≥ k,

Q′′
k

: cp(G − B) ≤ |B| − k + 1 for any B ⊆ V with |B| ≥ k.

Note that Property Q′
k

is stronger than Qk and than Q′′
k
.

The first result in the domain was Tutte’s Theorem.

Theorem 3.1 (Tutte [14]). The following two properties are equivalent.

(i) The graph G is 0-fc.

(ii) The graph G satisfies Property Q0.

There exist many proofs of Tutte’s Theorem. In one of them, Gallai implic-
itly gave another characterization of 0-fc graphs, and a characterization of
1-fc graphs.

Theorem 3.2 (Gallai [5]). 1. The following two properties are equivalent.

(i) The graph G is 0-fc.

(ii) The graph G satisfies Property Q′
0.

2. If G is not 0-fc, there exists a subset B of V with cp(G − B) > |B| such

that every prime component of G − B is 1-fc.

Theorem 3.3 (Gallai [5]). The following two properties are equivalent.

(i) The graph G is 1-fc.

(ii) The graph G is connected, not 0-fc, and satisfies Property Q′′
1.

Lovász gave a similar characterization of 2-fc graphs.

Theorem 3.4 (Lovász [6]). The following two properties are equivalent.

(i) The graph G is 2-fc.

(ii) The graph G satisfies Property Q2.

Starting from Tutte’s and Gallai’s results, we extend Theorems 3.1, 3.2 and
3.4 (related to Qk and Q′

k
) to k-fc graphs in Theorem 3.5 and we extend

Theorem 3.3 (related to Q′′
k
) to k-fc graphs in Corollary 3.6.
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Theorem 3.5. 1. For a graph G of order n ≥ k, the following three prop-

erties are equivalent.

(i) The graph G is k-fc.

(ii) The graph G satisfies Property Qk.

(iii) The graph G satisfies Property Q′
k
.

2. If G is not k-fc, then, for every subset S of V of maximum order among

all the subsets B such that |B| ≥ k and cp(G − B) > |B| − k, every prime

component of G − S is 1-fc. If moreover n + k is even, then S is a cutset

and co(G − S) > |S| − k + 1.

Proof. 1. For k = 0, the equivalence follows from Theorems 3.1 and 3.2.
For k = n, the three properties are always satisfied. We suppose henceforth
1 ≤ k < n.

(i) =⇒ (iii). Let G be a k-fc graph, B any set of at least k vertices of G,
and X an arbitrary set of k vertices of B. Put B′ = B \X and V ′ = V \X.
Hence V ′\B′ = V \B. By (i), 〈V ′〉 has a perfect matching. By Theorem 3.2,
cp(V

′ \ B′) ≤ |B′| and thus cp(G − B) ≤ |B| − k. Therefore G satisfies Q′
k
.

(iii) =⇒ (ii). Obvious since Q′
k

implies Qk.

(ii) =⇒ (i). Suppose G satisfies Qk. Let X be any set of k vertices of G,
Y any subset of V \ X and B = X ∪ Y . By (ii), co(G − B) ≤ |B| − k, or,
equivalently, co((G − X) − Y ) ≤ |Y | for any Y ⊆ V \ X. By Theorem 3.1,
G − X admits a perfect matching and thus G is k-fc.

2. Let G be a graph of order n that is not k-fc. By the first part of the
theorem, there is a subset B of V such that |B| ≥ k and cp(G−B) > |B|−k.
Among all such sets B, choose a set S of maximum order and suppose that
some prime component Γ of G−S is not 1-fc. By Theorem 3.3, Γ contains a
subset C with |C| ≥ 1 and cp(Γ−C) ≥ |C|+1. If we put D = S∪C, the prime
components of G−D are those of G−S except Γ, and those of Γ−C. Hence
cp(G−D) = cp(G−S)−1+cp(Γ−C) > |S|−k−1+ |C|+1 = |D|−k, which
contradicts the maximality of S. Therefore, every prime component of G−S

is 1-fc and thus odd, which implies cp(G − S) = co(G − S). Moreover, it is
easy to observe that if n+k is even, then the three integers |V \S|, co(G−S)
and |S| − k have the same parity. Therefore co(G − S) > |S| − k + 1 ≥ 1
and thus S is a cutset.

Corollary 3.6. For a graph G of order n > k ≥ 1, the following three

properties are equivalent.



48 O. Favaron

(i) The graph G is k-fc.

(ii) The graph G satisfies Property Q′′
k
, is k-connected, and is not (k−1)-fc.

(iii) The graph G satisfies Property Q′′
k

and n + k is even.

Proof. (i) =⇒ (ii). Any k-fc graph G of order n > k is k-connected by
Theorem 2.5, satisfies Q′′

k
by Theorem 3.5 (since Q′

k
implies Q′′

k
), and is not

(k − 1)-fc for parity reasons.

(ii) =⇒ (iii). Let G satisfy (ii). By Q′′
k
, cp(G − D) ≤ |D| − k + 1 and thus

co(G−D) ≤ |D|−k+1, for every subset D of at least k vertices of V . Since
G is not (k−1)-fc, it does not satisfy Qk−1 by Theorem 3.5, and hence there
exists a set B of at least k−1 vertices of V for which co(G−B) > |B|−k+1.
From what precedes, |B| = k−1. Since G is k-connected, G−B is connected
and co(G − B) ≤ 1. Therefore co(G − B) = 1, |V | and |B| have different
parities and, since |B| = k − 1, n + k is even.

(iii) =⇒ (i). If G is not k-fc and n + k is even, then, by Theorem 3.5, there
exists a set S of at least k vertices for which co(G − S) > |S| − k + 1, in
contradiction to Q′′

k
.

4. Factor-Criticality and Matching Extension

In 1980, Plummer introduced the concept of q-extendability [9]. An even
graph G is q-extendable if G is connected, contains a set of q independent
edges, and every set of q independent edges extends to (i.e., is a subset
of) a perfect matching. Clearly, for n and k even, every k-fc graph is k

2 -
extendable and hence the class of k-fc graphs is intermediate between the
class of k-hamiltonian graphs and that of k

2 -extendable graphs. There are
many results on matching extension that have been obtained recently (see
e.g. [12]). Some of these results, saying that “if an even graph G satisfies
Property P, then G is q-extendable”, can be improved to “if an even graph
G satisfies P, then G is 2q-fc” (and an analogous statement when G is odd).
This is the case when, in the proof of the q-extendability, we delete the set
X of the 2q endvertices of q independent edges, and show that G − X has
a perfect matching without using the property that 〈X〉 itself has a perfect
matching. The first example of such a proof can be found in [4]. Two other
examples of simple adaptations of proofs and results on matching extension
(see [10] and [11]) to k-factor-criticality are given below.

The toughness of a noncomplete graph G is the number tough(G) =

min{ |S|
c(G−S) : S is a cutset of G}. If G is a clique, we put tough(G) = +∞.
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Theorem 4.1. Let G be a graph of order n, and let k be an integer such

that 2 ≤ k < n and n + k is even. If tough(G) > k
2 , then G is k-fc, and the

value k
2 is sharp.

Proof. Suppose G is not k-fc and let X be a set of k vertices of G such
that G′ = G − X has no perfect matching. By Tutte’s Theorem 3.1, there
exists a set S of vertices of G′ such that c0(G

′ − S) > |S|. By parity,
co(G

′ − S) ≥ |S| + 2, and thus c(G′ − S) ≥ s + 2, where s = |S|. The set
S ∪ X is a cutset of G, and c(G − (S ∪ X)) = c(G′ − S). By the definition

of toughness, tough(G) ≤ |S∪X|
c(G−(S∪X)) ≤ s+k

s+2 ≤ k
2 since k ≥ 2. Therefore, if

tough(G) > k
2 , then G is k-fc. The toughness of the graph G obtained by

joining all the vertices of a clique Kk to all the vertices of two disjoint odd
cliques K2q+1 is equal to k

2 , and G is not k-fc, which proves the sharpness

of the bound k
2 .

The t-degree sum and the t-generalized independent minimum degree of G

are respectively σt(G) = min{Σwi∈W d(wi) : W is an independent set of t

vertices of G} and Ut = min{|
⋃

wi∈W N(wi)| : W is an independent set of t

vertices of G}. These two parameters are defined for t at most equal to the
independence number of G. For t = 1, σ1 = U1 = δ.

Theorem 4.2. Let G be a graph of order n and connectivity κ, and let k

be an integer such that 0 ≤ k ≤ κ and n + k is even. If for some integer t

with 1 ≤ t ≤ κ − k + 2, σt(G) ≥ t(n+k
2 − 1) + 1 or Ut(G) ≥ n − κ + k − 1,

then G is k-fc.

Proof. Let G be a graph of order n and connectivity κ, which is not k-fc
for some integer k ≤ κ such that n + k is even. Let X be a set of k vertices
of G such that G′ = G − X has no perfect matching. As in Theorem 4.1,
by Tutte’s theorem, there is a set S of vertices of G′ such that the number
c of components Ci of G′ − S is at least |S| + 2. Let s = |S|. Since G is
κ-connected, G′ is (κ − k)-connected and thus s ≥ κ − k. On the other
hand, the sets X, S and Ci are all disjoint and thus |X|+ |S|+ c ≤ n, which
implies, since c ≥ s + 2, s ≤ n−k

2 − 1. For 1 ≤ i ≤ c, let wi be a vertex of
Ci. For any integer t with 1 ≤ t ≤ κ − k + 2 ≤ c, the set {wi; 1 ≤ i ≤ t} is
independent.

1. The degree in G of each wi satisfies d(wi) ≤ |X| + |S| + |Ci − {wi}| =

k + s + |Ci| − 1. Therefore σt ≤
t∑

i=1

d(wi) ≤ t(k + s − 1) +
t∑

i=1

|Ci|. But
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t∑

i=1

|Ci| = |V \ S \ X \
c⋃

i=t+1

Ci|

= n − s − k −
c∑

i=t+1

|Ci| ≤ n − s − k − (c − t) ≤ n − k + t − 2s − 2

and thus σt ≤ tk + (t − 2)s + n − k − 2.
If t ≥ 2, we get σk ≤ tk + (t − 2)(n−k

2 − 1) + n − k − 2 = t(n+k
2 − 1).

Hence if for some t between 2 and κ− k +2, σt > t(n+k
2 − 1), then G is k-fc.

For t = 1 the condition σt(G) ≥ t(n+k
2 − 1) + 1 reduces to δ ≥ n+k

2 and
it is known [2] that this implies that G is k-hamiltonian and thus k-fc.

2. The neighborhood in G of each wi satisfies N(wi) ⊆ X∪S∪Ci. Therefore,

Ut ≤ |
⋃t

i=1 N(wi)| ≤ |X|+|S|+
t∑

i=1

(|Ci|−1) ≤ k+s+(n−k−2s−2+t)−t =

n − s − 2 ≤ n − κ + k − 2. Hence if for some t between 1 and κ − k + 2,
Ut ≥ n − κ + k − 1, then G is k-fc.

We finish with an example related to a property of the same kind as in [4]
but for which the conclusion “G is k-extendable” cannot be replaced by “G
is 2k-fc”. Ryjáček proved in [13] that every even (2k+1)- connected K1,k+3-
free graph such that the set of claw centers is independent, is k-extendable.
The hypotheses do not imply that the graph is 2k-fc as shown, for k = 1,
by the following construction. The graph G consists of four copies Hi of
cliques Kp of odd order p ≥ 3, and four extra vertices xi, 1 ≤ i ≤ 4. In each
Hi, we select three vertices yij with 1 ≤ j ≤ 4 and j 6= i. Each vertex xi

is adjacent to the three vertices yji with 1 ≤ j ≤ 4 and j 6= i. The graph
G is 3-connected, K1,4-free and the claw centers, which are the vertices xi,
are independent. It is 1-extendable but not 2-fc since G − {x1, x2} has no
perfect matching.
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