PANCYCLISM AND SMALL CYCLES IN GRAPHS

Ralph Faudree*
Department of Mathematical Sciences, University of Memphis Memphis, TN 38152, USA
and
Odile Favaron ${ }^{\dagger}$
Evelyne Flandrin ${ }^{\dagger}$
HAO LI ${ }^{\dagger}$
L.R.I., URA 410 du C.N.R.S. Bât. 490, Université de Paris-sud 91405-Orsay cedex, France.

Abstract

We first show that if a graph G of order n contains a hamiltonian path connecting two nonadjacent vertices u and v such that $d(u)+$ $d(v) \geq n$, then G is pancyclic. By using this result, we prove that if G is hamiltonian with order $n \geq 20$ and if G has two nonadjacent vertices u and v such that $d(u)+d(v) \geq n+z$, where $z=0$ when n is odd and $z=1$ otherwise, then G contains a cycle of length m for each $3 \leq m \leq$ $\max \left(d_{C}(u, v)+1, \frac{n+19}{13}\right), d_{C}(u, v)$ being the distance of u and v on a hamiltonian cycle of G.

Keywords: cycle, hamiltonian, pancyclic.
1991 Mathematics Subject Classification: 05C38.

1. Notation, Terminology and Introduction

We will consider only finite, undirected graphs, without loops or multiple edges. If G is a graph, we denote by $V(G)$ the vertex set of G and by $E(G)$ the edge set of G. If A is a subgraph or a subset of vertices, $|A|$ is the number

[^0]of vertices in A. For any $a \in V(G), A \subseteq V(G), B \subseteq V(G)-A$ and a subgraph H of G, we let
\[

$$
\begin{gathered}
N_{H}(a)=\{v \in V(H): a v \in E(G)\}, \\
d_{H}(a)=\left|N_{H}(a)\right|, \\
E_{H}(A, B)=\{u v \in E(H): u \in A \text { and } v \in B\},
\end{gathered}
$$
\]

and

$$
e_{H}(A, B)=\left|E_{H}(A, B)\right|
$$

If $C=c_{1} c_{2} \ldots c_{p} c_{1}$ is a cycle, we let $C\left[c_{i}, c_{j}\right]$, for each $i \neq j$, be the path $c_{i} c_{i+1} \ldots c_{j}$, where the indices are taken modulo p. If $\left|C\left[c_{i}, c_{j}\right]\right| \leq\left|C\left[c_{j}, c_{i}\right]\right|$, then the distance of c_{i} and c_{j} on C, denoted by $d_{C}\left(c_{i}, c_{j}\right)$, is equal to $j-i$ modulo p. Similarly, if $P=p_{1} p_{2} \ldots p_{q}$ is a path, let $P\left[p_{i}, p_{j}\right]=p_{i} p_{i+1} \ldots p_{j}$. The length of P is $|P|-1$ which is the number of edges on P. For two vertices u and v, a (u, v)-path is a path connecting u and v and a hamiltonian (u, v) path is a hamiltonian path connecting u and v. For any integer m, denote by C_{m} a cycle of length m. A graph of order n is said to be pancyclic if it contains cycles of all lengths from 3 to n.

Other notation and terminology can be found in [4].
Bondy suggested the interesting "metaconjecture" in [3] that almost any nontrivial condition on graphs which implies that the graph is hamiltonian also implies that the graph is pancyclic (there may be a family of exceptional graphs). Various sufficient conditions for a graph to be hamiltonian have been given in term of the vertex degrees and many of them have been shown to imply pancyclism. For example, we have the following :

Theorem 1. (a) (Ore's condition, [3]). If a graph G satisfies Ore's condition that the degree sum of any pair of nonadjacent vertices is at least the order of G, then G is pancyclic or isomorphic to $K_{n / 2, n / 2}$.
(b) (Chvátal's condition, [6]). Let G be a graph on $n \geq 3$ vertices with vertex degree sequence $d_{1} \leq d_{2} \leq \ldots \leq d_{n}$. If $d_{k} \leq k<\frac{n}{2}$ implies $d_{n-k} \geq n-k$, then G is pancyclic or bipartite.
(c) (Fan's condition, [2]). Let G be a 2-connected graph on n vertices. If for all vertices x and y, distance $(x, y)=2$ implies $\max \{d(x), d(y)\} \geq \frac{n}{2}$, then G is either pancyclic, $K_{\frac{n}{2}, \frac{n}{2}}, K_{\frac{n}{2}, \frac{n}{2}}-e$, or the graph shown in Figure 1.
(d) (Bondy's condition, [7]). Let Ge a 2-connected graph on n vertices. If for all independent vertices x, y and z, we have $d(x)+d(y)+d(z) \geq \frac{3 n}{2}-1$, then G is either pancyclic, $K_{\frac{n}{2}, \frac{n}{2}}, K_{\frac{n}{2}, \frac{n}{2}}-e$, or C_{5}.
(e) [1]. If G is a hamiltonian, non bipartite graph of order n with minimum degree at least $\frac{2 n+1}{5}$, then G is pancyclic.
(f) [8]. If G is a hamiltonian graph of order $n \geq 40$ such that $d(x)+$ $d(y) \geq \frac{4 n}{5}$ for any pair of nonadjacent vertices x and y, then G is pancyclic or bipartite. The bound is sharp.
(g) [7]. If G is a hamiltonian graph of order n with a hamiltonian cycle $x_{1}, x_{2}, \ldots, x_{n}, x_{1}$ such that $d\left(x_{1}\right)+d\left(x_{n}\right) \geq n$, then G is either
(1) pancyclic,
(2) bipartite, or
(3) missing only an $(n-1)$-cycle and in this case, $x_{1} x_{4} \in E(G)$.

Figure 1
We note that most of the previous results are proved by starting with a hamiltonian cycle and by considering two consecutive vertices on the hamiltonian cycle, as we will see in Lemma 1 below. However with the exception of (g), these results depend on the degree conditions of almost all vertices. Similar to Lemma 1, our new results verify that degree conditions on only two special vertices are sufficient to insure pancyclism or small cycles.

We will first consider graphs with a hamiltonian path. We will show that if the degree sum of the two end vertices of the hamiltonian path is at least n (the order of the graph) then the graph is pancyclic. It will be seen that this result is interesting not only by itself, but also for applications to finding cycles of small lengths. For example, using this result, we obtain several useful lemmas and show that if G is hamiltonian with order $n \geq 20$ with two nonadjacent vertices u and v such that $d(u)+d(v) \geq n+z$, where $z=0$ when n is odd and $z=1$ otherwise, then G contains cycles of lengths m for all $3 \leq m \leq \max \left(d_{C}(u, v)+1, \frac{n+19}{13}\right), d_{C}(u, v)$ being the distance of u and v on a hamiltonian cycle of G.

2. Main Results

First let us mention the following result which is implicit in the proof of the main Theorem in [3].

Lemma 1. Let $C=c_{1} c_{2} \ldots c_{n} c_{1}$ be a hamiltonian cycle in a graph G. If $d\left(c_{1}\right)+d\left(c_{n}\right) \geq n+1$, then for any $k, 3 \leq k \leq n$, G contains a cycle C_{k} of one of the following forms (see Figure 2):
(1) $c_{n} c_{p} c_{p-1} \ldots c_{p-k+3} c_{1} c_{n}, \quad$ for some $p, k-1 \leq p \leq n-1$,
(2) $c_{n} c_{p} c_{p-1} \ldots c_{1} c_{p-k+n+1} c_{p-k+n+2} \ldots c_{n}, \quad$ for some $p, 1 \leq p \leq k-2$.

Figure 2

Theorem 2. Let G be a graph of order n. If G has a hamiltonian (u,v)-path for a pair of nonadjacent vertices u and v such that $d(u)+d(v) \geq n$, then G is pancyclic. Moreover, if u (or v) has degree at least $\frac{n}{2}$, it is contained in a triangle and for any $m, 4 \leq m \leq n$, there exists some C_{m} in G that contains both u and v.

Proof. Let $P=c_{1} c_{2} \ldots c_{n}$ be the hamiltonian path in G with $c_{1}=u$ and $c_{n}=v$. First of all, since $d(u)+d(v) \geq n$, there exists some i such that $u c_{i+1}, v c_{i} \in E(G)$, and some j such that both of c_{j} and c_{j+1} are adjacent to either u (or v) that has degree at least $\frac{n}{2}$. So G contains C_{n} and a triangle that contains either u or v, whichever has degree at least $\frac{n}{2}$. We then consider cycles of all $m, 4 \leq m \leq n-1$.

By the degree condition, u and v have at least two common adjacencies. Let $d=\max \left\{i: c_{i} \in N(u) \cap N(v)\right\}$ and $W=P\left[c_{d+1}, c_{n}\right]$. By the symmetry of u and v, without loss of generality, we can assume $d \geq \frac{n}{2}+1$ if n is even and $d \geq \frac{n+1}{2}+1$ if n is odd. Let us define a graph H by putting $V(H)=\left\{c_{1}, c_{2}, \ldots, c_{d}\right\}$ and $E(H)=\left\{c_{l} c_{l+1}: 1 \leq l \leq d\right\} \cup\left\{c_{1} c_{i}: 3 \leq i \leq\right.$ $\left.d, u c_{i} \in E(G)\right\} \cup\left\{c_{d} c_{j}: 2 \leq j \leq d-2, v c_{j} \in E(G)\right\}$.

The indices in H will be taken modulo d so that $c_{d+1}=c_{1}$.
For any $k, 3 \leq k \leq d-1$, we define an integer t_{k} and a graph H_{k} as follows. If $v c_{d-1} \in E(G)$, then $t_{k}=0$ and $H_{k}=H$ and if $v c_{d-1} \notin E(G)$, then $t_{k}=1$ and $H_{k}=H$ when $c_{1} c_{d-k+2} \notin E(G)$ or $H_{k}=H-\left\{c_{1} c_{d-k+2}\right\}$ when $c_{1} c_{d-k+2} \in E(G)$.

Thus,

$$
\begin{aligned}
d_{H_{k}}\left(c_{1}\right) & \geq d_{G}(u)-d_{W}(u)-t_{k}, \\
d_{H_{k}}\left(c_{d}\right) & \geq d_{G}(v)-d_{W}(v)+t_{k} .
\end{aligned}
$$

Hence,

$$
d_{H_{k}}\left(c_{1}\right)+d_{H_{k}}\left(c_{d}\right) \geq d_{G}(u)+d_{G}(v)-d_{W}(u)-d_{W}(v) .
$$

The definition of d gives $d_{W}(u)+d_{W}(v) \leq n-d-1$. It follows that

$$
d_{H_{k}}\left(c_{1}\right)+d_{H_{k}}\left(c_{d}\right) \geq d+1
$$

By Lemma 1, H_{k} is pancyclic and has a C_{k} of the form (1) or (2). We note from the definition of H_{k} that one of the following cases occur:
(a) the C_{k} contains an edge $c_{d} c_{j}$ with $j \neq 1, d-1$.

In this case, in G we put

$$
C_{k+1}^{\prime}=\left[C_{k}-\left\{c_{j} c_{d}\right\}\right] \cup\left\{c_{n} c_{j}, c_{d} c_{n}\right\}
$$

and

$$
C_{k+n-d}^{\prime}=\left[C_{k}-\left\{c_{j} c_{d}\right\}\right] \cup\left\{c_{n} c_{j}\right\} \cup P\left[c_{d}, c_{n}\right] .
$$

(b) the C_{k} contains $c_{1} c_{d}$ and $c_{d-1} c_{d}$.

In this case $C_{k}=c_{1} c_{d} c_{d-1} \ldots c_{d-k+2} c_{1}$ and $c_{n} c_{d-1} \in E(G)$ by the definition of H_{k}. So in G we let

$$
C_{k+1}^{\prime \prime}=\left[C_{k}-\left\{c_{d-1} c_{d}\right\}\right] \cup\left\{c_{n} c_{d-1}, c_{n} c_{d}\right\},
$$

and

$$
C_{k+n-d}^{\prime \prime}=\left[C_{k}-\left\{c_{d-1} c_{d}\right\}\right] \cup\left\{c_{n} c_{d-1}\right\} \cup P\left[c_{d}, c_{n}\right] .
$$

Therefore G has all cycles of length m for $4 \leq m \leq d$, and all cycles of length m for $n-d+3 \leq m \leq n-1$. These cycles contain both u and v. Since $n-d+3 \leq d+1$, we have cycles of all lengths in G satisfying the requirement. The proof of Theorem 2 is complete.
The bound of the degree sum in the theorem is sharp for odd n. This can easily be seen from a complete bipartite graph $K_{\frac{n-1}{2}, \frac{n+1}{2}}$ for any odd n.

Corollary 1 (see [5], Theorem 4.1). Let G be a graph of order n. If the $(n+1)$-closure of G is complete, then G is pancyclic.

Proof. (a) If the $(n+1)$-closure of G is complete, then G is hamiltonian connected. So if G is not complete, suppose that the first edge added to G to get the $(n+1)$-closure is $x y$. Then, there exists a hamiltonian path in G between x and y and $d(x)+d(y) \geq n+1$. By Theorem $2, G$ is pancyclic.

Corollary 2 (see [3], Theorem 1 (a)). If n is odd and if the degree sum of any pair of nonadjacent vertices is at least n, then G is pancyclic.
Proof. If the $(n+1)$-closure of G is complete, then from Corollary $1, G$ is pancyclic. Otherwise, by a theorem in [5], $G=K_{2}+\left(K_{r} \cup K_{n-2-r}\right)$ or $G=\bar{K}_{2}+\left(K_{r} \cup K_{n-2-r}\right)$ for some r. Clearly then G is pancyclic.

Corollary 3. Let G be a hamiltonian graph of order n. If there exist two vertices u and v at distance 2 on a hamiltonian cycle C of G such that $d(u)+d(v) \geq n+1$, then G is pancyclic.
Proof. If u and v are nonadjacent, it is an immediate consequence of Theorem 2 (by considering the subgraph $G-\{w\}$ where w is the vertex between u and v on C). Otherwise, if u and v are adjacent, let $C=x_{1}, x_{2}, \ldots, x_{n}$ with $u=x_{1}$ and $v=x_{n-1}$. By Theorem $1(\mathrm{~g})$, we know that the hamiltonian graph $G^{\prime}=G\left[x_{1}, x_{2}, \ldots, x_{n-1}\right]$ is in one of the following three cases: (1) pancyclic, (2) bipartite, (3) missing only an ($n-2$)-cycle and containing the edge $x_{1} x_{4}$. If G^{\prime} is bipartite then G contains cycles of all even lengths passing through the edge $x_{1} x_{n-1}$. Replacing $x_{1} x_{n-1}$ by the path $x_{1} x_{n-1} x_{n}$, we get cycles of all odd lengths between 5 and n and G is pancyclic since it also contains a triangle. If G^{\prime} misses only a $(n-2)$-cycle, then G is also pancyclic since $x_{1}, x_{4}, x_{5}, \ldots, x_{n-1}, x_{n}, x_{1}$ is a cycle of G of length $n-2$.
From Theorem 2, we know that if a graph $G=(V, E)$ satisfies $d_{P}(u)+$ $d_{P}(v) \geq p$ where $P=x_{1} x_{2} \ldots x_{p}$ is a path of G such that $u=x_{1}$ and v_{p}, with u and v nonadjacent, then G contains cycles of all lengths between 3 and and p. We now are interested in what can be said if we assume $d_{P}(u)+d_{P}(v) \geq p-1$ instead of $d_{P}(u)+d_{P}(v) \geq p$. In this case, we make an additional hypothesis on the neighbors of u and v in $G-P$ and get the following result which will be useful in the proof of Theorem 4.

Theorem 3. Suppose that the endvertices $u=x_{1}$ and $v=x_{p}$ of a path $P=x_{1} x_{2} \ldots x_{p}$ of a graph $G=(V, E)$ are nonadjacent and satisfy $d_{P}(u)+$ $d_{P}(v) \geq p-1$, and that there exist three vertices y, z, t not in P, with $z \neq t$ (and that y could be one of z and t), such that $u y, y v, u z$, $z t$ and tv are edges of G. Then for each integer $k, 4 \leq k \leq p+2$, there is a cycle of length k passing through at least one of the vertices u and v.

Proof. The path $P^{\prime}=x_{2} x_{3} \ldots x_{p-1}$ satisfies $d_{P^{\prime}}(u)+d_{P^{\prime}}(v) \geq\left|P^{\prime}\right|+1$. Therefore u and v admit at least one common neighbor x_{i} on P^{\prime} and the cycles $u x_{i} v y u$ and $u x_{i} v t z u$ have respective lengths 4 and 5 . Similarly, the cycles $x_{1} \ldots x_{p} y x_{1}$ and $x_{1} \ldots x_{p} t z x_{1}$ have respective lengths $p+1$ and $p+2$.

Let us suppose that for a given value of m with $6 \leq m \leq p, G$ contains no cycle C_{m} through u or v. The path $Q=x_{2} x_{3} \ldots x_{p-2}$ satisfies

$$
d_{Q}(u)+d_{Q}(v) \geq \begin{cases}p-3=|Q|, & \text { if } u x_{p-1} \in E, \tag{1}\\ p-2=|Q|+1, & \text { if } u x_{p-1} \notin E .\end{cases}
$$

The bijection $f:\{2,3, \ldots, p-2\} \longrightarrow\{2,3, \ldots, p-2\}$ defined by
$f(j)=\left\{\begin{array}{ll}j+m-4, & \text { if } 2 \leq j \leq p-m+2 \\ m-p+j-1, & \text { if } p-m+3 \leq j \leq p-2\end{array} \quad\right.$ (then $\left.m-2 \leq f(j) \leq p-2\right)$,
induces a bijection of $V(Q)$ onto $V(Q)$.
For $2 \leq j \leq p-2$, at most one of the two edges $u x_{j}$ and $v x_{f(j)}$ can exist for otherwise the cycles $u x_{j} P\left[x_{j}, x_{f(j)}\right] x_{f(j)} v y u$ for $j \leq p-m+2$ and $u x_{j} P\left[x_{j}, v\right] v x_{f(j)} P\left[x_{f(j)}, u\right] u$ for $j \geq p-m+3$ would have length m. Therefore $d_{Q}(u)+d_{Q}(v) \leq|Q|$ and $d_{Q}(u)+d_{Q}(v)=|Q|$ if and only if, for every j between 2 and $p-2$, exactly one of the two edges $u x_{j}$ and $v x_{f(j)}$ does exist. By (1), we are necessarily in this last case. This implies $u x_{p-1} \in E$ and thus $m \neq p-1$. By the symmetry between u and $v, v x_{2}$ is also an edge of G.

If $m=p$, then $f(4)=3$. Since the edge $u x_{4}$ does not exist (because of $\left.u x_{4} P\left[x_{4}, x_{p}\right] x_{p} t z u\right), v x_{3}$ is an edge and the cycle $v x_{3} P\left[x_{3}, x_{p-1}\right] x_{p-1} u y v$ of length m leads to a contradiction.

Suppose henceforth $m \leq p-2$. If there exists some index $k \leq p-m+2$ such that $u x_{k} \notin E$, then $v x_{f(k)} \in E$ with $f(k)=k+m-4$ and thus $u x_{k+1} \notin E$ for otherwise $u x_{k+1} P\left[x_{k+1}, x_{k+m-4}\right] x_{k+m-4} v t z u$ is a cycle of length m. Therefore there exists an index i with $2 \leq i \leq p-m+2$ such that $u x_{j} \in E$ for all j between 2 and i and $u x_{j} \notin E$ for all j between $i+1$ and $p-m+3$. Note that $i \leq p-m$ because of $u x_{p-m+1} P\left[x_{p-m+1}, x_{p-1}\right] x_{p-1} u$, and that $i \leq m-4$ because of $v x_{2} P\left[x_{2}, x_{m-3}\right] x_{m-3} u z t v$. When $2 \leq j \leq i$, then $m-2 \leq f(j)=j+m-4 \leq i+m-4$ and when $i+1 \leq j \leq$ $p-m+2$, then $m+i-3 \leq f(j) \leq p-2$. Looking at $v x_{f(j)}$, we see that $v x_{k} \in E$ for all k with $m+i-3 \leq k \leq p-2$ and $v x_{k} \notin E$ for all k with $m-2 \leq k \leq m+i-4$. The edge $v x_{p-m+i+1}$ does not exist for otherwise $u x_{p-1} P\left[x_{p-1}, x_{p-m+i+1}\right] x_{p-m+i+1} v x_{2} P\left[x_{2}, x_{i}\right] x_{i} u$ is a cycle of length m. Therefore $p-m+i+1 \leq m+i-4$; that is, $2 m \geq p+5$.

Finally, the existence of the edge $u x_{i}$ implies that $u x_{i+m-2}$ is not in E (because of $u x_{i} P\left[x_{i}, x_{i+m-2}\right] x_{i+m-2} u$) where $i+m-2 \geq p-m+3$, and thus $v x_{f(i+m-2)}=v x_{2 m+i-p-3}$ is an edge of G. The cycle $u P\left[u, x_{2 m+i-p-3}\right] x_{2 m+i-p-3} v x_{m+i-2} P\left[x_{m+i-2}, x_{p-1}\right] x_{p-1} u$ of length m leads to a contradiction, which completes the proof.

Corollary 4. Let G be a hamiltonian graph of order n. If there exist two nonadjacent vertices u and v at distance $d \geq 3$ on a hamiltonian cycle of G such that $d(u)+d(v) \geq n+d-2$, then G contains cycles of all lengths between 3 and $n-d+1$.

Proof. Let $C=x_{1}, x_{2}, \ldots, x_{n}, x_{1}$ be a hamiltonian cycle of $G, u=x_{1}$, $v=x_{n-d+1}\left(3 \leq d \leq \frac{n}{2}\right)$ and $P=x_{1}, x_{2}, \ldots, x_{n-d+1}$. If all the edges exist between $\{u, v\}$ and $\left\{x_{n-d+2}, x_{n-d+1}, \ldots, x_{n}\right\}$, then $d_{P}(u)+d_{P}(v) \geq$ $(n+d-2)-2(d-1)=n-d$ and G contains a triangle and cycles of all lengths between 4 and $n-d+3$ by Theorem 3. If at least one of the edges between $\{u, v\}$ and $\left\{x_{n-d+2}, x_{n-d+1}, \ldots, x_{n}\right\}$ is missing, then $d_{P}(u)+d_{P}(v) \geq n-d+1$ and $G\left[x_{1}, x_{2}, \ldots, x_{n-d+1}\right]$ is pancyclic by Theorem 2 .

Considering the case when u and v are adjacent, as a corollary of Theorem $1(\mathrm{~g})$ with a proof quite analogous to the proof of Corollary 3, we have that if G is a hamiltonian graph of order n and if there exist two adjacent vertices u and v at distance $d \geq 3$ on a hamiltonian cycle of G such that $d(u)+d(v) \geq n+d-1$, then G contains cycles of all lengths between 3 and $n-d+1$.

We now show some lemmas that will be useful in the proof of the next main result that gives a condition insuring the existence of small cycles.

Lemma 2. Let $P=v_{1} v_{2} \ldots v_{q}$ be a path and u_{1} and u_{2} two vertices not in P. (1) If $d_{P}\left(u_{1}\right)+d_{P}\left(u_{2}\right) \geq q+1$, there exists some i such that $v_{i} \in N\left(u_{1}\right) \cap$ $N\left(u_{2}\right)$.
(2) If $d_{P}\left(u_{1}\right)+d_{P}\left(u_{2}\right) \geq q+1$ and if there does not exist an index i such that u_{1} is adjacent to one of v_{i} and v_{i+1} and u_{2} is adjacent to the other one, then $d_{P}\left(u_{1}\right)+d_{P}\left(u_{2}\right)=q+1, q$ is odd and $N_{P}\left(u_{1}\right)=N_{P}\left(u_{2}\right)=\left\{v_{i}: i=\right.$ $1,3,5, \ldots, q\}$.
Proof. (1) is trivial.
Suppose the hypotheses of (2) satisfied. Then for any $v_{i} \in N\left(u_{1}\right)$ we have $v_{i-1}, v_{i+1} \notin N\left(u_{2}\right)$ and hence for any odd integer t with $1 \leq t \leq q$,

$$
d_{P\left[v_{1}, v_{t}\right]}\left(u_{2}\right) \leq t-d_{P\left[v_{1}, v_{t}\right]}\left(u_{1}\right)+1
$$

and

$$
d_{P\left[v_{t}, v_{q}\right]}\left(u_{2}\right) \leq(q-t+1)-d_{P\left[v_{t}, v_{q}\right]}\left(u_{1}\right)+1 .
$$

This implies that the two previous inequalities are in fact equalities. We can easily deduce that q must be odd and

$$
N_{P}\left(u_{1}\right)=N_{P}\left(u_{2}\right)=\left\{v_{i}: i=1,3, \ldots, q\right\} .
$$

Lemma 3. If the graph G of order n has a two-path partition $P^{\prime}=v_{1} v_{2} \ldots v_{f}$ and $P^{\prime \prime}=v_{f+1} \ldots v_{n}$ satisfying the two conditions
(i) $v_{1} v_{n} \notin E(G)$
and
(ii) $d\left(v_{1}\right)+d\left(v_{n}\right) \geq n+1$
then it contains a cycle C_{m} for each integer m with $3 \leq m \leq$ $\min \left(\frac{f+6}{2}, \frac{n-f+6}{2}\right)$.
Proof. Note that the upper bound on m can be written $f \geq 2 m-6$ and $n-f \geq 2 m-6$. By the symmetry between f and $n-f$, assume without loss of generality that
(*) $d_{P^{\prime}}\left(v_{1}\right)+d_{P^{\prime}}\left(v_{n}\right) \geq f+1$.
Hence $\left|N\left(v_{n}\right) \cap P^{\prime}\right| \geq 2$ and $f \geq 3$.
If we put $s=\max \left\{i \leq f: v_{i} \in N\left(v_{n}\right)\right\}, s^{\prime}=\min \left\{i \leq f: v_{i} \in N\left(v_{n}\right)\right\}$ (note that $s^{\prime} \geq 2$ by (i)) and $x=\max \left\{i \leq f: v_{i} \in N\left(v_{1}\right)\right\}$, we have $d_{P^{\prime}}\left(v_{1}\right) \leq x-1, d_{P^{\prime}}\left(v_{n}\right) \leq s-s^{\prime}+1$ and thus by $(*)$, (**) $s-s^{\prime}+x \geq f+1$.

If $3 \leq m \leq s+1$, the graph $G^{\prime}=G\left[v_{1}, v_{2}, \ldots, v_{s}, v_{n}\right]$ of order $s+1$ satisfies by $(*)$ the condition $d_{G^{\prime}}\left(v_{1}\right)+d_{G^{\prime}}\left(v_{n}\right) \geq f+1-(f-s)=s+1$. By Theorem 2, G^{\prime} contains a cycle C_{m}.

Suppose now $m \geq s+2$ which implies $s \leq \frac{f+6}{2}-2=\frac{f+2}{2}$. By ($* *$), $x \geq s^{\prime}+\frac{f}{2} \geq \frac{f+4}{2}>s$ and $x-s^{\prime}+3 \geq f+4-s \geq \frac{f+6}{2} \geq m$. The graph $G^{\prime \prime}=G\left[v_{n}, v_{s^{\prime}}, v_{s^{\prime}+1}, \ldots, v_{s}, \ldots, v_{x}, v_{1}\right]$ of order $x-s^{\prime}+3$ satisfies by ($*$) the condition $d_{G^{\prime \prime}}\left(v_{1}\right)+d_{G^{\prime \prime}}\left(v_{n}\right) \geq f+1-\left(s^{\prime}-2\right) \geq x-s^{\prime}+3$. By Theorem 2 , $G^{\prime \prime}$ contains a cycle C_{m}.

Lemma 4. Let G contain a hamiltonian path $P=v_{1} v_{2} \ldots v_{n}$ such that $v_{1} v_{n} \notin E(G)$ and $d\left(v_{1}\right)+d\left(v_{n}\right) \geq n+d$ for some integer $d, 0 \leq d \leq n-4$. Then for any $l, 2 \leq l \leq d+3$, there exists a $\left(v_{1}, v_{n}\right)$-path of length l.

Proof. Suppose that G has no $\left(v_{1}, v_{n}\right)$-path of length l for some l between 2 and $d+3$. Then for any $v_{i} \in N\left(v_{1}\right)$ with $2 \leq i \leq n-l, v_{n} v_{i+l-2} \notin E(G)$.

Thus

$$
\left\{v_{j}: v_{j} v_{n} \in E(G)\right\} \subseteq V-\left\{v_{1}, v_{n}\right\}-\left\{v_{i+l-2}: v_{i} \in N\left(v_{1}\right), 2 \leq i \leq n-l\right\}
$$

and $v_{n-l+1} v_{1} \notin E(G)$. Therefore $d\left(v_{n}\right) \leq n-2-d\left(v_{1}\right)+l-2$ which leads to $d\left(v_{1}\right)+d\left(v_{n}\right) \leq n+l-4$, and so $l \geq d+4$, a contradiction.

Lemma 5. Let $P=v_{1} v_{2} \ldots v_{q}$ be a path and u_{1} and u_{2} two vertices not on P without any common adjacency on P. For $m \geq 5$, if $d_{P}\left(u_{1}\right)+d_{P}\left(u_{2}\right) \geq$ $q-t+1$ for some integer t with either
$t=2$ and $q \geq \max \{16, m+2\}$ or
$t \geq 3$ and $\left\lfloor\frac{q}{m-4+3\left\lfloor\frac{m-4}{3}\right\rfloor}\right\rfloor\left\lfloor\frac{m-4}{3}\right\rfloor \geq t$ when $m \geq 7$
or $\left\lfloor\frac{q}{m-1}\right\rfloor \geq t$ when $5 \leq m \leq 6$,
then $G\left[P \cup\left\{u_{1}, u_{2}\right\}\right]$ has $a C_{m}$ or $a\left(u_{1}, u_{2}\right)$-path of length either $m-2$ or $m-3$.
Proof. Suppose that $G\left[P \cup\left\{u_{1}, u_{2}\right\}\right]$ has neither C_{m} nor a $\left(u_{1}, u_{2}\right)$-path of length $m-2$ or $m-3$. If $v_{i} \in N\left(u_{1}\right)$ (resp. $N\left(u_{2}\right)$), for some $i \leq q-m+4$, then $v_{i+m-4}, v_{i+m-5} \notin N\left(u_{2}\right)$ (resp. $\left.N\left(u_{1}\right)\right)$ and $v_{i+m-2} \notin N\left(u_{1}\right)$ (resp. $N\left(u_{2}\right)$) for $i \leq q-m+2$. So if $v_{i}, v_{i+2} \in N\left(u_{1}\right)$ (resp. $N\left(u_{2}\right)$) for some $i \leq q-m+2$, then $v_{i+m-2} \notin N\left(u_{1}\right) \cup N\left(u_{2}\right)$. If $v_{i} \in N\left(u_{1}\right)\left(\right.$ resp. $\left.N\left(u_{2}\right)\right)$ and $v_{i+1} \in N\left(u_{2}\right)$ (resp. $N\left(u_{1}\right)$) for some $i \leq q-m+1$, then $v_{i+m-4} \notin$ $N\left(u_{1}\right) \cup N\left(u_{2}\right)$.

We claim that among $\left\{v_{i}, v_{i+1}, v_{i+2}, v_{i+m-4}, v_{i+m-3}, v_{i+m-2}\right\}$, there is at least one common nonadjacency of u_{1} and u_{2}. To show the claim, assume, without loss of generality, that $u_{1} v_{i} \in E(G)$. Then by using the statements above, we deduce that if v_{i+m-2} and v_{i+m-4} are not common nonadjacency, $v_{i+2} u_{1} \notin E(G), v_{i+1} u_{2} \notin E(G)$. Hence either one of the two edges $v_{i+2} u_{2}, v_{i+1} u_{1}$ is in $E(G)$ or $v_{i+2} u_{2}, v_{i+1} u_{1} \notin E(G)$ that imply that v_{i+m-3} is a common nonadjacency. The claim is proved.

It follows that when $q \geq m+2$ and $m \geq 10$, there is at least one common nonadjacency in $\left\{v_{1}, v_{2}, v_{3}, v_{m-3}, v_{m-2}, v_{m-1}\right\}$ and one in $\left\{v_{4}, v_{5}, v_{6}, v_{m}, v_{m+1}, v_{m+2}\right\}$. So $P\left[v_{1}, v_{m+2}\right]$ has at least two common nonadjacencies of u_{1} and u_{2}. When $m \leq 9$ and $q \geq 16$, there is one common nonadjacency in $P\left[v_{1}, v_{8}\right]$ and one in $P\left[v_{9}, v_{16}\right]$. These give a contradiction of the degree sum condition if $t=2$. So we assume $t \geq 3$. Then if $m \geq 7$, by considering the sets $\left\{v_{f+3 i}, v_{f+3 i+1}, v_{f+3 i+2}, v_{f+3 i+m-4}, v_{f+3 i+m-3}, v_{f+3 i+m-2}\right\}$ with $0 \leq i \leq\left\lfloor\frac{m-4}{3}\right\rfloor-1$, we know that there is at least one common nonadjacency in every set and so there are at least $\left\lfloor\frac{m-4}{3}\right\rfloor$ common nonadjacencies in
any subpath $P\left[f, f+m-4+3\left\lfloor\frac{m-4}{3}\right\rfloor-1\right]$ of $m-4+3\left\lfloor\frac{m-4}{3}\right\rfloor$ vertices. Thus u_{1} and u_{2} have at least $\left.\left\lfloor\frac{q}{m-4+3\left\lfloor\frac{m-4}{3}\right\rfloor}\right\rfloor \frac{m-4}{3}\right\rfloor \geq t$ common nonadjacencies in P. This implies that $d_{P}\left(u_{1}\right)+d_{P}\left(u_{2}\right) \leq q-t$, a contradiction to the hypothesis. If $5 \leq m \leq 6$, there is at least one common nonadjacency in every set $\left\{v_{1+i(m-1)}, v_{2+i(m-1)}, v_{3+i(m-1)}, v_{m-3+i(m-1)}, v_{m-2+i(m-1)}, v_{m-1+i(m-1)}\right\}$ for $0 \leq i \leq\left\lfloor\frac{q}{m-1}\right\rfloor-1$. Then we have at least $\left\lfloor\frac{q}{m-1}\right\rfloor \geq t$ common nonadjacencies and again $d_{P}\left(u_{1}\right)+d_{P}\left(u_{2}\right) \leq q-t$, a contradiction.
Theorem 4. If G is a hamiltonian graph of order $n \geq 20$ such that there exists a pair of nonadjacent vertices u and v satisfying $d(u)+d(v) \geq n+z$ where $z=0$ if n is odd and $z=1$ if n is even, then G contains cycles C_{m} for all $3 \leq m \leq \max \left(d_{C}(u, v)+1, \frac{n+19}{13}\right)$, $d_{C}(u, v)$ being the distance of u and v on a hamiltonian cycle of G.

Consider the graph drawn in Figure 3 and obtained from a hamiltonian cycle $C=c_{1} c_{2} \ldots c_{n} c_{1}$ by adding all edges $c_{i} c_{j}$, for $i=1$ or $\left\lfloor\frac{n+1}{2}\right\rfloor$ and for any $j, p+2 \leq j \leq\left\lfloor\frac{n+1}{2}\right\rfloor-p-1$ and $\left\lfloor\frac{n+1}{2}\right\rfloor+p+1 \leq j \leq n-p$ where p is an integer between 2 and $\frac{n-5}{4}$. The degree sum of c_{1} and $c_{\left\lfloor\frac{n+1}{2}\right\rfloor}$ is $2(n-4 p+2)$ and the graph does not contain cycles of length $l, n-p+1 \leq l \leq n-1$.

Figure 3
This example shows that even if there exist in a hamiltonian graph two nonadjacent vertices whose degree sum is very large, this graph is not necessarily pancyclic.
Proof of Theorem 4. Let $C=c_{1} c_{2} \ldots c_{n}$ be a hamiltonian cycle of G, and without loss of generality, let $u=c_{1}, v=c_{p}$ with $\frac{n+2}{2} \leq p \leq n-2$. Thus the condition $m \leq \frac{n+19}{13}$ implies $m \leq \frac{2 p+17}{13}$ and $d_{C}(u, v)=n+1-p$. It is easy to see that there exists some i such that both c_{i} and c_{i+1} are adjacent
to one of u and v, and there exist some j^{\prime} and $j^{\prime \prime}, j^{\prime} \neq j^{\prime \prime}$, such that $c_{j^{\prime}}$ and $c_{j^{\prime \prime}}$ are adjacent to both of u and v. Therefore $C_{3}, C_{4} \subset G$.

Henceforth we assume $m \geq 5$ and suppose that G does not contain any C_{m}, for some $m \leq \max \left(d_{C}(u, v)+1, \frac{n+19}{13}\right)$. Put $A=G\left[c_{1}, c_{2}, \ldots, c_{p}\right]$ and $B=G\left[c_{p}, c_{p+1}, \ldots, c_{n}, c_{1}\right]$. If $d_{A}(u)+d_{A}(v) \geq p$, by Theorem $2, C_{m} \subset A \subset G$. So there exists an integer $t \geq 2$ such that $d_{A}(u)+d_{A}(v)=p-t+1$, and hence $d_{B}(u)+d_{B}(v) \geq n+z-p+t-1=|B|+z+t-3$. Since $d_{B}(u)+d_{B}(v) \leq 2|B|-4$, we also have $|B| \geq t+z+1$ and thus $t \leq n-p+1$. If $m \leq|B|$ and $t+z \geq 3$, then $C_{m} \subset B \subset G$ by Theorem 2. So we assume that $t=2$ or $t \geq 3$ and $m \geq|B|+1=n-p+3$.

By Lemma 2(1) applied to the path $B^{\prime}=B-\{u, v\}$ of $n-p$ vertices which satisfies $d_{B^{\prime}}(u)+d_{B^{\prime}}(v) \geq\left|B^{\prime}\right|+z+t-1$, there is some $c_{s} \in N(u) \cap$ $N(v) \cap B$. When $t=2$, by the same lemma applied to $A^{\prime}=A-\{u, v\}$, there is also some $c_{s}^{\prime} \in N(u) \cap N(v) \cap A$.

When $t \geq 3$, by Lemma 2(2) applied to B^{\prime}, there exists some c_{r} in B^{\prime} such that u is adjacent to one of c_{r} and c_{r+1} and v is adjacent to the other one.

When $t=2$, if there exists some c_{r} in B^{\prime} such that u is adjacent to one of c_{r} and c_{r+1} and v is adjacent to the other one, we apply Theorem 3 to the graph $G\left[A \cup\left\{c_{s}, c_{r}, c_{r+1}\right\}\right]$ and have all cycles $C_{m}, 4 \leq m \leq|A|+2$. So we assume there is no such c_{r} in B^{\prime}. It follows from Lemma 2(2) that $z=0$, $n-p$ is odd and $N_{B^{\prime}}(u)=N_{B^{\prime}}(v)=\left\{c_{p+1}, c_{p+3}, \ldots, c_{n}\right\}$ In this case, by Lemma 2(2) applied to A^{\prime}, there exists some c_{r} in A^{\prime} such that u is adjacent to one of c_{r} and c_{r+1} and v is adjacent to the other one, and by symmetry we may assume $r \geq \frac{p}{2}$. Moreover, using $c_{s}^{\prime}, c_{r}, c_{r+1}$ in A and the neighborhoods $N_{B^{\prime}}(u)=N_{B^{\prime}}(v)=\left\{c_{p+1}, c_{p+3}, \ldots, c_{n}\right\}$, we have all cycles $C_{m}, m \leq|B|+2$. So only the following two possibilities remain to be studied.

Case 1. $t=2, \frac{p}{2} \leq r \leq p-1$ and $m \geq|B|+3=n-p+5$.
Case 2. $t \geq 3$ and $m \geq|B|+1=n-p+3$.
Note that $t+2 \leq m \leq \frac{2 p+17}{13}$ and, since $n-p+3 \leq \frac{n+19}{13}, n \leq \frac{13 p-20}{12}$ and by $n \geq 13 m-19, p \geq 12 m-16$. In the remainder of the proof, the justification of all the omitted details is based on these inequalities.

We begin with the proof of the following two claims and note that G contains no (u, v)-path of length $m-2$ or $m-3$ avoiding c_{s} or c_{r} and c_{r+1} for otherwise G would contain a cycle C_{m}.

Claim 1. In Case 1, there is no common adjacency of u and v in $C\left[c_{m}, c_{\frac{p}{2}-m+3}\right]$.

In Case 2, there is no common adjacency of u and v in $C\left[c_{m+t-3}, c_{p-m-t+4}\right]$.

Proof of Claim 1. When $t=2$ and $c_{r} \in C\left[\frac{p}{2}, p-1\right]$, to avoid a (u, v) path of length $m-2$ or $m-3$ that does not contain c_{s}, c_{r} nor c_{r+1}, if $c_{j} \in N(u) \cap N(v) \cap C\left[c_{m}, c_{\frac{p}{2}-m+3}\right]$ then $c_{j+m-5}, c_{j+m-4} \notin N(u) \cup N(v)$ (note that $\left.\left(\frac{p}{2}-m+3\right)+m-4<\frac{p}{2} \leq r\right)$. Let $P^{\prime}=c_{1} c_{2} \ldots c_{j+m-6}$ and $P^{\prime \prime}=$ $c_{j+m-3} c_{j+m-2} \ldots c_{p}$. Since $2 m-6 \leq j+m-6$ and $p-(j+m-4) \geq 2 m-6$, and since $d_{P^{\prime} \cup P^{\prime \prime}}(u)+d_{P^{\prime} \cup P^{\prime \prime}}(v)=p-1=\left|P^{\prime} \cup P^{\prime \prime}\right|+1, C_{m} \subset G$ by Lemma 3, a contradiction.

When $t \geq 3$, there exists some (u, v)-path of length l in B for any l, $2 \leq l \leq t$ by Lemma 4 . To avoid a C_{m}, there does not exist any (u, v)-path of length d in A for any $d, m-t \leq d \leq m-2$. If $c_{j} \in N(u) \cap N(v) \cap$ $C\left[c_{m+t-3}, c_{p-4 m+10}\right]$, then $[N(u) \cup N(v)] \cap C\left[c_{j+m-t-2}, c_{j+m-4}\right]=\emptyset$ and clearly $c_{j+m-2} \notin N(u) \cup N(v)$.

If $e\left(\left\{c_{j+m-3}\right\},\{u, v\}\right) \leq 1$, we let $P^{\prime}=c_{1} c_{2} \ldots c_{j+m-t-3}$ and $P^{\prime \prime}=$ $c_{j+m-1} c_{j+m} \ldots c_{p}$. Since $j+m-t-3 \geq 2 m-6$ and $p-j-m+2 \geq 2 m-6$, and since

$$
d_{P^{\prime} \cup P^{\prime \prime}}(u)+d_{P^{\prime} \cup P^{\prime \prime}}(v) \geq p-t=\left|P^{\prime} \cup P^{\prime \prime}\right|+1,
$$

$C_{m} \subset G\left[P^{\prime} \cup P^{\prime \prime}\right] \subset G$ by Lemma 3, a contradiction.
Therefore $c_{j+m-3} \in N(u) \cap N(v)$ and by the previous argument, replacing c_{j} by c_{j+m-3}, we obtain $c_{j+2 m-6} \in N(u) \cap N(v)$ since we still have $p-j-$ $2 m+5 \geq 2 m-6$. We deduce that $[N(u) \cup N(v)] \cap C\left[c_{j+m-2}, c_{j+m-4+t}\right]=\emptyset$. Since $j+m \leq(j+m-4+t)+1$, the paths $P^{\prime}=c_{1} c_{2} \ldots c_{j+m-t-3}$ and $P^{\prime \prime}=c_{j+m} c_{j+m+1} \ldots c_{p}$ satisfy $\left|P^{\prime}\right|=j+m-t-3 \geq 2 m-6,\left|P^{\prime \prime}\right|=$ $p-j-m+1 \geq 2 m-6$ and $d_{P^{\prime} \cup P^{\prime \prime}}(u)+d_{P^{\prime} \cup P^{\prime \prime}}(v)=p-t-1=\left|P^{\prime} \cup P^{\prime \prime}\right|+1$. Thus by Lemma 3, we also have $C_{m} \subset G\left[P^{\prime} \cup P^{\prime \prime}\right] \subset G$, a contradiction.

So $(N(u) \cap N(v)) \cap C\left[c_{m+t-3}, c_{p-4 m+10}\right]=\emptyset$. As $p-4 m+10 \geq \frac{p+1}{2}$, the result follows by symmetry.

Claim 2. In Case 1, there exist some q_{1} and q_{2} such that $2 m-5 \leq q_{1}<$ $q_{2} \leq \frac{p}{2}-m+3$ and $c_{q_{1}}, c_{q_{2}} \notin N(u) \cup N(v)$.
In Case 2, there exist some $q_{1}, q_{2}, \ldots, q_{t}$ such that $2 m-5 \leq q_{1}<q_{2}<\ldots<$ $q_{t} \leq p-2 m+6$ and $\left\{c_{q_{1}}, c_{q_{2}}, \ldots, c_{q_{t}}\right\} \cap(N(u) \cup N(v))=\emptyset$.

Proof of Claim 2. Let $P=c_{2 m-5} c_{2 m-4 \cdots c \frac{p}{2}-m+3}$ in Case 1 and $P=$ $c_{2 m-5} c_{2 m-4} \ldots c_{p-2 m+6}$ in Case 2. In each case, by Claim 1 and since $m \geq 5$ and $m \geq t+2, u$ and v have no common adjacency on P.

When $t=2$ and $c_{r} \in C\left[\frac{p}{2}, p-1\right]$ we have $|P|=\frac{p}{2}-3 m+9 \geq \max \{16$, $m+2\}$ since $p \geq 12 m-16$ and $m \geq 5$. By Claim 1 and Lemma 5, to avoid a C_{m} or a (u, v)-path of length $m-2$ or $m-3$ in $G[P \cup\{u, v\}]$ (note that $\left.c_{r} \notin P\right), d_{P}(u)+d_{P}(v) \leq|P|-2$ and thus q_{1} and q_{2} exist.

When $t \geq 3$ we have $|P| \geq 8 m-4$ since $p \geq 12 m-16$. Some arithmetical verifications allow us to check that $\left.\left\lfloor\frac{8 m-4}{m-4+3\left\lfloor\frac{m-4}{3}\right\rfloor}\right\rfloor \frac{m-4}{3}\right\rfloor \geq m-2$ if $m \geq 7$ and that $\left\lfloor\frac{8 m-4}{m-1}\right\rfloor \geq m-2$ if $5 \leq m \leq 6$. So by Claim 1 and Lemma 5, to avoid a C_{m} or a (u, v)-path of length $m-2$ or $m-3$ in $G[P \cup\{u, v\}]$, $d_{P}(u)+d_{P}(v) \leq|P|-t$ and thus $q_{1}, q_{2}, \ldots, q_{t}$ exist. Claim 2 is proved.

To complete the proof, note that by Claims 1 and 2 , the path $Q=$ $c_{q_{1}} c_{q_{1}+1} \ldots c_{q_{t}}$ satisfies $d_{Q}(u)+d_{Q}(v) \leq|Q|-t$. The two paths $Q^{\prime}=$ $c_{1} c_{2} \ldots c_{q_{1}-1}$ and $Q^{\prime \prime}=c_{q_{t}+1} c_{q_{t}+2} \ldots c_{p}$ have at least $2 m-6$ vertices. Moreover $d_{Q^{\prime} \cup Q^{\prime \prime}}(u)+d_{Q^{\prime} \cup Q^{\prime \prime}}(v) \geq(p-t+1)-(|Q|-t)=\left|Q^{\prime}\right|+\left|Q^{\prime \prime}\right|+1$. Therefore, by Lemma $3, C_{m} \subset G\left[Q^{\prime} \cup Q^{\prime \prime}\right] \subset G$, the final contradiction. The proof of Theorem 4 is complete.

Acknowledgment

We wish to thank Prof. J.A. Bondy for his suggestion of considering the distance $d_{C}(u, v)$ in Theorem 4, that led us to find Theorem 3.

References

[1] D. Amar, E. Flandrin, I. Fournier and A. Germa, Pancyclism in hamiltonian graphs, Discrete Math. 89 (1991) 111-131.
[2] A. Benhocine and A. P. Wojda, The Geng-Hua Fan conditions for pancyclic or hamilton-connected graphs, J. Combin. Theory (B) 42 (1987) 167-180.
[3] J.A. Bondy, Pancyclic graphs. I., J. Combin. Theory 11 (1971) 80-84.
[4] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan Press, 1976).
[5] R. Faudree, O. Favaron, E. Flandrin and H. Li, The complete closure of a graph, J. Graph Theory 17 (1993) 481-494.
[6] E.F. Schmeichel and S.L. Hakimi, Pancyclic graphs and a conjecture of Bondy and Chvátal, J. Combin. Theory (B) 17 (1974) 22-34.
[7] E.F. Schmeichel and S.L. Hakimi, A cycle structure theorem for hamiltonian graphs, J. Combin. Theory (B) 45 (1988) 99-107.
[8] R.H. Shi, The Ore-type conditions on pancyclism of hamiltonian graphs, personal communication.

[^0]: *The work was done while this author was visiting L.R.I.
 ${ }^{\dagger}$ The work was partially supported by PRC MathInfo.

