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Abstract

We first show that if a graph G of order n contains a hamiltonian
path connecting two nonadjacent vertices v and v such that d(u) +
d(v) > n, then G is pancyclic. By using this result, we prove that if G
is hamiltonian with order n > 20 and if G has two nonadjacent vertices
uw and v such that d(u) 4+ d(v) > n+ z, where z = 0 when n is odd and
z = 1 otherwise, then G contains a cycle of length m for each 3 < m <
max (do(u,v) + 1, 252), do(u,v) being the distance of u and v on a
hamiltonian cycle of G.
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1. NOTATION, TERMINOLOGY AND INTRODUCTION
We will consider only finite, undirected graphs, without loops or multiple

edges. If G is a graph, we denote by V(G) the vertex set of G and by E(G)
the edge set of G. If A is a subgraph or a subset of vertices, |A| is the number

*The work was done while this author was visiting L.R.I.
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of vertices in A. For any a € V(G), A C V(G), B C V(G) — A and a
subgraph H of G, we let

Ny(a)={veV(H):av € E(G)},

dp(a) = [Nu(a)l,
Ep(A,B)={uve E(H):u€c Aandv € B},

and

If C = cica...cpcq is a cycle, we let Cley, ¢;], for each i # j, be the path
CiCit1...¢j, where the indices are taken modulo p. If |C[c;, ¢j]| < |Cley, ¢l
then the distance of ¢; and ¢; on C, denoted by dc(c;, ¢;), is equal to j — 4
modulo p. Similarly, if P = pips...pq is a path, let Plp;,p;] = pibDit1...p;-
The length of P is |P|—1 which is the number of edges on P. For two vertices
u and v, a (u, v)-path is a path connecting u and v and a hamiltonian (u, v)-
path is a hamiltonian path connecting v and v. For any integer m, denote
by C,, a cycle of length m. A graph of order n is said to be pancyclic if it
contains cycles of all lengths from 3 to n.
Other notation and terminology can be found in [4].

Bondy suggested the interesting ”metaconjecture” in [3] that almost any
nontrivial condition on graphs which implies that the graph is hamiltonian
also implies that the graph is pancyclic (there may be a family of exceptional
graphs). Various sufficient conditions for a graph to be hamiltonian have
been given in term of the vertex degrees and many of them have been shown
to imply pancyclism. For example, we have the following :

Theorem 1. (a) (Ore’s condition, [3]). If a graph G satisfies Ore’s condition
that the degree sum of any pair of nonadjacent vertices is at least the order
of G, then G is pancyclic or isomorphic to Ky, 3 /2

(b) (Chvétal’s condition, [6]). Let G be a graph on n > 3 wvertices
with vertex degree sequence di < dy < ... < dy. If di < k < 5 implies
dn_1 > n —k, then G is pancyclic or bipartite.

(c) (Fan’s condition, [2]). Let G be a 2-connected graph on n vertices.
If for all vertices x and y, distance (v,y) = 2 implies max {d(z),d(y)} > 5,
then G is either pancyclic, K%’g, Kg’% — e, or the graph shown in Figure 1.

(d) (Bondy’s condition, [7]). Let G be a 2-connected graph on n vertices.
If for all independent vertices x, y and z, we have d(z)+d(y)+d(z) > 37" -1,
then G is either pancyclic, K%%,K%% —e, or Cs.
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(e) [1]. If G is a hamiltonian, non bipartite graph of order n with mini-

mum degree at least 2"5“, then G is pancyclic.

(f) [8]. If G is a hamiltonian graph of order n > 40 such that d(x) +
d(y) > %” for any pair of nonadjacent vertices x and y, then G is pancyclic
or bipartite. The bound is sharp.

(g) [7]. If G is a hamiltonian graph of order n with a hamiltonian cycle
X1, 2, ..., Tn, T1 Such that d(x1) + d(zy) > n, then G is either

(1) pancyclic,

(2) bipartite, or

(3) missing only an (n — 1)-cycle and in this case, x1x4 € E(G).

1

1 17
(o e

Figure 1

We note that most of the previous results are proved by starting with a
hamiltonian cycle and by considering two consecutive vertices on the hamil-
tonian cycle, as we will see in Lemma 1 below. However with the exception
of (g), these results depend on the degree conditions of almost all vertices.
Similar to Lemma 1, our new results verify that degree conditions on only
two special vertices are sufficient to insure pancyclism or small cycles.

We will first consider graphs with a hamiltonian path. We will show
that if the degree sum of the two end vertices of the hamiltonian path is at
least n (the order of the graph) then the graph is pancyclic. It will be seen
that this result is interesting not only by itself, but also for applications to
finding cycles of small lengths. For example, using this result, we obtain
several useful lemmas and show that if GG is hamiltonian with order n > 20
with two nonadjacent vertices u and v such that d(u)+ d(v) > n+ z, where
z =0 when n is odd and z = 1 otherwise, then G contains cycles of lengths
m for all 3 < m < max (do(u,v) + 1, ”‘1"319), do(u,v) being the distance of
u and v on a hamiltonian cycle of G.

2. MAIN RESULTS

First let us mention the following result which is implicit in the proof of the
main Theorem in [3].
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Lemma 1. Let C = cico...chc1 be a hamiltonian cycle in a graph G. If
d(ci) +d(cy) > n+1, then for any k, 3 < k <n, G contains a cycle Cy of
one of the following forms (see Figure 2):

(1) cncpep_1...Ccp—k+3CiCn,  for some p, k—1<p<n-—1,

(2)  CnCpCp—1.--C1Cp—ktnt+1Cp—kint2---Cn,  for somep, 1 <p <k —2.

p—k+3 P p p—k+n+1

Figure 2

Theorem 2. Let G be a graph of ordern. If G has a hamiltonian (u,v)-path
for a pair of nonadjacent vertices u and v such that d(u) + d(v) > n, then
G is pancyclic. Moreover, if u (or v) has degree at least 5, it is contained
i a triangle and for any m, 4 < m < n, there exists some C,, in G that

contains both u and v.

Proof. Let P = cjco...c,, be the hamiltonian path in G with ¢; = u and
¢n, = v. First of all, since d(u) + d(v) > n, there exists some i such that
ucit1,ve; € E(G), and some j such that both of ¢; and ¢;41 are adjacent
to either u (or v) that has degree at least §. So G contains C, and a
triangle that contains either u or v, whichever has degree at least 5. We
then consider cycles of all m, 4 <m <n —1.

By the degree condition, u and v have at least two common adjacencies.
Let d = max{i: ¢; € N(u) N N(v)} and W = Plcgy1, ¢n). By the symmetry
of u and v, without loss of generality, we can assume d > § + 1 if n is
even and d > ”TH + 1 if n is odd. Let us define a graph H by putting
V(H) = {01,02,...,Cd} and E(H) = {ClCl+1 1 <1< d} U {clci 13 <1 <
d,uc; € E(G)}U{cqcj :2 <5 <d—2,vc; € E(G)}.

The indices in H will be taken modulo d so that cg41 = ¢3.
For any k, 3 < k < d—1, we define an integer t; and a graph Hy, as follows.
If veq—1 € E(G), then tp = 0 and Hy = H and if veg_q1 ¢ E(G), then
ty =1 and Hy = H when c¢i¢q_12 ¢ E(G) or Hy, = H — {c1¢q4_k+2} when
C1Cd—k+2 € E(G)
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Thus,
du,,(c1) > de(u) — dw(u) — tg,
dp, (cq) = da(v) — dw (v) + b

Hence,
dp, (c1) +dm,(ca) > da(u) + dg(v) — dw (u) — dw (v).
The definition of d gives dy (u) + dw(v) < n —d — 1. It follows that
dp, (c1) +dm,(cq) > d+1.

By Lemma 1, Hj, is pancyclic and has a Cj, of the form (1) or (2). We note
from the definition of Hj that one of the following cases occur:

(a) the Cj contains an edge cqc; with j #1,d — 1.
In this case, in G we put

Cl1 = [Cr — {cjcat] U {ency, cacn}
and
Chin—a = [Ck — {cjcal] U{cncj} U Pleca, el

(b) the C) contains cicg and cg4—1¢q4.

In this case Cx = c1¢4Cq—1.--C4—k+2¢1 and cpeq—1 € E(G) by the definition
of Hi. So in G we let

Cii1 = [Ck — {cia—1cat] U {enca—1, cncal,

and
Crvn—a = [Cr — {ca—1¢a}] U {cnca_1} U Plca, cn).

Therefore G has all cycles of length m for 4 < m < d, and all cycles of
length m for n —d 4+ 3 < m < n — 1. These cycles contain both v and v.
Since n —d + 3 < d + 1, we have cycles of all lengths in G satisfying the
requirement. The proof of Theorem 2 is complete. [

The bound of the degree sum in the theorem is sharp for odd n. This can
easily be seen from a complete bipartite graph K»-1 nt1 for any odd n.
2 0 2

Corollary 1 (see [5], Theorem 4.1). Let G be a graph of order n. If the
(n + 1)-closure of G is complete, then G is pancyclic.
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Proof. (a) If the (n + 1)-closure of G is complete, then G is hamiltonian
connected. So if G is not complete, suppose that the first edge added to G
to get the (n+ 1)-closure is zy. Then, there exists a hamiltonian path in G
between x and y and d(z) + d(y) > n+ 1. By Theorem 2, G is pancyclic. ®

Corollary 2 (see [3], Theorem 1 (a)). If n is odd and if the degree sum of
any pair of nonadjacent vertices is at least n, then G is pancyclic.

Proof. If the (n + 1)-closure of G is complete, then from Corollary 1, G
is pancyclic. Otherwise, by a theorem in b, G = Ko+ (K, UKy, _9_,) or
G =Ky + (K, UK,_s_,) for some r. Clearly then G is pancyclic. [

Corollary 3. Let G be a hamiltonian graph of order n. If there exist two
vertices u and v at distance 2 on a hamiltonian cycle C of G such that
d(u) +d(v) > n+1, then G is pancyclic.

Proof. If u and v are nonadjacent, it is an immediate consequence of The-
orem 2 (by considering the subgraph G — {w} where w is the vertex between
u and v on C). Otherwise, if u and v are adjacent, let C' = x1,x9,...,2,
with © = z1 and v = z,_;. By Theorem 1(g), we know that the hamilto-
nian graph G'=G[x1, 29, ..., T,—1] is in one of the following three cases: (1)
pancyclic, (2) bipartite, (3) missing only an (n — 2)-cycle and containing
the edge z124. If G’ is bipartite then G contains cycles of all even lengths
passing through the edge z1x,_1. Replacing x1x,_1 by the path x1x,_12,,
we get cycles of all odd lengths between 5 and n and G is pancyclic since
it also contains a triangle. If G’ misses only a (n — 2)-cycle, then G is also
pancyclic since x1,z4, 5, ..., Tn_1, Tn, 1 is a cycle of G of length n —2. m

From Theorem 2, we know that if a graph G = (V, E) satisfies dp(u) +
dp(v) > p where P = zyz5...7p is a path of G such that u = z; and vy,
with u and v nonadjacent, then G contains cycles of all lengths between
3 and and p. We now are interested in what can be said if we assume
dp(u) + dp(v) > p — 1 instead of dp(u) + dp(v) > p. In this case, we make
an additional hypothesis on the neighbors of v and v in G — P and get the
following result which will be useful in the proof of Theorem 4.

Theorem 3. Suppose that the endvertices w = x1 and v = x, of a path
P = zy29...2p of a graph G = (V, E) are nonadjacent and satisfy dp(u) +
dp(v) > p—1, and that there exist three vertices y, z, t not in P, with z # t
(and that y could be one of z and t), such that uy, yv, uz, zt and tv are
edges of G. Then for each integer k, 4 < k < p+ 2, there is a cycle of length
k passing through at least one of the vertices u and v.
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Proof. The path P’ = wxoxs...xp_1 satisfies dp/(u) + dpr(v) > |P'| + 1.
Therefore u and v admit at least one common neighbor z; on P’ and the
cycles uz;vyu and ux;vtzu have respective lengths 4 and 5. Similarly, the
cycles x1...xpyx1 and x1...xptzx1 have respective lengths p + 1 and p + 2.

Let us suppose that for a given value of m with 6 < m < p, G contains
no cycle Cy, through u or v. The path @ = x223...¢,_2 satisfies

p—3=1Q|, it wrp,_1 €F,
>
(1) do(u) +dg(v) > { p—2=1Q|+1, if uz, ¢ E.

The bijection f: {2,3,....,p—2} — {2,3,...,p — 2} defined by

() = j+m—4, if2<j<p-m-+2 (then m—2 < f(5) < p—2),
=Y m=—p+j—1, if p-m+3<j<p—2 (then 2 < £(j) < m—3),

induces a bijection of V(Q) onto V(Q).

For 2 < j < p — 2, at most one of the two edges uz; and vry;) can
exist for otherwise the cycles ua;jP[:cj,xf(j)]xf(j)vyu for j < p—m+2
and uz; Pz, v|vz s Pl (), ulu for j > p —m + 3 would have length m.
Therefore dg(u) + dg(v) < |Q] and dg(u) + dg(v) = |Q| if and only if, for
every j between 2 and p—2, exactly one of the two edges uz; and vz ;) does
exist. By (1), we are necessarily in this last case. This implies uzy,—1 € E
and thus m # p — 1. By the symmetry between u and v, vzs is also an edge
of G.

If m = p, then f(4) = 3. Since the edge uz4 does not exist (because of
uzyPlxy, xplaptzu), veg is an edge and the cycle vag Plzs, xp—1]zp—1uyv of
length m leads to a contradiction.

Suppose henceforth m < p— 2. If there exists some index k < p—m+2
such that uzy ¢ E, then vxyy) € E with f(k) = k+m — 4 and thus
urpr1 ¢ E for otherwise uxgi1PlTri1, Thtm—a|Thim—avtzu is a cycle of
length m. Therefore there exists an index ¢ with 2 < i < p—m+2 such that
uz; € E for all j between 2 and i and uz; ¢ E for all j between i + 1 and
p —m + 3. Note that i <p —m because of uxp_m+1P[Tp—m+1, Tp—1]Tp-11,
and that i < m — 4 because of vre Pz, Ty —3]Tm—_suztv. When 2 < j <4,
then m —2 < f(j) = j+m—-4 <i+m—4and when i +1 < j <
p—m+2, then m+i—3 < f(j) < p—2. Looking at vy, we see
that vz, € E for all k with m+i—-3 < k < p—2 and vzy ¢ E for
all £ with m —2 < kK < m+ 17— 4. The edge vrp_r1it1 does not exist
for otherwise ux,—1 P[Tp—1, Tp—m+it1]Tp—mtit1vT2P[x2, x;]ziu is a cycle of
length m. Therefore p—m + i+ 1 <m+1i—4; that is, 2m > p+ 5.
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Finally, the existence of the edge wx; implies that ux;ym,m—s is not in £
(because of ux;P[z;, Titm—2]Titm—ou) where i + m — 2 > p — m + 3,

and thus vxfim_2) = vTamti—p-3 is an edge of G.  The cycle
WP(u, Tomti—p—3) Tam+i—p—3VTm+i—2P[Tm+i—2, Tp—1]Tp—1u of length m leads
to a contradiction, which completes the proof. |

Corollary 4. Let G be a hamiltonian graph of order n. If there exist two
nonadjacent vertices u and v at distance d > 3 on a hamiltonian cycle of
G such that d(u) + d(v) > n+d — 2, then G contains cycles of all lengths
between 3 and n —d + 1.

Proof. Let C = x1,x9,...,Ty, 21 be a hamiltonian cycle of G, u = x1,
v = Tpgy1 3 < d < F) and P = 21,29,...,2,_g41. If all the edges
exist between {u,v} and {x,_g12,Tn_gi1,.., Tn}, then dp(u) + dp(v) >
(n+d—2)—2(d—1) = n—d and G contains a triangle and cycles of all lengths
between 4 and n — d + 3 by Theorem 3. If at least one of the edges between
{u,v} and {z,_g12, Tn—d+1, ..., T} is missing, then dp(u)+dp(v) > n—d+1
and G[x1, 9, ..., Tn_gt1] is pancyclic by Theorem 2.

Considering the case when u and v are adjacent, as a corollary of The-
orem 1(g) with a proof quite analogous to the proof of Corollary 3, we have
that if G is a hamiltonian graph of order n and if there exist two adjacent
vertices u and v at distance d > 3 on a hamiltonian cycle of G such that
d(u)+d(v) > n+d—1, then G contains cycles of all lengths between 3 and
n—d+1. [ ]

We now show some lemmas that will be useful in the proof of the next main
result that gives a condition insuring the existence of small cycles.

Lemma 2. Let P = v1v2...v4 be a path and uy and us two vertices not in P.
(1) If dp(u1) + dp(ug) > q+ 1, there exists some i such that v; € N(ui) N
N(UQ)

(2) If dp(u1) + dp(uz2) > q + 1 and if there does not exist an index i such
that uy is adjacent to one of v; and v;11 and us is adjacent to the other one,
then dp(u1) + dp(uz) = ¢+ 1, q is odd and Np(u1) = Np(ug) = {v; : i =
1,3,5,....q}.

Proof. (1) is trivial.
Suppose the hypotheses of (2) satisfied. Then for any v; € N(u;) we have
Vi—1,Vi+1 ¢ N(u2) and hence for any odd integer t with 1 <t < g,

dP[vl,vt}(UQ) <t-— dP[vl,vt] (ul) +1,
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and
APlugvg) (U2) < (¢ =t + 1) = dp[y, ) (u1) + 1.

This implies that the two previous inequalities are in fact equalities. We can
easily deduce that ¢ must be odd and

Np(u1) = Np(uz) = {v; :i=1,3,...,q}. =

Lemma 3. If the graph G of order n has a two-path partition P’ = vivs...vf
and P" =vsi1...v, satisfying the two conditions

(i) vivn ¢ E(G)
and

(ii) d(v1) + d(vp) >n+1
then it contains a cycle C,, for each integer m with 3 < m <
min(%, ”‘Tf%)

Proof. Note that the upper bound on m can be written f > 2m — 6 and
n — f > 2m — 6. By the symmetry between f and n — f, assume without
loss of generality that

(x) dpr(v1) +dpr(vn) > f+ 1.

Hence |N(v,) N P'| > 2 and f > 3.

If we put s = max{i < f:v; € N(v,)}, s =min{i < f:v; € N(v,)}
(note that ' > 2 by (i)) and © = maz{i < f : v; € N(v1)}, we have
dpi(v1)) <z —1,dp(v,) <s— s +1 and thus by (%),

(k) s — 8"+ > f+ 1.

If 3 <m < s+ 1, the graph G' = Glvy,va,...,vs,v,] of order s + 1
satisfies by (%) the condition dg/(v1) + dgr(vn) > f+1—(f —s) =s+ 1.
By Theorem 2, G’ contains a cycle C,.

Suppose now m > s + 2 which implies s < % -2 = % By (%),
st’%—%Z%>sandx—s'+32f+4—sz%2m. The graph
G" = Gvn, Vg, Vgr i1y oey Vs, oy Uz, v1] Of order x — ' + 3 satisfies by (*) the
condition dgr (v1) +dgr(vn) > f+1— (s’ —2) > x — s’ + 3. By Theorem 2,
G" contains a cycle Cy,. |

Lemma 4. Let G contain a hamiltonian path P = vivs...v, such that
vivy, € E(G) and d(v1) + d(vn) > n+d for some integer d, 0 < d < n — 4.
Then for any 1, 2 <1 < d+ 3, there exists a (v1,v,)-path of length .

Proof. Suppose that G has no (v, v, )-path of length [ for some [ between 2
and d + 3. Then for any v; € N(v1) with 2 <i <n —1, vyvi1—2 ¢ E(G).
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Thus
{vj tvju, € E(G)} CV —{vi,vn} —{vig—2: v € N(v1), 2<i<n—1}

and v,_i11v1 ¢ E(G). Therefore d(vy,) < n —2 —d(v1) + 1 — 2 which leads
to d(vy) +d(vy) <n+1—4,and sol > d+ 4, a contradiction. |

Lemma 5. Let P = viva...v4 be a path and uy; and us two vertices not on
P without any common adjacency on P. For m > 5, if dp(u1) + dp(uz) >
q—t+1 for some integer t with either

t =2 and g > maz{16,m + 2} or

q m—4
t >3 and >t wh > 7
>3 an Lm—4+3Lm3_4J“ 3 | >t when m >

mq—1J >t when 5 < m < 6,
then G[P U {ui,u2}] has a Cy, or a (u1,uz)-path of length either m — 2 or

m — 3.

or |

Proof. Suppose that G[P U {uy, us}] has neither Cy, nor a (u1, ug)-path of
length m —2 or m —3. If v; € N(uy) (resp. N(u2)), for some i < g —m+4,
then vitm—da,Viym—5 ¢ N(uz) (resp. N(up)) and vitm—o ¢ N(uy) (resp.
N(ug)) for i < g—m+ 2. So if v;,viy2 € N(u1) (resp. N(u2)) for some
i < qg—m+2, then viym—2o ¢ N(ur) U N(ug). If v; € N(up) (resp.N(ug))
and v;y1 € N(ug) (resp. N(up)) for some i < g — m + 1, then vj4p—g ¢
N(ul) U N(UQ)

We claim that among {v;, Vi+1, Vi+2, Vitm—4, Vitm—3, Vitm—2}, there is
at least one common nonadjacency of u; and uy. To show the claim, as-
sume, without loss of generality, that ujv; € FE(G). Then by using the
statements above, we deduce that if v;4,—2 and v;4,—4 are not common
nonadjacency, vitou; ¢ E(G), viyi1uz ¢ E(G). Hence either one of the two
edges vi1oug, vit1ug is in E(G) or viyous, viriur ¢ E(G) that imply that
Vi+m—3 is a common nonadjacency. The claim is proved.

It follows that when ¢ > m 4+ 2 and m > 10, there is at least
one common nonadjacency in {vi,ve,v3,Um—3, Um—2,Vm—1} and one in
{v4, V5, V6, Vs Um+1, Umt2}. S0 Plv1, Um42] has at least two common nonad-
jacencies of u; and uo. When m < 9 and ¢ > 16, there is one common non-
adjacency in P[vy, vg] and one in Plvg, vig]. These give a contradiction of the
degree sum condition if ¢t = 2. So we assume t > 3. Then if m > 7, by con-
sidering the sets {vf43i, Vf13i41, Vf+3i+2, Vf+3i4m—4, Uf+3i+m—3: Uf+3itm—2}
with 0 <7 < Lm?_‘lj —1, we know that there is at least one common nonadja-
cency in every set and so there are at least LmT_‘lj common nonadjacencies in
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any subpath P[f, f+m—4+3| "4 | —1] of m—4+3| "5 | vertices. Thus uy

and uy have at least Lm—4+§Lm—*4j |54 > ¢ common nonadjacencies in P.
3

This implies that dp(u1) + dp(u2) < ¢ — t, a contradiction to the hypothe-

sis. If 5 < m < 6, there is at least one common nonadjacency in every set

{vl+i(m—1)a V24i(m—1)s V3+i(m—1)» Um—3+i(m—1)» Um—2+i(m—1)> Um—1+z'(m—1)} for
0 <i < [;45]—1. Then we have at least [ %5 ] > t common nonadjacencies
and again dp(uq) + dp(ug) < q¢ — t, a contradiction. |
Theorem 4. If G is a hamiltonian graph of order n > 20 such that there
exists a pair of nonadjacent vertices u and v satisfying d(u)+d(v) > n+z
where z = 0 if n is odd and z = 1 if n is even, then G contains cycles Cy,
for all 3 < m < mazx(dc(u,v) + 1, "Jfglg), do(u,v) being the distance of u
and v on a hamiltonian cycle of G.

Consider the graph drawn in Figure 3 and obtained from a hamiltonian
cycle C = cica...cpc1 by adding all edges c;cj, for i =1 or L"THJ and for any
j,p+2<j< L”T‘HJ —p—1and L”T‘HJ +p+1<j<n-—pwhere pis an
integer between 2 and "Tf“r’ . The degree sum of ¢; and Clni | is2(n—4p+2)

and the graph does not contain cycles of length I, n —p+1 <1 <n-—1.

Figure 3

This example shows that even if there exist in a hamiltonian graph two non-
adjacent vertices whose degree sum is very large, this graph is not necessarily
pancyclic.

Proof of Theorem 4. Let C = cjcs...c, be a hamiltonian cycle of G,
and without loss of generality, let u = ¢1,v = ¢, with %ﬂ <p<n-—2. Thus
the condition m < ”‘1"319 implies m < 2p1+317 and do(u,v) =n+1—p. Itis

easy to see that there exists some ¢ such that both ¢; and c¢;11 are adjacent
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to one of v and v, and there exist some j' and j”, j' # j”, such that ¢; and
c;jn are adjacent to both of v and v. Therefore C3,Cy C G.

Henceforth we assume m > 5 and suppose that G does not contain
any Cp,, for some m < max(dc(u,v) +1, 22). Put A = G[ey, e, ..., ¢p] and
B = Glep, cpt1, ooy Cnyca]. I da(u)+da(v) > p, by Theorem 2, Cp, C A C G.
So there exists an integer ¢ > 2 such that da(u)+da(v) = p—t+1, and hence
dp(u)+dp(v) > n+z—p+t—1 = |B|+z+t—3. Since dp(u)+dp(v) < 2|B|—
we also have |B| > t+z+1and thust <n—p+1. If m < |B|and t+2z > 3,
then C),, C B C G by Theorem 2. So we assume that t = 2 or t > 3 and
m>|Bl+1=n—p+3.

By Lemma 2(1) applied to the path B’ = B — {u,v} of n — p vertices
which satisfies dp/(u) +dp/(v) > |B'| + 2z +t — 1, there is some ¢ € N(u) N
N(v) N B. When t = 2, by the same lemma applied to A" = A — {u,v},
there is also some ¢, € N(u) N N(v) N A.

When ¢ > 3, by Lemma 2(2) applied to B’, there exists some ¢, in B’
such that u is adjacent to one of ¢, and ¢,4+1 and v is adjacent to the other
one.

When ¢ = 2, if there exists some ¢, in B’ such that u is adjacent to one
of ¢, and ¢,41 and v is adjacent to the other one, we apply Theorem 3 to
the graph G[A U {cs, ¢y, ¢r41}] and have all cycles Cp,, 4 <m < |A]+2. So
we assume there is no such ¢, in B’. Tt follows from Lemma 2(2) that z = 0,
n —p is odd and Np/(u) = Np/(v) = {cpt1,Cp+3,....,cn} In this case, by
Lemma 2(2) applied to A’, there exists some ¢, in A’ such that u is adjacent
to one of ¢, and ¢,41 and v is adjacent to the other one, and by symmetry we
may assume r > £. Moreover, using ¢, ¢, ¢,41 in A and the neighborhoods
Np/(u) = Np/(v) = {cpt1, Cpt3, .., Cn }, we have all cycles C,, m < |B|+ 2.

So only the following two possibilities remain to be studied.

Casel. t=2,8<r<p—-landm>|B|+3=n—-p+5.
Case2. t>3and m> |B|+1=n—p+3.

Note that t+2 < m < 2p+17 and, since n —p+3 < "‘1"319, n < 13p 20 and by

n>13m—19, p > 12m — 16 In the remainder of the proof, the Justlﬁcatlon
of all the omitted details is based on these inequalities.

We begin with the proof of the following two claims and note that G
contains no (u,v)-path of length m — 2 or m — 3 avoiding ¢ or ¢, and ¢,4;
for otherwise G would contain a cycle C,.

Claim 1. In Case 1, there is no common adjacency of u and v in
C’[cm,Cg_mH}.
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In Case 2, there is no common adjacency of u and v in
C[Cm+t—37 Cp—m—t+4] .

Proof of Claim 1. When t = 2 and ¢, € C[§,p — 1], to avoid a (u,v)-
path of length m — 2 or m — 3 that does not contain cs, ¢, nor cy41, if
cj € N(u)ﬂN(U)ﬂC’[cm,%,mH] then ¢jpm—s5, ¢jtm—a ¢ N(u)UN (v) (note
that (§ —m +3) +m -4 < § <r). Let P/ = cico...¢jym—6 and P" =
Cjtm—3Cjtm—2..-Cp. Since 2m —6 < j+m—6 and p— (j +m—4) > 2m — 6,
and since dpypr(u) + dpypr(v) = p—1 = |P, U P”’ +1, C, C G by
Lemma 3, a contradiction.

When t > 3, there exists some (u,v)-path of length [ in B for any [,
2 <1 <t by Lemma 4. To avoid a C,,, there does not exist any (u,v)-path
of length d in A for any d, m —t < d < m —2. If ¢; € N(u) N N(v) N
Clem+t—3, Cp—am+10], then [N(u) U N(v)] N Cl¢jym—t—2,Cjtm—a] = 0 and
clearly ¢jym—2 ¢ N(u) U N(v).

If e({¢jym—3},{u,v}) < 1, we let P’ = cico...¢jym—t—3 and P’ =
Cjtm—1Cj4m---Cp. Since j+m—t—-=3>2m—6andp—j—m+2>2m—6,
and since

dprupr(u) +dpopr(v) > p—t=|P UP"| +1,

Cr C G[P'U P"] C G by Lemma 3, a contradiction.

Therefore ¢j1m—3 € N(u) NN (v) and by the previous argument, replac-
ing ¢;j by ¢j1m—3, we obtain ¢j12m—6 € N(u)NN (v) since we still have p—j—
2m+5 > 2m —6. We deduce that [N (u) UN (v)]NCl¢jtm—2, Cjtm—a+t] = 0.
Since j +m < (j +m — 4+ t) + 1, the paths P’ = ci¢2...¢j4m—¢—3 and
P" = ¢jimCjtm+1...Cp satisty |P'| = j+m —t—3 > 2m —6, |[P'| =
p—j—m+12>2m—6and dpypr(u)+dpypr(v) =p—t—1=|P'UP"|+1.
Thus by Lemma 3, we also have C,,, C G[P' U P"] C G, a contradiction.

So (N(u) N N(v)) N Clemtt—3, Cp—am+10] = 0. As p—4m + 10 > %,
the result follows by symmetry.

Claim 2. In Case 1, there exist some q1 and qo such that 2m — 5 < g <
@ <5 —m+3andcq, cg & N(u)UN(v).

In Case 2, there exist some q1,q3, ..., q such that 2m —5 < q1 < g2 < ... <
@ <p—2m+6 and {cq,Cqys -1 Cq, } N (N(u) UN(v)) = 0.

Proof of Claim 2. Let P = C2m—5C2m—4-+-CE 13 in Case 1 and P =
C2m—5C2m—4..-Cp—2m+6 i Case 2. In each case, by Claim 1 and since m > 5
and m >t + 2, v and v have no common adjacency on P.
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When ¢t =2 and ¢, € C[§,p — 1] we have |P| = L — 3m + 9 > max{16,
m + 2} since p > 12m — 16 and m > 5. By Claim 1 and Lemma 5, to avoid
a Cy, or a (u,v)-path of length m — 2 or m — 3 in G[P U {u,v}] (note that
¢ ¢ P), dp(u) + dp(v) < |P| —2 and thus ¢; and g, exist.

When ¢ > 3 we have | P| > 8m—4 since p > 12m—16. Some arithmetical

verifications allow us to check that | — 482{@ JJ |22 >m—2ifm>7
3

and that L%j >m—2if 5 < m < 6. So by Claim 1 and Lemma 5,
to avoid a Cp, or a (u,v)-path of length m — 2 or m — 3 in G[P U {u,v}],
dp(u) + dp(v) < |P| —t and thus q1, gg, ..., exist. Claim 2 is proved.

To complete the proof, note that by Claims 1 and 2, the path @ =
Cq1Cqi+1---Cq, satisfies dg(u) + dg(v) < |Q] —t. The two paths Q' =
c1€3...cq—1 and Q" = ¢q,41¢4,42...¢p have at least 2m — 6 vertices. Moreover
dgrogr () + deyugy (v) = (p—t+1) — (1Q| — ) = Q'] +|Q"| + 1. Therefore,
by Lemma 3, C,,, C G[Q' U Q"] C G, the final contradiction. The proof of
Theorem 4 is complete. [ ]
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