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Abstract

We first show that if a graph G of order n contains a hamiltonian
path connecting two nonadjacent vertices u and v such that d(u) +
d(v) ≥ n, then G is pancyclic. By using this result, we prove that if G
is hamiltonian with order n ≥ 20 and if G has two nonadjacent vertices
u and v such that d(u) + d(v) ≥ n + z, where z = 0 when n is odd and
z = 1 otherwise, then G contains a cycle of length m for each 3 ≤ m ≤
max (dC(u, v) + 1, n+19

13 ), dC(u, v) being the distance of u and v on a
hamiltonian cycle of G.
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1. Notation, Terminology and Introduction

We will consider only finite, undirected graphs, without loops or multiple
edges. If G is a graph, we denote by V (G) the vertex set of G and by E(G)
the edge set of G. If A is a subgraph or a subset of vertices, |A| is the number
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of vertices in A. For any a ∈ V (G), A ⊆ V (G), B ⊆ V (G) − A and a
subgraph H of G, we let

NH(a) = {v ∈ V (H) : av ∈ E(G)},
dH(a) = |NH(a)|,

EH(A,B) = {uv ∈ E(H) : u ∈ A and v ∈ B},
and

eH(A,B) = |EH(A,B)|.
If C = c1c2...cpc1 is a cycle, we let C[ci, cj ], for each i 6= j, be the path
cici+1...cj , where the indices are taken modulo p. If |C[ci, cj ]| ≤ |C[cj , ci]|,
then the distance of ci and cj on C, denoted by dC(ci, cj), is equal to j − i
modulo p. Similarly, if P = p1p2...pq is a path, let P [pi, pj ] = pipi+1...pj .
The length of P is |P |−1 which is the number of edges on P . For two vertices
u and v, a (u, v)-path is a path connecting u and v and a hamiltonian (u, v)-
path is a hamiltonian path connecting u and v. For any integer m, denote
by Cm a cycle of length m. A graph of order n is said to be pancyclic if it
contains cycles of all lengths from 3 to n.

Other notation and terminology can be found in [4].
Bondy suggested the interesting ”metaconjecture” in [3] that almost any
nontrivial condition on graphs which implies that the graph is hamiltonian
also implies that the graph is pancyclic (there may be a family of exceptional
graphs). Various sufficient conditions for a graph to be hamiltonian have
been given in term of the vertex degrees and many of them have been shown
to imply pancyclism. For example, we have the following :

Theorem 1. (a) (Ore’s condition, [3]). If a graph G satisfies Ore’s condition
that the degree sum of any pair of nonadjacent vertices is at least the order
of G, then G is pancyclic or isomorphic to Kn/2,n/2.

(b) (Chvátal’s condition, [6]). Let G be a graph on n ≥ 3 vertices
with vertex degree sequence d1 ≤ d2 ≤ ... ≤ dn. If dk ≤ k < n

2 implies
dn−k ≥ n− k, then G is pancyclic or bipartite.

(c) (Fan’s condition, [2]). Let G be a 2-connected graph on n vertices.
If for all vertices x and y, distance (x, y) = 2 implies max {d(x), d(y)} ≥ n

2 ,
then G is either pancyclic, Kn

2
, n
2
, Kn

2
, n
2
− e, or the graph shown in Figure 1.

(d) (Bondy’s condition, [7]). Let G be a 2-connected graph on n vertices.
If for all independent vertices x, y and z, we have d(x)+d(y)+d(z) ≥ 3n

2 −1,
then G is either pancyclic, Kn

2
, n
2
,Kn

2
, n
2
− e, or C5.
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(e) [1]. If G is a hamiltonian, non bipartite graph of order n with mini-
mum degree at least 2n+1

5 , then G is pancyclic.
(f) [8]. If G is a hamiltonian graph of order n ≥ 40 such that d(x) +

d(y) ≥ 4n
5 for any pair of nonadjacent vertices x and y, then G is pancyclic

or bipartite. The bound is sharp.
(g) [7]. If G is a hamiltonian graph of order n with a hamiltonian cycle

x1, x2, ..., xn, x1 such that d(x1) + d(xn) ≥ n, then G is either
(1) pancyclic,
(2) bipartite, or
(3) missing only an (n− 1)-cycle and in this case, x1x4 ∈ E(G).
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We note that most of the previous results are proved by starting with a
hamiltonian cycle and by considering two consecutive vertices on the hamil-
tonian cycle, as we will see in Lemma 1 below. However with the exception
of (g), these results depend on the degree conditions of almost all vertices.
Similar to Lemma 1, our new results verify that degree conditions on only
two special vertices are sufficient to insure pancyclism or small cycles.

We will first consider graphs with a hamiltonian path. We will show
that if the degree sum of the two end vertices of the hamiltonian path is at
least n (the order of the graph) then the graph is pancyclic. It will be seen
that this result is interesting not only by itself, but also for applications to
finding cycles of small lengths. For example, using this result, we obtain
several useful lemmas and show that if G is hamiltonian with order n ≥ 20
with two nonadjacent vertices u and v such that d(u) + d(v) ≥ n + z, where
z = 0 when n is odd and z = 1 otherwise, then G contains cycles of lengths
m for all 3 ≤ m ≤ max (dC(u, v) + 1, n+19

13 ), dC(u, v) being the distance of
u and v on a hamiltonian cycle of G.

2. Main Results

First let us mention the following result which is implicit in the proof of the
main Theorem in [3].
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Lemma 1. Let C = c1c2...cnc1 be a hamiltonian cycle in a graph G. If
d(c1) + d(cn) ≥ n + 1, then for any k, 3 ≤ k ≤ n, G contains a cycle Ck of
one of the following forms (see Figure 2):

(1) cncpcp−1...cp−k+3c1cn, for some p, k − 1 ≤ p ≤ n− 1,
(2) cncpcp−1...c1cp−k+n+1cp−k+n+2...cn, for some p, 1 ≤ p ≤ k − 2.
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Theorem 2. Let G be a graph of order n. If G has a hamiltonian (u, v)-path
for a pair of nonadjacent vertices u and v such that d(u) + d(v) ≥ n, then
G is pancyclic. Moreover, if u (or v) has degree at least n

2 , it is contained
in a triangle and for any m, 4 ≤ m ≤ n, there exists some Cm in G that
contains both u and v.

Proof. Let P = c1c2...cn be the hamiltonian path in G with c1 = u and
cn = v. First of all, since d(u) + d(v) ≥ n, there exists some i such that
uci+1, vci ∈ E(G), and some j such that both of cj and cj+1 are adjacent
to either u (or v) that has degree at least n

2 . So G contains Cn and a
triangle that contains either u or v, whichever has degree at least n

2 . We
then consider cycles of all m, 4 ≤ m ≤ n− 1.

By the degree condition, u and v have at least two common adjacencies.
Let d = max{i : ci ∈ N(u)∩N(v)} and W = P [cd+1, cn]. By the symmetry
of u and v, without loss of generality, we can assume d ≥ n

2 + 1 if n is
even and d ≥ n+1

2 + 1 if n is odd. Let us define a graph H by putting
V (H) = {c1, c2, ..., cd} and E(H) = {clcl+1 : 1 ≤ l ≤ d} ∪ {c1ci : 3 ≤ i ≤
d, uci ∈ E(G)} ∪ {cdcj : 2 ≤ j ≤ d− 2, vcj ∈ E(G)}.

The indices in H will be taken modulo d so that cd+1 = c1.
For any k, 3 ≤ k ≤ d− 1, we define an integer tk and a graph Hk as follows.
If vcd−1 ∈ E(G), then tk = 0 and Hk = H and if vcd−1 /∈ E(G), then
tk = 1 and Hk = H when c1cd−k+2 /∈ E(G) or Hk = H − {c1cd−k+2} when
c1cd−k+2 ∈ E(G).
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Thus,
dHk

(c1) ≥ dG(u)− dW (u)− tk,

dHk
(cd) ≥ dG(v)− dW (v) + tk.

Hence,

dHk
(c1) + dHk

(cd) ≥ dG(u) + dG(v)− dW (u)− dW (v).

The definition of d gives dW (u) + dW (v) ≤ n− d− 1. It follows that

dHk
(c1) + dHk

(cd) ≥ d + 1.

By Lemma 1, Hk is pancyclic and has a Ck of the form (1) or (2). We note
from the definition of Hk that one of the following cases occur:

(a) the Ck contains an edge cdcj with j 6= 1, d− 1.
In this case, in G we put

C ′
k+1 = [Ck − {cjcd}] ∪ {cncj , cdcn}

and
C ′

k+n−d = [Ck − {cjcd}] ∪ {cncj} ∪ P [cd, cn].

(b) the Ck contains c1cd and cd−1cd.

In this case Ck = c1cdcd−1...cd−k+2c1 and cncd−1 ∈ E(G) by the definition
of Hk. So in G we let

C ′′
k+1 = [Ck − {cd−1cd}] ∪ {cncd−1, cncd},

and
C ′′

k+n−d = [Ck − {cd−1cd}] ∪ {cncd−1} ∪ P [cd, cn].

Therefore G has all cycles of length m for 4 ≤ m ≤ d, and all cycles of
length m for n − d + 3 ≤ m ≤ n − 1. These cycles contain both u and v.
Since n − d + 3 ≤ d + 1, we have cycles of all lengths in G satisfying the
requirement. The proof of Theorem 2 is complete.

The bound of the degree sum in the theorem is sharp for odd n. This can
easily be seen from a complete bipartite graph Kn−1

2
, n+1

2
for any odd n.

Corollary 1 (see [5], Theorem 4.1). Let G be a graph of order n. If the
(n + 1)-closure of G is complete, then G is pancyclic.
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Proof. (a) If the (n + 1)-closure of G is complete, then G is hamiltonian
connected. So if G is not complete, suppose that the first edge added to G
to get the (n + 1)-closure is xy. Then, there exists a hamiltonian path in G
between x and y and d(x) + d(y) ≥ n + 1. By Theorem 2, G is pancyclic.

Corollary 2 (see [3], Theorem 1 (a)). If n is odd and if the degree sum of
any pair of nonadjacent vertices is at least n, then G is pancyclic.

Proof. If the (n + 1)-closure of G is complete, then from Corollary 1, G
is pancyclic. Otherwise, by a theorem in [5], G = K2 + (Kr ∪Kn−2−r) or
G = K̄2 + (Kr ∪Kn−2−r) for some r. Clearly then G is pancyclic.

Corollary 3. Let G be a hamiltonian graph of order n. If there exist two
vertices u and v at distance 2 on a hamiltonian cycle C of G such that
d(u) + d(v) ≥ n + 1, then G is pancyclic.

Proof. If u and v are nonadjacent, it is an immediate consequence of The-
orem 2 (by considering the subgraph G−{w} where w is the vertex between
u and v on C). Otherwise, if u and v are adjacent, let C = x1, x2, ..., xn

with u = x1 and v = xn−1. By Theorem 1(g), we know that the hamilto-
nian graph G′=G[x1, x2, ..., xn−1] is in one of the following three cases: (1)
pancyclic, (2) bipartite, (3) missing only an (n − 2)-cycle and containing
the edge x1x4. If G′ is bipartite then G contains cycles of all even lengths
passing through the edge x1xn−1. Replacing x1xn−1 by the path x1xn−1xn,
we get cycles of all odd lengths between 5 and n and G is pancyclic since
it also contains a triangle. If G′ misses only a (n − 2)-cycle, then G is also
pancyclic since x1, x4, x5, ..., xn−1, xn, x1 is a cycle of G of length n− 2.

From Theorem 2, we know that if a graph G = (V, E) satisfies dP (u) +
dP (v) ≥ p where P = x1x2...xp is a path of G such that u = x1 and vp,
with u and v nonadjacent, then G contains cycles of all lengths between
3 and and p. We now are interested in what can be said if we assume
dP (u) + dP (v) ≥ p− 1 instead of dP (u) + dP (v) ≥ p. In this case, we make
an additional hypothesis on the neighbors of u and v in G− P and get the
following result which will be useful in the proof of Theorem 4.

Theorem 3. Suppose that the endvertices u = x1 and v = xp of a path
P = x1x2...xp of a graph G = (V,E) are nonadjacent and satisfy dP (u) +
dP (v) ≥ p− 1, and that there exist three vertices y, z, t not in P , with z 6= t
(and that y could be one of z and t), such that uy, yv, uz, zt and tv are
edges of G. Then for each integer k, 4 ≤ k ≤ p+2, there is a cycle of length
k passing through at least one of the vertices u and v.
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Proof. The path P ′ = x2x3...xp−1 satisfies dP ′(u) + dP ′(v) ≥ |P ′| + 1.
Therefore u and v admit at least one common neighbor xi on P ′ and the
cycles uxivyu and uxivtzu have respective lengths 4 and 5. Similarly, the
cycles x1...xpyx1 and x1...xptzx1 have respective lengths p + 1 and p + 2.

Let us suppose that for a given value of m with 6 ≤ m ≤ p, G contains
no cycle Cm through u or v. The path Q = x2x3...xp−2 satisfies

dQ(u) + dQ(v) ≥
{

p− 3 = |Q|, if uxp−1 ∈ E,
p− 2 = |Q|+ 1, if uxp−1 /∈ E.

(1)

The bijection f : {2, 3, ..., p− 2} −→ {2, 3, ..., p− 2} defined by

f(j) =

{
j + m−4, if 2 ≤ j ≤ p−m + 2 (then m−2 ≤ f(j) ≤ p−2),
m−p + j−1, if p−m + 3 ≤ j ≤ p−2 (then 2 ≤ f(j) ≤ m−3),

induces a bijection of V (Q) onto V (Q).
For 2 ≤ j ≤ p − 2, at most one of the two edges uxj and vxf(j) can

exist for otherwise the cycles uxjP [xj , xf(j)]xf(j)vyu for j ≤ p − m + 2
and uxjP [xj , v]vxf(j)P [xf(j), u]u for j ≥ p − m + 3 would have length m.
Therefore dQ(u) + dQ(v) ≤ |Q| and dQ(u) + dQ(v) = |Q| if and only if, for
every j between 2 and p−2, exactly one of the two edges uxj and vxf(j) does
exist. By (1), we are necessarily in this last case. This implies uxp−1 ∈ E
and thus m 6= p− 1. By the symmetry between u and v, vx2 is also an edge
of G.

If m = p, then f(4) = 3. Since the edge ux4 does not exist (because of
ux4P [x4, xp]xptzu), vx3 is an edge and the cycle vx3P [x3, xp−1]xp−1uyv of
length m leads to a contradiction.

Suppose henceforth m ≤ p− 2. If there exists some index k ≤ p−m+2
such that uxk /∈ E, then vxf(k) ∈ E with f(k) = k + m − 4 and thus
uxk+1 /∈ E for otherwise uxk+1P [xk+1, xk+m−4]xk+m−4vtzu is a cycle of
length m. Therefore there exists an index i with 2 ≤ i ≤ p−m+2 such that
uxj ∈ E for all j between 2 and i and uxj /∈ E for all j between i + 1 and
p−m + 3. Note that i ≤ p−m because of uxp−m+1P [xp−m+1, xp−1]xp−1u,
and that i ≤ m − 4 because of vx2P [x2, xm−3]xm−3uztv. When 2 ≤ j ≤ i,
then m − 2 ≤ f(j) = j + m − 4 ≤ i + m − 4 and when i + 1 ≤ j ≤
p − m + 2, then m + i − 3 ≤ f(j) ≤ p − 2. Looking at vxf(j), we see
that vxk ∈ E for all k with m + i − 3 ≤ k ≤ p − 2 and vxk /∈ E for
all k with m − 2 ≤ k ≤ m + i − 4. The edge vxp−m+i+1 does not exist
for otherwise uxp−1P [xp−1, xp−m+i+1]xp−m+i+1vx2P [x2, xi]xiu is a cycle of
length m. Therefore p−m + i + 1 ≤ m + i− 4; that is, 2m ≥ p + 5.
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Finally, the existence of the edge uxi implies that uxi+m−2 is not in E
(because of uxiP [xi, xi+m−2]xi+m−2u) where i + m − 2 ≥ p − m + 3,
and thus vxf(i+m−2) = vx2m+i−p−3 is an edge of G. The cycle
uP [u, x2m+i−p−3] x2m+i−p−3vxm+i−2P [xm+i−2, xp−1]xp−1u of length m leads
to a contradiction, which completes the proof.

Corollary 4. Let G be a hamiltonian graph of order n. If there exist two
nonadjacent vertices u and v at distance d ≥ 3 on a hamiltonian cycle of
G such that d(u) + d(v) ≥ n + d − 2, then G contains cycles of all lengths
between 3 and n− d + 1.

Proof. Let C = x1, x2, ..., xn, x1 be a hamiltonian cycle of G, u = x1,
v = xn−d+1 (3 ≤ d ≤ n

2 ) and P = x1, x2, ..., xn−d+1. If all the edges
exist between {u, v} and {xn−d+2, xn−d+1, ..., xn}, then dP (u) + dP (v) ≥
(n+d−2)−2(d−1) = n−d and G contains a triangle and cycles of all lengths
between 4 and n− d + 3 by Theorem 3. If at least one of the edges between
{u, v} and {xn−d+2, xn−d+1, ..., xn} is missing, then dP (u)+dP (v) ≥ n−d+1
and G[x1, x2, ..., xn−d+1] is pancyclic by Theorem 2.

Considering the case when u and v are adjacent, as a corollary of The-
orem 1(g) with a proof quite analogous to the proof of Corollary 3, we have
that if G is a hamiltonian graph of order n and if there exist two adjacent
vertices u and v at distance d ≥ 3 on a hamiltonian cycle of G such that
d(u) + d(v) ≥ n + d− 1, then G contains cycles of all lengths between 3 and
n− d + 1.

We now show some lemmas that will be useful in the proof of the next main
result that gives a condition insuring the existence of small cycles.

Lemma 2. Let P = v1v2...vq be a path and u1 and u2 two vertices not in P.
(1) If dP (u1) + dP (u2) ≥ q + 1, there exists some i such that vi ∈ N(u1) ∩
N(u2).
(2) If dP (u1) + dP (u2) ≥ q + 1 and if there does not exist an index i such
that u1 is adjacent to one of vi and vi+1 and u2 is adjacent to the other one,
then dP (u1) + dP (u2) = q + 1, q is odd and NP (u1) = NP (u2) = {vi : i =
1, 3, 5, ..., q}.
Proof. (1) is trivial.
Suppose the hypotheses of (2) satisfied. Then for any vi ∈ N(u1) we have
vi−1, vi+1 /∈ N(u2) and hence for any odd integer t with 1 ≤ t ≤ q,

dP [v1,vt](u2) ≤ t− dP [v1,vt](u1) + 1,
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and
dP [vt,vq ](u2) ≤ (q − t + 1)− dP [vt,vq ](u1) + 1.

This implies that the two previous inequalities are in fact equalities. We can
easily deduce that q must be odd and

NP (u1) = NP (u2) = {vi : i = 1, 3, ..., q}.

Lemma 3. If the graph G of order n has a two-path partition P ′ = v1v2...vf

and P ′′ = vf+1...vn satisfying the two conditions
(i) v1vn /∈ E(G)

and
(ii) d(v1) + d(vn) ≥ n + 1

then it contains a cycle Cm for each integer m with 3 ≤ m ≤
min(f+6

2 , n−f+6
2 ).

Proof. Note that the upper bound on m can be written f ≥ 2m − 6 and
n − f ≥ 2m − 6. By the symmetry between f and n − f , assume without
loss of generality that
(∗) dP ′(v1) + dP ′(vn) ≥ f + 1.

Hence |N(vn) ∩ P ′| ≥ 2 and f ≥ 3.
If we put s = max{i ≤ f : vi ∈ N(vn)}, s′ = min{i ≤ f : vi ∈ N(vn)}

(note that s′ ≥ 2 by (i)) and x = max{i ≤ f : vi ∈ N(v1)}, we have
dP ′(v1) ≤ x− 1, dP ′(vn) ≤ s− s′ + 1 and thus by (∗),
(∗∗) s− s′ + x ≥ f + 1.

If 3 ≤ m ≤ s + 1, the graph G′ = G[v1, v2, ..., vs, vn] of order s + 1
satisfies by (∗) the condition dG′(v1) + dG′(vn) ≥ f + 1 − (f − s) = s + 1.
By Theorem 2, G′ contains a cycle Cm.

Suppose now m ≥ s + 2 which implies s ≤ f+6
2 − 2 = f+2

2 . By (∗∗),
x ≥ s′ + f

2 ≥ f+4
2 > s and x − s′ + 3 ≥ f + 4 − s ≥ f+6

2 ≥ m. The graph
G′′ = G[vn, vs′ , vs′+1, ..., vs, ..., vx, v1] of order x − s′ + 3 satisfies by (∗) the
condition dG′′(v1) + dG′′(vn) ≥ f + 1− (s′ − 2) ≥ x− s′ + 3. By Theorem 2,
G′′ contains a cycle Cm.

Lemma 4. Let G contain a hamiltonian path P = v1v2...vn such that
v1vn /∈ E(G) and d(v1) + d(vn) ≥ n + d for some integer d, 0 ≤ d ≤ n− 4.
Then for any l, 2 ≤ l ≤ d + 3, there exists a (v1, vn)-path of length l.

Proof. Suppose that G has no (v1, vn)-path of length l for some l between 2
and d + 3. Then for any vi ∈ N(v1) with 2 ≤ i ≤ n − l, vnvi+l−2 /∈ E(G).
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Thus

{vj : vjvn ∈ E(G)} ⊆ V − {v1, vn} − {vi+l−2 : vi ∈ N(v1), 2 ≤ i ≤ n− l}
and vn−l+1v1 /∈ E(G). Therefore d(vn) ≤ n− 2− d(v1) + l − 2 which leads
to d(v1) + d(vn) ≤ n + l − 4, and so l ≥ d + 4, a contradiction.

Lemma 5. Let P = v1v2...vq be a path and u1 and u2 two vertices not on
P without any common adjacency on P . For m ≥ 5, if dP (u1) + dP (u2) ≥
q − t + 1 for some integer t with either
t = 2 and q ≥ max{16,m + 2} or

t ≥ 3 and b q

m− 4 + 3bm−4
3 ccb

m− 4
3

c ≥ t when m ≥ 7

or b q

m− 1
c ≥ t when 5 ≤ m ≤ 6,

then G[P ∪ {u1, u2}] has a Cm or a (u1, u2)-path of length either m − 2 or
m− 3.

Proof. Suppose that G[P ∪{u1, u2}] has neither Cm nor a (u1, u2)-path of
length m− 2 or m− 3. If vi ∈ N(u1) (resp. N(u2)), for some i ≤ q−m + 4,
then vi+m−4, vi+m−5 /∈ N(u2) (resp. N(u1)) and vi+m−2 /∈ N(u1) (resp.
N(u2)) for i ≤ q − m + 2. So if vi, vi+2 ∈ N(u1) (resp. N(u2)) for some
i ≤ q −m + 2, then vi+m−2 /∈ N(u1) ∪ N(u2). If vi ∈ N(u1) (resp.N(u2))
and vi+1 ∈ N(u2) (resp. N(u1)) for some i ≤ q − m + 1, then vi+m−4 /∈
N(u1) ∪N(u2).

We claim that among {vi, vi+1, vi+2, vi+m−4, vi+m−3, vi+m−2}, there is
at least one common nonadjacency of u1 and u2. To show the claim, as-
sume, without loss of generality, that u1vi ∈ E(G). Then by using the
statements above, we deduce that if vi+m−2 and vi+m−4 are not common
nonadjacency, vi+2u1 /∈ E(G), vi+1u2 /∈ E(G). Hence either one of the two
edges vi+2u2, vi+1u1 is in E(G) or vi+2u2, vi+1u1 /∈ E(G) that imply that
vi+m−3 is a common nonadjacency. The claim is proved.

It follows that when q ≥ m + 2 and m ≥ 10, there is at least
one common nonadjacency in {v1, v2, v3, vm−3, vm−2, vm−1} and one in
{v4, v5, v6, vm, vm+1, vm+2}. So P [v1, vm+2] has at least two common nonad-
jacencies of u1 and u2. When m ≤ 9 and q ≥ 16, there is one common non-
adjacency in P [v1, v8] and one in P [v9, v16]. These give a contradiction of the
degree sum condition if t = 2. So we assume t ≥ 3. Then if m ≥ 7, by con-
sidering the sets {vf+3i, vf+3i+1, vf+3i+2, vf+3i+m−4, vf+3i+m−3, vf+3i+m−2}
with 0 ≤ i ≤ bm−4

3 c−1, we know that there is at least one common nonadja-
cency in every set and so there are at least bm−4

3 c common nonadjacencies in
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any subpath P [f, f +m−4+3bm−4
3 c−1] of m−4+3bm−4

3 c vertices. Thus u1

and u2 have at least b q

m−4+3bm−4
3
ccb

m−4
3 c ≥ t common nonadjacencies in P.

This implies that dP (u1) + dP (u2) ≤ q − t, a contradiction to the hypothe-
sis. If 5 ≤ m ≤ 6, there is at least one common nonadjacency in every set
{v1+i(m−1), v2+i(m−1), v3+i(m−1), vm−3+i(m−1), vm−2+i(m−1), vm−1+i(m−1)} for
0 ≤ i ≤ b q

m−1c−1. Then we have at least b q
m−1c ≥ t common nonadjacencies

and again dP (u1) + dP (u2) ≤ q − t, a contradiction.
Theorem 4. If G is a hamiltonian graph of order n ≥ 20 such that there
exists a pair of nonadjacent vertices u and v satisfying d(u)+d(v) ≥ n+ z
where z = 0 if n is odd and z = 1 if n is even, then G contains cycles Cm

for all 3 ≤ m ≤ max(dC(u, v) + 1, n+19
13 ), dC(u, v) being the distance of u

and v on a hamiltonian cycle of G.
Consider the graph drawn in Figure 3 and obtained from a hamiltonian

cycle C = c1c2...cnc1 by adding all edges cicj , for i = 1 or bn+1
2 c and for any

j, p + 2 ≤ j ≤ bn+1
2 c − p − 1 and bn+1

2 c + p + 1 ≤ j ≤ n − p where p is an
integer between 2 and n−5

4 . The degree sum of c1 and cbn+1
2
c is 2(n−4p+2)

and the graph does not contain cycles of length l, n− p + 1 ≤ l ≤ n− 1.

u u

u u
u

u

u
u

u u
u

u

aaaaaaaaaa¢
¢
¢
¢
A

A
A

A
!!!!!!!!!!

Z
Z

Z
Z

Z
Z

ZZ¶
¶

¶
¶

¶
¶
e

e
e

e
ee

½
½

½
½

½
½

½½
\

\
\

\
\\½

½
½

½
½

½
½½
Z

Z
Z

Z
Z

Z
ZZ¶

¶
¶

¶
¶

¶
A
A
A
A!!!!!!!!!!a

aaaaaaaaa
¢

¢
¢

¢

p + 2
bn+1

2 c − p− 1

1

n

bn+1
2 c

n− p bn+1
2 c+ p + 1

Figure 3

This example shows that even if there exist in a hamiltonian graph two non-
adjacent vertices whose degree sum is very large, this graph is not necessarily
pancyclic.

Proof of Theorem 4. Let C = c1c2...cn be a hamiltonian cycle of G,
and without loss of generality, let u = c1, v = cp with n+2

2 ≤ p ≤ n−2. Thus
the condition m ≤ n+19

13 implies m ≤ 2p+17
13 and dC(u, v) = n + 1 − p. It is

easy to see that there exists some i such that both ci and ci+1 are adjacent
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to one of u and v, and there exist some j′ and j′′, j′ 6= j′′, such that cj′ and
cj′′ are adjacent to both of u and v. Therefore C3, C4 ⊂ G.

Henceforth we assume m ≥ 5 and suppose that G does not contain
any Cm, for some m ≤ max(dC(u, v)+1, n+19

13 ). Put A = G[c1, c2, ..., cp] and
B = G[cp, cp+1, ..., cn, c1]. If dA(u)+dA(v) ≥ p, by Theorem 2, Cm ⊂ A ⊂ G.
So there exists an integer t ≥ 2 such that dA(u)+dA(v) = p−t+1, and hence
dB(u)+dB(v) ≥ n+z−p+t−1 = |B|+z+t−3. Since dB(u)+dB(v) ≤ 2|B|−4,
we also have |B| ≥ t+z +1 and thus t ≤ n−p+1. If m ≤ |B| and t+z ≥ 3,
then Cm ⊂ B ⊂ G by Theorem 2. So we assume that t = 2 or t ≥ 3 and
m ≥ |B|+ 1 = n− p + 3.

By Lemma 2(1) applied to the path B′ = B − {u, v} of n − p vertices
which satisfies dB′(u) + dB′(v) ≥ |B′|+ z + t− 1, there is some cs ∈ N(u)∩
N(v) ∩ B. When t = 2, by the same lemma applied to A′ = A − {u, v},
there is also some c′s ∈ N(u) ∩N(v) ∩A.

When t ≥ 3, by Lemma 2(2) applied to B′, there exists some cr in B′

such that u is adjacent to one of cr and cr+1 and v is adjacent to the other
one.

When t = 2, if there exists some cr in B′ such that u is adjacent to one
of cr and cr+1 and v is adjacent to the other one, we apply Theorem 3 to
the graph G[A∪ {cs, cr, cr+1}] and have all cycles Cm, 4 ≤ m ≤ |A|+ 2. So
we assume there is no such cr in B′. It follows from Lemma 2(2) that z = 0,
n − p is odd and NB′(u) = NB′(v) = {cp+1, cp+3, ..., cn} In this case, by
Lemma 2(2) applied to A′, there exists some cr in A′ such that u is adjacent
to one of cr and cr+1 and v is adjacent to the other one, and by symmetry we
may assume r ≥ p

2 . Moreover, using c′s, cr, cr+1 in A and the neighborhoods
NB′(u) = NB′(v) = {cp+1, cp+3, ..., cn}, we have all cycles Cm, m ≤ |B|+ 2.
So only the following two possibilities remain to be studied.

Case 1. t = 2, p
2 ≤ r ≤ p− 1 and m ≥ |B|+ 3 = n− p + 5.

Case 2. t ≥ 3 and m ≥ |B|+ 1 = n− p + 3.

Note that t+2 ≤ m ≤ 2p+17
13 and, since n−p+3 ≤ n+19

13 , n ≤ 13p−20
12 and by

n ≥ 13m−19, p ≥ 12m−16. In the remainder of the proof, the justification
of all the omitted details is based on these inequalities.

We begin with the proof of the following two claims and note that G
contains no (u, v)-path of length m− 2 or m− 3 avoiding cs or cr and cr+1

for otherwise G would contain a cycle Cm.

Claim 1. In Case 1, there is no common adjacency of u and v in
C[cm, c p

2
−m+3].
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In Case 2, there is no common adjacency of u and v in
C[cm+t−3, cp−m−t+4].

Proof of Claim 1. When t = 2 and cr ∈ C[p
2 , p − 1], to avoid a (u, v)-

path of length m − 2 or m − 3 that does not contain cs, cr nor cr+1, if
cj ∈ N(u)∩N(v)∩C[cm, c p

2
−m+3] then cj+m−5, cj+m−4 /∈ N(u)∪N(v) (note

that (p
2 − m + 3) + m − 4 < p

2 ≤ r). Let P ′ = c1c2...cj+m−6 and P ′′ =
cj+m−3cj+m−2...cp. Since 2m− 6 ≤ j +m− 6 and p− (j +m− 4) ≥ 2m− 6,
and since dP ′∪P ′′(u) + dP ′∪P ′′(v) = p − 1 = |P ′ ∪ P ′′| + 1, Cm ⊂ G by
Lemma 3, a contradiction.

When t ≥ 3, there exists some (u, v)-path of length l in B for any l,
2 ≤ l ≤ t by Lemma 4. To avoid a Cm, there does not exist any (u, v)-path
of length d in A for any d, m − t ≤ d ≤ m − 2. If cj ∈ N(u) ∩ N(v) ∩
C[cm+t−3, cp−4m+10], then [N(u) ∪ N(v)] ∩ C[cj+m−t−2, cj+m−4] = ∅ and
clearly cj+m−2 /∈ N(u) ∪N(v).

If e({cj+m−3}, {u, v}) ≤ 1, we let P ′ = c1c2...cj+m−t−3 and P ′′ =
cj+m−1cj+m...cp. Since j + m− t− 3 ≥ 2m− 6 and p− j −m + 2 ≥ 2m− 6,
and since

dP ′∪P ′′(u) + dP ′∪P ′′(v) ≥ p− t = |P ′ ∪ P ′′|+ 1,

Cm ⊂ G[P ′ ∪ P ′′] ⊂ G by Lemma 3, a contradiction.
Therefore cj+m−3 ∈ N(u)∩N(v) and by the previous argument, replac-

ing cj by cj+m−3, we obtain cj+2m−6 ∈ N(u)∩N(v) since we still have p−j−
2m+5 ≥ 2m−6. We deduce that [N(u)∪N(v)]∩C[cj+m−2, cj+m−4+t] = ∅.
Since j + m ≤ (j + m − 4 + t) + 1, the paths P ′ = c1c2...cj+m−t−3 and
P ′′ = cj+mcj+m+1...cp satisfy |P ′| = j + m − t − 3 ≥ 2m − 6, |P ′′| =
p−j−m+1 ≥ 2m−6 and dP ′∪P ′′(u)+dP ′∪P ′′(v) = p− t−1 = |P ′∪P ′′|+1.
Thus by Lemma 3, we also have Cm ⊂ G[P ′ ∪ P ′′] ⊂ G, a contradiction.

So (N(u) ∩ N(v)) ∩ C[cm+t−3, cp−4m+10] = ∅. As p − 4m + 10 ≥ p+1
2 ,

the result follows by symmetry.

Claim 2. In Case 1, there exist some q1 and q2 such that 2m − 5 ≤ q1 <
q2 ≤ p

2 −m + 3 and cq1, cq2 /∈ N(u) ∪N(v).
In Case 2, there exist some q1, q2, ..., qt such that 2m − 5 ≤ q1 < q2 < ... <
qt ≤ p− 2m + 6 and {cq1 , cq2 , ..., cqt} ∩ (N(u) ∪N(v)) = ∅.

Proof of Claim 2. Let P = c2m−5c2m−4...c p
2
−m+3 in Case 1 and P =

c2m−5c2m−4...cp−2m+6 in Case 2. In each case, by Claim 1 and since m ≥ 5
and m ≥ t + 2, u and v have no common adjacency on P .



40 R. Faudree, O. Favaron, E. Flandrin and H. Li

When t = 2 and cr ∈ C[p2 , p− 1] we have |P | = p
2 − 3m + 9 ≥ max{16,

m + 2} since p ≥ 12m− 16 and m ≥ 5. By Claim 1 and Lemma 5, to avoid
a Cm or a (u, v)-path of length m− 2 or m− 3 in G[P ∪ {u, v}] (note that
cr /∈ P ), dP (u) + dP (v) ≤ |P | − 2 and thus q1 and q2 exist.

When t ≥ 3 we have |P | ≥ 8m−4 since p ≥ 12m−16. Some arithmetical
verifications allow us to check that b 8m−4

m−4+3bm−4
3
ccb

m−4
3 c ≥ m − 2 if m ≥ 7

and that b8m−4
m−1 c ≥ m − 2 if 5 ≤ m ≤ 6. So by Claim 1 and Lemma 5,

to avoid a Cm or a (u, v)-path of length m − 2 or m − 3 in G[P ∪ {u, v}],
dP (u) + dP (v) ≤ |P | − t and thus q1, q2, ..., qt exist. Claim 2 is proved.

To complete the proof, note that by Claims 1 and 2, the path Q =
cq1cq1+1...cqt satisfies dQ(u) + dQ(v) ≤ |Q| − t. The two paths Q′ =
c1c2...cq1−1 and Q′′ = cqt+1cqt+2...cp have at least 2m−6 vertices. Moreover
dQ′∪Q′′(u) + dQ′∪Q′′(v) ≥ (p− t + 1)− (|Q| − t) = |Q′|+ |Q′′|+ 1. Therefore,
by Lemma 3, Cm ⊂ G[Q′ ∪ Q′′] ⊂ G, the final contradiction. The proof of
Theorem 4 is complete.
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